Supporting Information

Heteroannulation of bicyclobutane derivatives via Au-catalyzed hydration to enol ethers and intramolecular cyclization giving spirocyclobutanes

Masaharu Takatsuki, Hiroshi Aoyama, Kenichi Murai, Mitsuhiro Arisawa*, Makoto Sako*

Graduate School of Pharmaceutical Sciences, Osaka University,
Yamada-oka 1-6, Suita, Osaka 565-0871, Japan.
E-mail: arisaw@phs.osaka-u.ac.jp; sako-m@phs.osaka-u.ac.jp

Contents		
1.	General Information	S 2
2.	Optimization of Reaction Conditions	S 3
3.	Mechanistic Studies	S 5
4.	Experimental Procedure	S 6
5.	References	S 19
6.	X-ray Crystallographic Analysis	S 20
7.	NMR Spectra	S 24

1. General Information

$>{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, NMR spectra were measured by JEOL ECS 300, JEOL JNM-ECS 400 or JEOL JNMLA 500 spectrometers.
${ }^{1} H$ NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of tetramethylsilane (TMS) at 0 ppm , integration, multiplicities $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, and coupling constants (Hz).
${ }^{13} \mathrm{C}$ NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of triplet for CDCl_{3} at 77 ppm , septet for acetone- d 6 at 29.8 ppm , multiplicities $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet), and coupling constants (Hz).
$\mathrm{C}_{6} \mathrm{~F}_{6}$ (singlet at -164.9 ppm) was used as an external standard for ${ }^{19} \mathrm{~F}$ NMR.
> MALDI-MS spectra were obtained with JMS-S3000 (JEOL).
> Melting points were measured by BÜCHI B-545.
$>$ Column chromatography on SiO_{2} was performed with Kanto Chemical Silica Gel 60 (spherical, 63-210 $\mu \mathrm{m}$ or spherical, 40-50 $\mu \mathrm{m}$).
$>$ Commercially available organic and inorganic compounds were used without further purification.

2. Optimization of Reaction Conditions

General procedure for Table S1-S4

A flame dried test tube equipped with magnetic stirring bar was charged with Au catalyst ($4.5 \mu \mathrm{~mol}, 3.0 \mathrm{~mol} \%$) and Ag additive ($4.5 \mu \mathrm{~mol}, 3.0 \mathrm{~mol} \%$) under N_{2} in glovebox. Dry solvent ($3.0 \mathrm{~mL}, 0.05 \mathrm{M}$) and nucleophiles, $\mathrm{H}_{2} \mathrm{O}$ or amines, ($0.30 \mathrm{mmol}, 2.0$ eq. or specified eq.) was added to the mixture at ambient temperature. The solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 5 min , and then the compound $\mathbf{1 a}(0.15 \mathrm{mmol})$ was added. After specified reaction time, the mixture was filtered through short pad of silica gel. The yields of compounds $\mathbf{2}$ and $\mathbf{2}^{\prime}$ were determined by ${ }^{1} \mathrm{H}$ NMR.

Table S1. Screening of Au catalysts and additives

		$\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M}) \\ 25^{\circ} \mathrm{C} \text {, time }}]{\substack{[\mathrm{Au}](3 \mathrm{~mol} \%) \\ \text { additive (3 mol\%) })}}$		
entry	[Au]	additive	time	2a/2a' $(\%, d r)^{\mathbf{a}}$
0	IPrAuNTf ${ }_{2}$	-----	2 h	51\%, (1.5:1)
1	$1 \mathrm{PrAuNTf} \mathrm{F}_{2}$	-----	13 h	67\%, (1.3: 1)
2	$1 \mathrm{PrAu}(\mathrm{MeCN}) \mathrm{BF}_{4}$	-----	20 h	16\%, (0.81: 1)
3	IPrAuCl	AgNTf_{2}	13 h	56\%, (0.79 : 1)
4	XPhosAuCl	AgOtf	"	83\%, (0.90 : 1)
5	$\mathrm{PPh}_{3} \mathrm{AuCl}$	AgOtf	"	86\%, (0.90 : 1)
6	$\mathrm{PPh}_{3} \mathrm{AuCl}$	AgOAc	"	N.D. ${ }^{\text {b }}$
7	$\mathrm{PPh}_{3} \mathrm{AuCl}$	AgBF_{4}	"	34\%, (0.51: 1)
8	$\mathrm{PPh}_{3} \mathrm{AuCl}$	AgSbF_{6}	"	54\%, (0.80 : 1)
9	$\mathrm{PPh}_{3} \mathrm{AuCl}$	AgNTf_{2}	/	76\%, (0.80: 1)
$10^{\text {c }}$	-----	AgOtf	"	57\%, (0.67: 1)
11	-----	-----	"	N.R. ${ }^{\text {d }}$

${ }^{a}$ NMR yield using 1,3,5-trimethoxybenzene as an internal standard material.
${ }^{b}$ not detected. ${ }^{c}$ used $6 \mathrm{~mol} \%$ of additive. ${ }^{d}$ no reaction.
Table S2. Screening of solvents

	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ (2.0 \text { eq.) } \end{gathered}$	$\xrightarrow[\substack{\text { solvent }(0.05 \mathrm{M}) \\ 25^{\circ} \mathrm{C}, 13 \mathrm{~h}}]{\substack{\mathrm{PPh}_{3} \mathrm{AuCl}(3 \mathrm{~mol} \%) \\ \mathrm{AgOTf}(3 \mathrm{~mol} \%)}}$		
entry		solvent		2a/2a' $(\%, d r)^{\text {a }}$
0		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		86\%, (0.90: 1)
1		CHCl_{3}		79\%, (0.81: 1)
2		PhMe		59\%, (0.54 : 1)
3		THF		N.D. ${ }^{\text {b }}$
4		1,4-dioxane		52\%, (0.55: 1)
5		MeNO_{2}		85\%, (1.16: 1)
6		EtOAc		73\%, (0.48: 1)
7		MeCN		17\%, (0.32: 1)
8		DMF		N.R. ${ }^{\text {c }}$

[^0]Table S3. Screening of $\mathrm{H}_{2} \mathrm{O}$ loading

*NMR yield using 1,3,5-trimethoxybenzene as an internal standard material.
Table S4. Screening nucleophiles

 1a (0.15 mmol)	nucleophiles (2.0 eq.)	$\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M}) \\ 25^{\circ} \mathrm{C}, 13 \mathrm{~h}}]{\substack{\mathrm{PPh}_{3} \mathrm{AuCl}(3 \mathrm{~mol} \%) \\ \mathrm{AgOOTf}(3 \mathrm{~mol} \%)}}$	 desired products R:Boc, Ts, Ms, Ph
entry	nucleophiles		results
1	$\mathrm{H}_{2} \mathrm{~N}$-Boc		complex mixture
2	$\mathrm{H}_{2} \mathrm{~N}$-Ts		complex mixture
3	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{Ms}$		complex mixture
4	aniline		complex mixture

3. Mechanistic Studies

3-1. Reaction using deuterium oxide

A flame dried test tube equipped with magnetic stirring bar was charged with $\mathrm{PPh}_{3} \mathrm{AuCl}(2.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 3.0$ $\mathrm{mol} \%$) and $\operatorname{AgOTf}(1.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 3.0 \mathrm{~mol} \%)$ under N_{2} in glovebox. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.05 \mathrm{M})$ and $\mathrm{D}_{2} \mathrm{O}(5.4$ $\mu \mathrm{L}, 0.30 \mathrm{mmol}, 2.0$ eq.) was added to the mixture at ambient temperature. The solution was stirred at $25^{\circ} \mathrm{C}$ for 5 min , and then the compound $\mathbf{1 a}(0.15 \mathrm{mmol})$ was added. After 13 h , the mixture was filtered through short pad of silica gel. The obtained residue was purified by flash column chromatography on silica gel (hexane $/ E t O A c=10: 1$) to give compounds 2a-D and 2a'-D.

3-2. NMR time course experiment

We conducted a time-course experiment using NMR to collect any information to shed light on the reaction mechanism. A solution of $\mathbf{1 a}(0.15 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{mmol})$ and $3 \mathrm{~mol} \%$ of $\mathrm{IPrAuNTf}_{2}$ in CDCl_{3} was filled in a NMR tube. We recorded the ${ }^{1} \mathrm{H}$ NMR spectra of this reaction mixture at 10 and 30 min and at $1,2,3,6$, and 9 h after the start of the reaction and compared each spectrum with those of standard samples of $\mathbf{1 a}, \mathbf{2 a}$ and $\mathbf{2 a}$ '.

4. Experimental procedure

$4-1$. Preparation of starting materials

General procedure of Negishi coupling of bicyclobutane and aryl iodide
Starting materials $\mathbf{1}$ were prepared through slightly modified procedure of reported method reported by Anderson et al.

Under a nitrogen atmosphere, to a solution of BCB S1 ($1.00 \mathrm{~g}, 5.15 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in THF (10.3 \mathrm{~mL}, 0.50 \mathrm{M}$) was added n - BuLi (1.6 M in hexane, $3.43 \mathrm{~mL}, 1.2$ eq.) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , then a solution of ZnCl_{2} (1.0 M in THF, 5.2 mL , 1.2 eq .) was added, and the reaction was stirred for 5 min at $-78{ }^{\circ} \mathrm{C}$ before bringing to rt , and stirred for a further 10 min . The solution of organozinc was transferred via cannula to a vial containing $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(98.2 \mathrm{mg}, 107 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%), \mathrm{P}(o \text {-furyl })_{3}(99.6 \mathrm{mg}, 429 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and aryl iodide $\mathbf{S} 2$ $\left(1.06 \mathrm{~g}, 4.29 \mathrm{mmol}, 1.0\right.$ eq.). The reaction mixture was stirred overnight at $40^{\circ} \mathrm{C}$, then it was filtrated through celite using EtOAc. The filtrate was washed with water, extracted with EtOAc, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (hexane/EtOAc $=10: 1$ and toluene $/$ hexane $/ \mathrm{EtOAc}=20: 1: 1$) to give $\mathbf{1 a}$ as pale yellow solid $(818 \mathrm{mg}, 2.62 \mathrm{mmol}$, 61% yield).

1-(phenylsulfonyl)-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane (1a)
61% yield, pale yellow solid, m.p. $57.0-58.0^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (301 MHz , Acetone- d_{6}) $\delta 7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{tt}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-$ 7.52 (m, 2H), 7.45 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}$,
 $1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=13.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=6.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.9,148.3,140.7,132.9,129.8,128.8,128.7,127.3,123.4,120.6,117.3,95.2$, 37.7, 33.8, 28.1.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 335.0712, found 335.0710.

1-(5-methoxy-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1b) 69% yield, white solid, m.p. $69.7-70.3^{\circ} \mathrm{C}$
${ }^{1}$ H NMR (400 MHz , Acetone- d_{6}) $\delta 7.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.54$
 (m, 2H), $7.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.8,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{dd}, J=13.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=13.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=6.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.91$ (s, 2H), $1.66(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 155.7,150.1,149.7,141.5,133.3,129.2,127.2,122.5,119.5,114.7,114.0$, 92.8, 55.1, 37.3, 34.0, 27.4.
sHRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 365.0818$, found 365.0818.

1-(5-methyl-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1c)
36% yield, colorless oil.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta$ 7.74-7.72 (m, 2H), 7.67-7.63 (m, 1H), 7.55-7.51 (m, 2H), $7.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
 $1 \mathrm{H}), 6.61(\mathrm{dd}, J=13.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=13.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 1.63$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta$ 154.6, 149.9, 142.1, 134.0, 133.5, 131.1, 130.1, 129.9, 128.0, 121.4, 118.2, 94.6, 37.7, 34.6, 28.3, 20.6.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 349.0869$, found 349.0869.

1-(5-fluoro-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1d)
61\% yield, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.10(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$,
 4.63 (dd, $J=13.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=6.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(76 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 159.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=239.9 \mathrm{~Hz}\right.$, aromatic $\left.\mathrm{C}_{\alpha}-\mathrm{F}\right), 152.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right.$, aromatic $\left.\mathrm{C}_{\delta}\right), 150.0,142.1,134.1,130.1,127.9,124.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right.$, aromatic $\left.\mathrm{C}_{\gamma}\right), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right.$, aromatic $\left.\mathrm{C}_{\gamma}\right)$, $116.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24.6 \mathrm{~Hz}\right.$, aromatic $\left.\mathrm{C}_{\beta}\right), 115.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.1 \mathrm{~Hz}\right.$, aromatic $\left.\mathrm{C}_{\beta}\right), 95.0,38.3,35.3,27.6$.
${ }^{19}$ F NMR (283 MHz , Acetone-d6) $\delta-121.3$.
HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 353.0618$, found 353.0613.

1-(5-nitro-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1e)

Compound $\mathbf{S 3}$ was prepared through a reported method. ${ }^{2}$

To a solution of 4-nitro-2-iodophenol ($\mathbf{S 3}, 375 \mathrm{mg}, 2.90 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 1,2-dibromoethane (734 \mu \mathrm{~L}, 8.52 \mathrm{mmol}$, 5.0 eq.) in acetone ($18.9 \mathrm{~mL}, 0.09 \mathrm{M}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(471 \mathrm{mg}, 3.41 \mathrm{mmol}, 2.0 \mathrm{eq}$.). The resulting mixture was stirred under reflux conditions for overnight. The reaction was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to get crude compound $\mathbf{S 4}$. To a solution of crude compound in THF ($14.5 \mathrm{~mL}, 0.20 \mathrm{M}$) was added t-BuOK ($390 \mathrm{mg}, 3.48 \mathrm{mmol}, 1.5 \mathrm{eq}$.) portionwise. The resulting mixture was stirred at room temperature for overnight. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to get crude compound $\mathbf{S 5}$, which was used in next step without purification. Under a nitrogen atmosphere, to a solution of BCB S1 ($676 \mathrm{mg}, 3.48 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF $(10.3 \mathrm{~mL}, 0.50 \mathrm{M})$ was added $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane, $2.17 \mathrm{~mL}, 1.2 \mathrm{eq}$.) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , then a solution of $\mathrm{ZnCl}_{2}(1.0 \mathrm{M}$ in $\mathrm{THF}, 3.48 \mathrm{~mL}, 1.2 \mathrm{eq}$.) was added, and the reaction was stirred for 5 min at $-78^{\circ} \mathrm{C}$ before bringing to rt , and stirred for a further 10 min . The solution of organozinc was transferred via cannula to a vial containing $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(72.5 \mu \mathrm{~mol}, 66.4 \mathrm{mg}, 2.5 \mathrm{~mol} \%), \mathrm{P}(o \text {-furyl })_{3}(67.3 \mathrm{mg}, 67.3 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \%$) and aryl iodide $\mathbf{S 5}$ (1.0 eq.). The reaction mixture was stirred overnight at $40^{\circ} \mathrm{C}$, then it was filtrated through celite using EtOAc. The filtrate was washed with water, extracted with EtOAc, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (hexane/EtOAc $=10: 1$ and toluene $/$ hexane $/ \mathrm{EtOAc}=20: 1: 1$) to give the BCB derivative $1 \mathbf{e}$ as colorless oil $(139 \mathrm{mg}$, 377μ mol, 3 steps: 13% yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.24(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.68-$ $7.64(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=13.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=13.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.74(\mathrm{dd}, J=5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(76 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 160.5,146.6,142.9,141.1,133.5,129.3,127.2,125.6,124.4,122.2,115.6$, 98.6, 37.5, 34.6, 26.9.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 380.0563$, found 380.0566.

1-(3-chloro-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1f)
53\% yield, colorless oil.
${ }^{1} \mathbf{H}$ NMR (301 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.78-7.75 (m, 2H), 7.63-7.57 (m, 1H), 7.50-7.45 (m, 3H), $7.36(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=13.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-$
 $4.18(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(76 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 151.4,151.2,142.1,134.2,130.5,130.1,128.9,128.7,128.0,127.8,126.8$, 91.6, 38.7, 35.9, 27.3.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{NaSCl}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 369.0323$, found 369.0326.

2-(3-(phenylsulfonyl)bicyclo[1.1.0]butan-1-yl)-3-(vinyloxy)naphthalene (1g)
42% yield, Light brown solid, m.p. 82.2-83.2 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{dd}, J=$
 $13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=13.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 154.8,148.7,142.1,134.5,133.9,130.9,130.6,129.9,128.1,128.1,127.9$, $127.5,125.8,122.2,112.2,96.6,37.8,34.9,30.6$.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 385.0869$, found 385.0871.
(Z)-1-(phenylsulfonyl)-3-(2-(prop-1-en-1-yloxy)phenyl)bicyclo[1.1.0]butane (1h)

Under a nitrogen atmosphere, to a solution of BCB S1 ($820 \mathrm{mg}, 4.22 \mathrm{mmol}, 1.2$ eq.) in THF ($10.3 \mathrm{~mL}, 0.50 \mathrm{M}$) was added $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane, $2.64 \mathrm{~mL}, 1.2$ eq.) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , then a solution of ZnCl_{2} (1.0 M in THF, $4.22 \mathrm{~mL}, 1.2 \mathrm{eq}$.) was added, and the reaction was stirred for 5 min at $-78^{\circ} \mathrm{C}$ before bringing to rt , and stirred for a further 10 min . The solution of organozinc was transferred via cannula to a vial containing $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(80.4 \mathrm{mg}, 88.0 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%), \mathrm{P}(o \text {-furyl })_{3}(81.7 \mathrm{mg}, 352 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and 1-(3-bromopropoxy)-2-iodobenzene $\mathbf{S 6}\left(1.20 \mathrm{~g}, 3.52 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.). The reaction mixture was stirred overnight at $40^{\circ} \mathrm{C}$, then it was filtrated through celite using EtOAc. The filtrate was washed with water, extracted with EtOAc, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The mixture was filtered through a short pad of silica gel to get crude compound $\mathbf{S 8}$ which was used in next step without purification. To a solution of crude compound S8 in THF ($17.6 \mathrm{~mL}, 0.20 \mathrm{M}$) was added t-BuOK ($474 \mathrm{mg}, 4.22 \mathrm{mmol}, 1.5 \mathrm{eq}$.) portionwise. The resulting mixture was stirred at room temperature for overnight. The reaction was quenched with water and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to get crude compound $\mathbf{S 8}$ which was used in next step without purification. Then to a solution of crude compound $\mathbf{S 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17.5 \mathrm{~mL}, 0.20 \mathrm{M})$ was added $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(166 \mathrm{mg}, 0.175 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The resulting mixture was stirred at room temperature for overnight. The reaction mixture was filtered and combined filtrate was concentrated. The residue was purified by a silica gel column chromatography (hexane/EtOAc $=10: 1$ and toluene $/$ hexane $/ \mathrm{EtOAc}=20: 1: 1$) to get compound 1h as colorless oil ($200 \mathrm{mg}, 613 \mu \mathrm{~mol}, 3$ steps: 40%).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{dq}, J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.84(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J=$ $6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 157.6,142.2,142.0,133.9,130.8,130.0,129.6,127.9,123.2,120.9,116.3$, 107.6, 37.9, 34.4, 28.6, 9.6.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 349.0869$, found 349.0867.

1-((4-methoxyphenyl)sulfonyl)-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane (1i) 65% yield, colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- d_{6}) δ 7.64-7.60 (m, 2H), 7.42-7.40 (m, 1H), 7.327.27 (m, 1H), 7.06 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.64$ (dd, $J=13.5$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=13.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$

$(\mathrm{s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2,155.9,148.3,132.2,129.8,129.6,128.6,123.4,120.9,117.3,114.0,95.2$, 55.6, 37.4, 34.5, 27.5.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 365.0818$, found 365.0819.

1-tosyl-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane (1j)
45\% yield, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.27 (m, 3H), 7.09-7.05 (m, 1H), $7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=13.7$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=13.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}$,
 $2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.2,141.8,133.3,133.0,129.9,129.1,129.0,127.6,127.3,127.1,125.8,91.4$, 38.4, 38.2, 23.0, 12.6.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 349.0869$, found 349.0866.

1-(3-(phenylsulfonyl)bicyclo[1.1.0]butan-1-yl)-2-(vinyloxy)naphthalene (1k) 57% yield, white solid, m.p. $70.7-72.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=$
 $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=13.9$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=13.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(76 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 152.8,148.3,143.0,135.1,133.1,130.6,130.0,129.3,128.7,127.2,127.0$, $124.5,124.2,116.7,114.1,95.8,37.6,34.8,28.1$.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 385.0869$, found 385.0868 .

2-(3-(phenylsulfonyl)bicyclo[1.1.0]butan-1-yl)-3-(vinyloxy)pyridine (11)

77% yield, brown oil.
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.20-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=13.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J$
 $=13.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,147.5,143.9,142.0,140.6,133.0,128.9,127.3,124.1,122.8,97.1,38.3$, 35.9, 29.3.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 314.0845$, found 314.0849.
N, N-diisopropyl-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane-1-carboxamide (1m)
83\% yield, yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.34(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H})$, 7.03-7.00 (m, 1H), 6.92-6.91 (m, 1H), $6.62(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{br}, 1 \mathrm{H}), 4.65$
 (dd, $J=13.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=6.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{br}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 2 \mathrm{H}), 1.33$
(s, 2H), $1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 167.0,156.5,149.8,131.8,128.2,125.9,123.8,117.3,95.1,49.9,46.2,37.8$, 25.5, 21.4, 21.1, 20.1.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.1958$, found 300.1956.

1-(2-ethynylphenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (3a)

A flame dried test tube equipped with magnetic stirring bar was charged with the compound $\mathbf{S 9}$ ($460 \mathrm{mg}, 1.32 \mathrm{mmol}$, 1.0 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(91 \mathrm{mg}, 0.66 \mathrm{mmol}, 0.50\right.$ eq.), $\operatorname{DPEphos~(~} 35.5 \mathrm{mg}, 66 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{tfa})_{2}(10.9 \mathrm{mg}, 33 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%$) under N_{2} and dry 1,4-dioxane ($13 \mathrm{~mL}, 0.10 \mathrm{M}$) was added. To a solution added ethynyltrimethylsilane $(270 \mu \mathrm{~L}, 1.98 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , then the mixture was stirred at 90^{\circ} \mathrm{C}$ overnight. After completion of the reaction, the mixture was filtered and, concentrated to afford crude compound $\mathbf{S 1 0}$. To a solution of crude compound S10 in THF $(13.2 \mathrm{~mL}, 0.10 \mathrm{M})$ added $\operatorname{TBAF}(1.56 \mathrm{~mL}, 1.58 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF solution, 1.2 eq .). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h followed by further stirring for 2 h at room temperature. The reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$) to give compound 3a as yellow oil (160 mg , 2 steps : 41%).
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(76 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 142.6,134.7,134.2,134.2,130.1,129.5,128.8,128.2,127.9,124.1,83.5$, 83.0, 39.2, 36.1, 30.4.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 317.0607$, found 317.0600.

1-(2-(phenylethynyl)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (3b)

A flame dried test tube equipped with magnetic stirring bar was charged with a compound $\mathbf{S 9}$ ($348 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ eq.), TEA ($560 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 4.0 \mathrm{eq}$), CuI ($38 \mathrm{mg}, 0.20 \mathrm{mmol}, 20$ $\mathrm{mol} \%$) and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(70 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ under N_{2} and dry DMF ($10 \mathrm{~mL}, 0.10$
 M) was added. To the solution added ethynylbenzene ($164 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , then the$ mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After completion of the reaction, the mixture was filtered and concentrated. The residue purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$) to get $\mathbf{3 b}$ as brown oil ($209 \mathrm{mg}, 564 \mu \mathrm{~mol}, 56 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.39(\mathrm{~m}$,
$3 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 142.4,134.1,134.0,133.5,132.0,130.1,129.9,129.4,129.2,128.9,128.2$, 127.9, 124.7, 123.8, 94.0, 89.1, 39.0, 36.1, 30.7.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 393.0920$, found 393.0920.

1-(2-bromophenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (S9)
83\% yield, pale yellow oil.
${ }^{1} \mathbf{H}$ NMR (301 MHz, Acetone- d_{6}) $\delta 7.96-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-$
 $7.71(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{~s}$, 2 H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 142.2,133.5,133.3,131.8,130.0,129.6,129.5,127.7,127.1,125.8,39.5$, 34.8, 31.8.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 370.9712$, found 370.9712.

4-2. Heteroannulation of bicyclobutane derivatives via Au-catalyzed addition of water to enol ethers followed by intramolecular nucleophilic addition

General procedure

A flame dried test tube equipped with magnetic stirring bar was charged with $\mathrm{PPh}_{3} \mathrm{AuCl}(2.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 3.0$ $\mathrm{mol} \%$) and $\mathrm{AgOTf}\left(1.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 3.0 \mathrm{~mol} \%\right.$) under N_{2} in glovebox. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.05 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}(5.4$ $\mu \mathrm{L}, 0.30 \mathrm{mmol}, 2.0$ eq.) was added to the mixture at ambient temperature. The solution was stirred at $25^{\circ} \mathrm{C}$ for 5 min , and then the compound $\mathbf{1}(0.15 \mathrm{mmol})$ was added. After 13 h , the mixture was filtered through short pad of silica gel. The obtained residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$) to give compounds 2 and $\mathbf{2}^{\prime}$.
(3'r,4r)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4, 1'-cyclobutane] (2a) 40% yield, pale yellow solid, m.p. $149.5-150.3^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}$, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}$,
 $1 \mathrm{H}), 5.06(\mathrm{q}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $13.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,138.0,133.9,129.4,129.0,128.2,126.3,125.6,121.9,116.3,93.1,75.3$, 50.9, 39.5, 37.1, 20.7.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 353.0818$, found 353.0820.
(3's,4s)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4, 1'-cyclobutane] (2a')
45% yield, pale yellow solid, m.p. 139.1-141.1 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.2 \mathrm{~Hz}$,
 $1 \mathrm{H}), 5.11(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,137.9,133.9,129.4,128.8,128.4,126.4,123.3,121.6,116.8,92.7,72.1$, 49.6, 40.4, 37.3, 20.7.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 353.0818$, found 353.0817.

6-methoxy-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4, 1^{\prime}-cyclobutane] ($\mathbf{2 b}, \mathbf{2 b}$ ') (diastereomixture) 60% yield (2b:2b' $=0.80: 1$), colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.53 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~m}, 0.41 \mathrm{H}), 5.02(\mathrm{q}, J=4.7 \mathrm{~Hz}$, $0.45 \mathrm{H}), 4.97(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.58 \mathrm{H}), 4.00$ (quin., $J=8.6 \mathrm{~Hz}, 0.63 \mathrm{H}$), $3.79(\mathrm{~m}, 2.3 \mathrm{H}), 3.71$ (s, 1.2H), $3.13(\mathrm{dd}, J=13.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.2,8.6 \mathrm{~Hz}, 0.55 \mathrm{H}), 2.85(\mathrm{dd}, J$
 $=12.0,8.6 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.75-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3,154.1,146.1,145.8,137.8,137.7,133.8,133.8,129.3,128.2,128.1$, $127.0,126.1,117.2,117.0,115.5,113.6,110.2,109.1,93.0,92.6,75.1,72.0,55.7,50.7,49.5,40.3,39.4,37.1,37.0$, 20.6, 20.5.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 383.0924$, found 383.0925 .

2,6-dimethyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2c, 2c') (diastereomixture) $63 \%\left(\mathbf{2 c}: \mathbf{2 c} \mathbf{c}^{\prime}=1.2: 1\right)$, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.45 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.55 \mathrm{H}), 6.69(\mathrm{dd}, J=$ $8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.01(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.45 \mathrm{H}), 4.06-3.97(\mathrm{~m}$,
 $0.45 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 0.55 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H})$, 2.58-2.44 (m, 1H), 2.29-2.38 (s, 1.4H), 2.20-2.29 (s, 1.7H), 1.52(m, 3H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,149.7,137.9,137.9,133.9,133.9,131.2,130.9,129.7,129.5,129.4$, $128.4,128.3,126.3,126.0,125.2,123.5,116.5,116.1,93.1,92.6,75.3,72.1,51.1,49.6,40.4,39.5,37.2,37.1,20.8$, 20.8, 20.72, 20.65.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 367.0975$, found 37.0971.

6-fluoro-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2d, 2d') (diastereomixture) 92% yield (2d:2d' $=0.60: 1$), colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.19$ $(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 0.62 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 0.38 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 1 \mathrm{H})$, $5.06(\mathrm{q}, ~ J=5.2 \mathrm{~Hz}, 0.38 \mathrm{H}), 5.01(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.62 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 0.62 \mathrm{H}), 3.82-3.73(\mathrm{~m}$,
 0.38 H), 3.18 (dd, $J=13.3,9.2 \mathrm{~Hz}, 0.38 \mathrm{H}$), 3.09 (dd, $J=13.3,8.7 \mathrm{~Hz}, 0.62 \mathrm{H}$), $2.98-2.88$ (m, $1 \mathrm{H}), 2.76-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1.1 \mathrm{H}), 1.51(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1.9 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.48\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=241 \mathrm{~Hz}\right), 157.32\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=241 \mathrm{~Hz}\right), 148.3,148.0,137.8,137.7$, $134.0,129.4,128.3,128.2,127.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.7 \mathrm{~Hz}\right), 126.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.7 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 117.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $7.7 \mathrm{~Hz}), 116.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 112.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 109.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 93.3,92.9$, $74.9,72.0,50.7,49.4,40.2,39.4,37.12,37.09,20.60,20.54$.
${ }^{19} \mathbf{F}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-123.642,-124.378$.
HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{FNaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 371.0724$, found 371.0725.

2-methyl-6-nitro-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4, 1'-cyclobutane] (2e, 2e') (diastereomixture) 12% yield $\left(\mathbf{2 e} / \mathbf{2} \mathbf{e}^{\prime}=0.36: 1\right)$, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 8.10-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 0.25 \mathrm{H}), 7.96-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H})$, $5.21(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.25 \mathrm{H}), 5.13(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.70 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 0.72 \mathrm{H}), 3.94-3.85(\mathrm{~m}$, $0.22 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 0.23 \mathrm{H}), 3.16(\mathrm{dd}, J=13.3,8.7 \mathrm{~Hz}, 0.74 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.78-$
 $2.55(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 0.70 \mathrm{H}), 1.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2.2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3,157.2,142.1,141.7,137.6,137.3,134.2,129.6,129.5,128.4,126.6$, $125.8,124.9,122.6,119.8,117.6,117.2,93.9,93.6,75.1,72.2,50.6,48.9,39.7,39.3,36.9,36.7,20.5,20.4$.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 398.0669$, found 398.0666.

8-chloro-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2f, 2f') (diastereomixture) 50% yield $\left(\mathbf{2 f : 2 f}{ }^{\prime}=0.67: 1\right)$, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.43$ $(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 0.60 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.40 \mathrm{H})$, $5.15(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.40 \mathrm{H}), 5.08(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 0.6 \mathrm{H}), 3.83-3.74(\mathrm{~m}$, $0.4 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 3 \mathrm{H})$.

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3,148.0,137.9,137.7,134.0,134.0,129.4,129.4$,
$129.3,128.4,128.2,127.9,127.3,124.8,121.9,121.6,121.6,121.1,93.8,93.5,75.1,72.1,50.8,49.4,40.2,39.5$, 37.1, 20.6, 20.5 .

HRMS (MALDI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{NaSCl}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 387.0428$, found 387.0424.

2'-methyl-3-(phenylsulfonyl)spiro[cyclobutane-1,4'-naphtho [2,3-d][1,3]dioxine] (2g, 2g') (diastereomixture) 48% yield ($\mathbf{2 g}: 2 \mathbf{g}{ }^{\prime}=0.55: 1$), colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.96(\mathrm{~m}, 2.7 \mathrm{H}), 7.93(\mathrm{~s}, 0.7 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 4.7 \mathrm{H})$, $7.45-7.29(\mathrm{~m}, 2.1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.33 \mathrm{H}), 5.16(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.69 \mathrm{H})$, $4.14-4.05(\mathrm{~m}, 0.68 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 0.34 \mathrm{H}), 3.35-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.90-$
 $2.60(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3,150.0,137.9,137.8,134.0,133.9,133.8,129.4,129.1,128.8,128.4$, $128.3,128.0,127.9,127.4,127.1,126.7,126.6,126.6,126.4,126.0,124.3,122.4,111.7,111.3,93.3,92.9,75.7,72.5$, 51.0, 49.7, 40.7, 40.2, 37.8, 37.6, 20.9, 20.8.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 403.0975$, found 403.0973.

2-ethyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] ($\left.\mathbf{2 h}, \mathbf{2 h} \mathbf{h}^{\prime}\right)$ (diastereomixture)
63\% (2h:2h' $=0.89: 1$), colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.95-7.92 (m, 2H), 7.70-7.65 (m, 1H), 7.61-7.56 (m, 2H), 7.49$7.47(\mathrm{~m}, 0.57 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 0.45 \mathrm{H}), 7.0-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.95-$ $6.92(\mathrm{~m}, 0.45 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=5.0 \mathrm{~Hz}, 0.47 \mathrm{H}), 4.83(\mathrm{t}, J=5.0 \mathrm{~Hz}, 0.53 \mathrm{H})$,

4.06-3.98 (m, 0.52H), 3.87-3.78 (m, 0.43H), 3.16 (dd, $J=13.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 0.55 \mathrm{H}), 2.88-2.83(\mathrm{~m}$, $0.46 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 152.5,152.2,138.1,138.0,134.0,134.0,129.5,129.1,129.0,128.9,128.5$, $128.3,126.7,126.4,126.0,125.4,123.4,121.9,121.6,116.9,116.5,97.0,96.5,75.4,72.3,51.1,49.7,40.5,39.5$, $37.4,37.3,27.52,27.50,21.6,8.0,7.9$.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 367.0975$, found 367.0974.

3'-((4-methoxyphenyl)sulfonyl)-2-methylspiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2i, 2i') (diastereomixture) quant. $\left(\mathbf{2 i}: 2 \mathbf{i} \mathbf{'}^{\prime}=0.78: 1\right)$, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 058 \mathrm{H}), 7.21-7.14(\mathrm{~m}$, $1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 0.40 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 0.38 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H})$, $5.11(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.46 \mathrm{H}), 5.06(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.59 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 0.53 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82-$ $3.74(\mathrm{~m}, 0.41 \mathrm{H}), 3.16-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.1,8.9 \mathrm{~Hz}, 0.62 \mathrm{H}), 2.86(\mathrm{dd}, J=12.4,8.7 \mathrm{~Hz}$, $0.40 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 0.88 \mathrm{H}), 2.61-2.47(\mathrm{~m}, 1.2 \mathrm{H}), 1.54-1.51(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 163.9,163.9,152.2,151.9,130.5,130.4,129.4,129.3$,
 $128.9,128.8,126.5,126.4,125.7,123.3,121.8,121.6,116.7,116.2,114.6,93.1,92.7,75.2,72.1$, 55.7, 51.1, 49.8, 40.4, 39.6, 37.3, 37.1, 20.71, 20.65.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 383.0924$, found 383.0921 .

2-methyl-3'-tosylspiro[benzo[d][1,3]dioxine-4, 1'-cyclobutane] ($\mathbf{2 j} \mathbf{j}, \mathbf{2 j} \mathbf{\prime}$) (diastereomixture) 72% yield $\left(\mathbf{2 j} \mathbf{j} \mathbf{2 j}{ }^{\mathbf{\prime}}=0.87: 1\right)$, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 0.52 \mathrm{H}), 7.37(\mathrm{dd}, J=$ $8.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 0.40 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 0.58 \mathrm{H}), 6.96-$ $6.92(\mathrm{~m}, 0.42 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.41 \mathrm{H}), 5.06(\mathrm{q}, J=5.0 \mathrm{~Hz}, 0.52 \mathrm{H}), 4.05-$ $3.96(\mathrm{~m}, 0.59 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 0.40 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 0.60 \mathrm{H}), 2.91-2.86(\mathrm{~m}$, $0.44 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1.2 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1.6 \mathrm{H})$.

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,151.9,144.9,144.9,135.0,134.9,130.0,128.9,128.8,128.4,128.2$, $126.4,126.4,125.7,123.3,121.9,121.6,116.7,116.3,93.1,92.7,75.2,72.1,51.0,49.6,40.4,39.5,37.3,37.1,21.6$, 20.71, 20.65.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 367.0975$, found 367.0975.

A heteroannulation was performed using $\mathbf{3 b}$ following the procedure for $\mathbf{2}$, giving $\mathbf{4 b}$ in 65% yield as a E / Z mixture (1/0.9). The compound data of major E isomer was shown below.
(E)-3'-benzylidene-3-(phenylsulfonyl)-3'H-spiro[cyclobutane-1, 1'-isobenzofuran] ((E)-4b) 34% yield, brown oil. (major product)
${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.65(\mathrm{~m}, 7 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.73(\mathrm{~m}$,

2H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 153.8,143.9,138.6,136.3,134.0,133.8,129.7,129.6,129.0,128.5,128.3$, $128.2,125.6,120.6,119.7,96.8,83.9,47.5,38.3$.

HRMS (MALDI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NaS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 411.1025$, found 411.1027.

4-3. Preparation of BCB units

Compounds S1, S10, S11 were prepared according to the literature procedure. ${ }^{3}$
Compound $\mathbf{S 1 2}$ was prepared according to the literature procedure. ${ }^{1}$

4-4. Preparation of Ar units

To a solution of 2-iodophenol derivative (1.0 eq.) and 1,2-dibromoethane (5.0 eq.) in acetone (0.09 M) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 eq.). The resulting mixture was stirred under reflux conditions for overnight. The reaction was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by a silica gel column chromatography (hexane/EtOAc $=20: 1$) to give 2-iodophenol bromoethyl ether derivative as a colorless oil or color solid.

To a solution of 2-iodophenol bromoethyl ether derivative (1.0 eq.) in THF (0.20 M) was added t-BuOK (1.5 eq .) portionwise. The resulting mixture was stirred at room temperature for overnight. The reaction mixture was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was concentrated, and the residue was purified by a silica gel column chromatography (hexane/EtOAc $=25: 1$) to give 2 -iodophenol vinyl ether derivative (2 step yields) as oil or solid.

2-iodo-4-methoxy-1-(vinyloxy)benzene (S13)

62% yield, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$
 (dd, $J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=14.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=14.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=6.2,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77$ ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,149.6,149.4,124.2,119.0,115.2,93.9,88.2,55.8$.
HRMS (MALDI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{I}\left([\mathrm{M}]^{+}\right): ~ 275.9642$, found 275.9641 .

1-chloro-3-iodo-2-(vinyloxy)benzene (S14)

58% yield, colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$

$(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=14.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=14.2,2.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.9,148.7,138.1,130.9,127.9,127.5,92.1,91.6$.
HRMS (MALDI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{OClI}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 280.9225$, found 280.9231 .

2-iodo-3-(vinyloxy)naphthalene (S15)

65% yield, pale yellow oil.

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=13.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=13.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}$, $J=5.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.9,147.9,139.6,134.0,131.7,127.2,127.0,126.7,125.4,112.0,97.0,87.8$;
HRMS (MALDI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{OI}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 296.9771$, found 296.9764.

2-iodo-3-(vinyloxy)pyridine (S16)

46\% yield, brown oil.

${ }^{1} \mathbf{H}$ NMR $\left(301 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.12(\mathrm{dd}, J=4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J$ $=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=13.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, Acetone- d_{6}) δ 153.1, 147.6, 145.4, 124.2, 123.2, 111.9, 96.7.
HRMS (MALDI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NOI}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 247.9567$, found 247.9563.

S2

S17

S18

S19

S20

The compounds $\mathbf{S 2}$, S17, S18 were prepared according to the literature procedure. ${ }^{1}$
The compound $\mathbf{S 1 9}$ was prepared according to the literature procedure. ${ }^{4}$
The compound $\mathbf{S 2 0}$ was prepared according to the literature procedure. ${ }^{5}$

5. References

1. R. E. McNamee, A. L. Thompson, E. A. Anderson, J. Am. Chem. Soc. 2021, 143, 21246-21251.
2. R. V. Rozhkov, R. C. Larock, J. Org. Chem. 2010, 75, 4131-4134.
3. M. Jung, V. N. G. Lindsay, J. Am. Chem. Soc. 2022, 144, 4764-4769.
4. A. Martins, U. Marquardt, N. Kasravi, D. Alberico, M. Lautens, J. Org. Chem. 2006, 71, 4937-4942.
5. N. Sakiyama, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 2012, 51, 5976-5980.

6. X-ray Crystallographic Analysis

(3'r,4r)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2a)

CCDC number 2247662

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0039 \mathrm{~A}$	Wavelength=0.71075
Cell:	$\mathrm{a}=11.154(2)$	$\mathrm{b}=8.1794(13)$
Temperature:	$\mathrm{alpha}=90$	beta=96.951(4)

	Calculated	Reported
Volume	1585.0(5)	1585.1(5)
Space group	P 21/n	P $121 / n 1$
Hall group	-P $2 y n$	-P 2yn
Moiety formula	C18 H18 O4 S	C18 H18 O4 S
Sum formula	C18 H18 O4 S	C18 H18 04 S
Mr	330.38	330.40
Dx,g cm-3	1.385	1.384
Z	4	4
Mu (mm-1)	0.222	0.222
F000	696.0	696.0
FOOO'	696.83	
h, k, lmax	14,10,22	14,10,22
Nref	3645	3639
Tmin, Tmax	$0.961,0.978$	$0.344,0.978$
Tmin'	0.875	

Correction method $=\#$ Reported T Limits: Tmin=0.344 Tmax=0.978
AbsCorr $=$ MULTI-SCAN

Data completeness $=0.998 \quad$ Theta (max) $=27.514$
$R($ reflections $)=0.0695(2734)$
wR2 (reflections) =
0.1891 (3639)

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C

DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75
The relevant atom site should be identified.
PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density 1.40 eA-3
PLAT213_ALERT_2_C Atom 04 has ADP max/min Ratio 3.4 prolat
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance
2.7 Note

PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.91Ang From 03 .
2.689 Check

PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.97Ang From 01 . 0.49 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H1A . -0.31 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H1B . -0.36 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H1C . -0.51 eA-3

Alert level G

CHEMS02_ALERT_1_G Please check that you have entered the correct _publ_requested_category classification of your compound;
FI or CI or EI for inorganic; FM or CM or EM for metal-organic; FO or CO or EO for organic.
From the CIF: _publ_requested_category CHOOSE FI FM FO CI CM CO or A
From the CIF: _chemical_formula_sum :C18 H18 O4 S1
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 4 Note
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ...
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records
PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K)
PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature (K)
PLAT230_ALERT_2_G Hirshfeld Test Diff for O2A --C2 .
PLAT301_ALERT_3_G Main Residue Disorder(Resd 1)
2 Report

PLAT793_ALERT_4_G Model has Chirality at C2 (Centro SPGR)
PLAT860_ALERT_3_G Number of Least-Squares Restraints PLAT910_ALERT_3_G Missing \# of FCF Reflection(s) Below Theta(Min). PLAT912_ALERT_4_G Missing \# of FCF Reflections Above STh/L= 0.600 PLAT941_ALERT_3_G Average HKL Measurement Multiplicity
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
0.13 Report

1 Report
1 Report
273 Check
273 Check
6.0 s.u.

4\% Note
$\begin{aligned} & 4 \% \text { Note } \\ & \text { R Verify }\end{aligned}$
10 Note
4 Note
2 Note
4.2 Low

3 Info

[^1](3's,4s)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2a')

CCDC number 2247661

Bond precision:	$C-C=0.0055 \mathrm{~A}$	Wavelength=1.54187
Cell:	$a=8.3144$ (3)	$\mathrm{b}=9.8167(4) \quad \mathrm{c}=20.8013(7)$
	alpha=90	beta=99.087(7) gamma=90
Temperature:	296 K	
	Calculated	Reported
Volume	1676.49 (11)	1676.48 (11)
Space group	P 21/c	P $121 / \mathrm{c} 1$
Hall group	-P 2ybe	-p 2 ybc
Moiety formula	C18 H18 04 S	C18 H18 O4 S
Sum formula	C18 H18 04 S	C18 H18 O4 S
Mr	330.38	330.40
Dx,g em-3	1.309	1. 309
Z	4	4
Mu (mm-1)	1.865	1.866
FOOD	696.0	696.0
FOOD'	699.36	
$\mathrm{h}, \mathrm{k}, 1$ max	10,11,25	9,11,24
Nref	3067	3027
Tmin, Tmax	$0.671,0.756$	$0.513,0.756$
Tmin'	0.411	

```
Correction method= t Reported T Limits: Tmin=0.513 Tmax=0.756
AbsCorr = MULTI-SCAN
```

Data completeness= $0.987 \quad$ Theta (max) $=68.194$

```
R(reflections) = 0.0569( 2023)
S =1.026 Npar= 208
```

wR2 (reflections) = 0.1610 (3027)

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-lewel.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT241_ALERT_2_C High 'MainMol' Deq as Compared to Neighbors of O4 Check PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0055 Ang.

Alert level G

CHEMS02_ALERT_1_G Please check that you have entered the correct
_publ_requested_category classification of your compound;
FI or CI or EI for inorganic; FM or CM or EM for metal-organic;
FO of CO or EO for organic.
From the CIF: _publ_requested_category CHOOSE FI FM FO CI CM CO or A
From the CIF: _chemical_formula_sum :C18 H18 O4 Sl
PLATT93_ALERT_4_G Model has Chirality at C18 (Centro SPGR) R Verify

PLAT882_ALERT_1_G No Datum for _diffrn_reflna_av_unetI/netI Please Do !
PLAT986_ALERT_1_G No non-zero $\mathrm{I}^{\prime \prime}$ Anomalous Scattering Values Found Please Check

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an onisaion or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type l CIF construction/ayntax error, inconsistent or misaing data
ALERT type 2 Indicator that the atructure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, quexy or suggeation
ALERT type 5 Informative message, check
```


[^2]

X : parts per Million : Proton

[^3]
X : parts per Million : Carbon13

1d
--- PROCESSING PARAMETERS
dc balance(0, FALSE)
dc_balance (0, FALSE $)$
$\operatorname{sexp}(2.0[\mathrm{~Hz}], 0.0[\mathrm{~s}])$
trapezoid($\left.0\left[\frac{\%}{8}\right], 0[8], 80[\%], 100[\%]\right)$
zerofill(1, TRUE $)$
fft $(1, ~ T R U E, ~ T R U E ~$
machinephase
ppm

Filename
Author
Experiment
Solvent
Actual_Start_Ti
Revision_Time
Comment
Data_Format
X_Domain
Dim_Title
Dim_Units
Dimensions
Site
Spectrometer
Field_Strength
X_Acq_Dur
X_Domain
$\mathrm{X}_{-}^{-} \mathrm{Freq}^{\prime}$
X-Offset
X^{-}Points
X Prescans
X Resolution
${ }^{\mathrm{x}}$ - Resoluti
$\mathrm{x}_{\text {- Sweep_Clipped }}$
Irr_Domain
Irr_Freq
Irr_Offset
Clipped
Scans
Relaxation_Delay
Recvr_Gain
Temp_Get
X_90-Width
x_{x}-Acq_Time
$X_{-A n g l e}^{-A n g}$
$\mathrm{X}_{\mathrm{X}} \mathrm{Atn}$
X_Pulse
Irr_Atn_Dec
Irr_Atn_Noe
Irr_Noise
Irr_Pwidth Decoupling Initial_Wai Noe Noe Repétition_Time
$=44-\mathrm{F}$ Acetone- d 6 Carbon-1 $=$ delta
= carbon.jxp
$=210581$ Acet
= ACETONE-D6
$=29-\mathrm{NOV}-202218: 05: 13$
= single pulse
$=1 \mathrm{D}$ COMPLEX
$=1 \mathrm{D}$ Com
$=26214$
= Carbon
$=$ Carbon 13
$=[\mathrm{ppm}]$
$=\mathrm{x}$
$=$ ECS 300
$=$ ECS 300
$=$ DELTA2 NMR
$=7.0586013[\mathrm{~T}](300[\mathrm{MHz}])$
$=1.38412032[\mathrm{~s}$]
$=13 \mathrm{C}$
$=75.56823426[\mathrm{MHz}]$
$=100[\mathrm{ppm}]$
$=32768$
$=32768$
$=4$
$=0.72248054[\mathrm{~Hz}]$
$=23.67424242[\mathrm{kHz}]$
$=23.67424242[\mathrm{kHz}]$
$=18.93939394[\mathrm{kHz}]$
$=$ Proton
$=300.52965592[\mathrm{MHz}$
$=300.529$
$=5$ [ppm]
$=$ FALSE
$=1024$
$=1024$
$=2[\mathrm{~s}]$
$=50$
$=50.8[\mathrm{dC}]$
$=11.4$ [us]
$=1.38412032[\mathrm{~s}]$
$=30[\mathrm{deg}]$
$\begin{aligned} &=5.4[\mathrm{~dB}] \\ &= 3.8[\mathrm{us}]\end{aligned}$
$=3.8[\mathrm{us}]$
$=21.6[\mathrm{~dB}]$
$=21.6[\mathrm{~dB}]$
$=$ WALTZ
$=0.118[\mathrm{~ms}]$
$=$ TRUE
$=1[\mathrm{~s}]$
$=$ TRUE
$=2[\mathrm{~s}]$
$=3.38412032[\mathrm{~s}]$

[^4]
---- PROCESSING PARAMETER
dc_balance(0, FALSE)
$\operatorname{sexp}(0.2[\mathrm{~Hz}], 0.0[\mathrm{~s}])$
fft (1, TRUE, TRUE)
ppm

Filename
Experim
Sample_Id Solvent Revision_Time

Comment
Data-Format
Dim $\overline{\text { Size }}$
X_Domain
Dim_Title
Dimensions
Site
Field_Strength
x_Acq_Duration
X_Domain
X_Freq
X_Offset
x^{-}-Points
X Prescans
$\mathrm{X}_{\text {- }}$ Resolution
X_{x}-Sweep Sweep Clipped
Irr_Domain
Irr_Freq
Irr_Offset
Tri_Domain
Tri_Freq
Tri_Offset
Scans
Total_Scans
Recur
Recve Gain
X_90-Width
$\mathrm{X}_{\mathrm{X} \text {-Angine }}$
X_Atn
X^{-}Pulse
Irr_Mode
Tri-Mode
Dante_Presat
Repetition_Time
$=3$ 4-NO2 Acetone-d6 Proton
$=$ proton.jxp
$=210636$ column Acetone-
$=$ ACETONE-D6
$=28-$ NOV- 2022
= 28 -NOV-2022 $22: 44: 55$
$=15-$ MAR-2023 19:40:38
= single_pulse
$=1 \mathrm{D}$ COM
$=13107$
$=13107$
$=$ Proton
$=$ Proton
$=$ [ppm]
$=$ SNM-ECA500
$=$ DELTA2_NMR
$=11.7473579[\mathrm{~T}](500[\mathrm{MHz}])$
$=1.74587904[\mathrm{~s}]$
$=500.15991521[\mathrm{MHz}]$
$=5.0$ [ppm]
$=16384$
$=0.57277737[\mathrm{~Hz}]$
$=9.38438438[\mathrm{kHz}]$
$=7.50750751[\mathrm{kHz}]$
$=$ Proton
$=500.15991$
$=5.0[\mathrm{ppm}]$
Proton
$=5.0[\mathrm{ppm}]$
$=$ FALSE
$=8$
$=8$
$=50$
$=20.2[\mathrm{dC}]$
$=12.9[\mathrm{us}]$
$=1.74587904[\mathrm{~s}]$
$45[\mathrm{deg}]$
$=3.6[\mathrm{~dB}]$
$=6.45$ [us]
$=0 \mathrm{ff}$
$=\mathrm{Off}$
$=$ FALSE
$=6.74587904[\mathrm{~s}]$

X : parts per Million : Proton

[^5]
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 f}\left(76 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right)$
S36

X : parts per Million : Carbon 13

X: parts per Million: Carbon 13
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 h}\left(101 \mathbf{M H z}\right.$, Acetone- $\left.d_{6}\right)$
S40
---- PROCESSING PARAME TERS ----
dc balance(0, FALSE) $\operatorname{sexp}(0.2[\mathrm{~Hz}]$, FALSE $)$
$\operatorname{sexp}(0.2[\mathrm{~Hz}], 0.0[5])$
trapezoid $0[8], 0[8], 80[8], 100[8])$
zerofill(1, TRUE)
machinephase
ppm

Filename	$=10$ EWG 4-OMe Acetone-d6_P
Author	= delta
Experiment	= proton.jxp
Sample_Id	$=210662$ column Acetone-d6
Solvent	= ACETONE-D6
Actual_Start_Time	= 19-DEC-2022 22:17:45
Revision_Time	= 15-MAR-2023 21:12:17
Comment	= single pulse
Data Format	$=1 \mathrm{D}$ COMPLEX
Dim_Size	= 13107
X Domain	= Proton
Di̇m_Title	= Proton
Dim_Units	= [ppm]
Dimensions	= X
Site	$=\operatorname{ECS} 400$
Spectrometer	= DELTA2_NMR
Field_Strength	$=9.389766[\mathrm{~T}]$ ($400[\mathrm{MHz}])$
X Acq- Duration	$=2.18365952$ [s]
X Domain	$=1 \mathrm{H}$
X Freq	$=399.78219838[\mathrm{MHz}]$
x-offset	$=5[\mathrm{ppm}]$
X -Points	$=16384$
x^{-}Prescans	= 1
X Resolution	$=0.45794685[\mathrm{~Hz}]$
X Sweep	$=7.5030012[\mathrm{kHz}]$
X_{-}^{-}Sweep_Clipped	$=6.00240096[\mathrm{kHz}]$
Irr_Domain	= Proton
Irr_Freq	$=399.78219838[\mathrm{MHz}]$
Irr_Offset	$=5[\mathrm{ppm}]$
Tri_Domain	= Proton
Tri_Freq	$=399.78219838[\mathrm{MHz}]$
Tri_Offset	$=5[\mathrm{ppm}]$
Clipped	= PALSE
Scans	= 8
Total_Scans	$=8$
Relaxation_Delay	= 5[s]
Recvr Gain	$=38$
Temp_Get	$=20.3$ [dC]
X 90 -Width	= 12.4 [us]
$\overline{\mathrm{X}}$ Ac \bar{q} Time	$=2.18365952[\mathrm{~s}]$
X-Angle	$=45$ [deg]
X_Atn	$=3[\mathrm{~dB}]$
X-Pulse	= 6.2 [us]
Irr_Mode	$=0 \mathrm{ff}$
Tri-Mode	$=0 \mathrm{ff}$
Dante_Presat	= FALSE
Initial Wait	= 1 [s$]$

$\mathrm{X}:$ parts per Million : Carbon 13

S42

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 g}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
S44
---- PROCESSING PARAME TERS ---
dc balance(0, FALSE)
Filename
Author
Experiment
Sample_Id
Solvent
Actual Start_Time
Revision_Time

Comment
Data Format
Dim_Size
Dim_Title
Dim_Units
Site
Spectrometer
Field_Strength
X Acq-Duration
X Domain
X-Offset
X^{-}Points
X-Prescans
X^{-}Resolutio
X Sweep
X Sweep
X Sweep_Clipped
Irr_Domain
Irr_Freq
Irr_Offset
Tri-Domain
Tri ${ }^{-}$Freq
Tri-Offset
Clippe
Scans
Total_Scans
Relaxation_Delay
Recvr Gain
Temp_Get

X-Ac \bar{q} Time
X-Angle
X Atn
X-Pulse
Irr_Mode
Tri-Mode
Dante Presat
Initial Wait
$=341,2-$ naph Acetone-d6_Pr $=$ delta
$=$ proton. jxp
$=210684$ check Acetone-d 6
$=210684$ check
$=$ ACETONE-D6
$=16$-MAR-2023 15:47:21
$=17$-MAR-2023 10:16:21
$=$ single pulse
$=1 \mathrm{D}$ COMPLEX
$=13107$
$=$ Proton
$=$ Proton
$=[\mathrm{ppm}]$
$=\mathrm{x}$
$=$ ECS 300
$=$ DELTA2_NMR
$=7.0586013[\mathrm{~T}](300[\mathrm{MHz}])$
$=2.90717696[\mathrm{~s}]$
$=300.52965592[\mathrm{MHz}]$
$=5[\mathrm{ppm}]$
$=16384$
$=1$
$=0.34397631[\mathrm{~Hz}]$
$\begin{aligned}= & 0.34397631[\mathrm{~Hz}] \\ = & 5.63570784[\mathrm{kHz}]\end{aligned}$
$=4.50856628[\mathrm{kHz}]$
$=300.52965592[\mathrm{MHz}]$
$=5[\mathrm{ppm}]$
$=5[\mathrm{pm}]$
$=$ Proton
$=300.52965592[\mathrm{MHz}]$
$=5[\mathrm{ppm}]$
$=$ FALSE
$=8$
$=8$
$=5[\mathrm{~s}]$
$=44$
$=44$
$=20[\mathrm{dC}]$
$=11$ [us]
$=2.90717696[\mathrm{~s}]$
$=45$ [deg]
$=45[\mathrm{deg}]$
$=1[\mathrm{~dB}]$
$=1[\mathrm{~dB}]$
$=5.5[\mathrm{us}]$
$=0 f f$
$=\mathrm{Off}$
$=$ FALSE
$=$ FALSE
$=1[s]$
$=7.90717696[\mathrm{~s}]$
 X : parts per Million: Proton

[^6]

S47

---- PROCESSING PARAME TERS ---
dc balance(0 , FALSE)
dc balance (0, FALSE)
$\operatorname{sexp}(0.2[\mathrm{~Hz}], 0.0[\mathrm{~s}])$
$\operatorname{trapezoid}(0[8], 0[8], 80[8], 100[8])$ trapezoid (1 , TRUE)
zerofill ${ }^{\text {zet }}$, TRUE, TRUE)
machinephase
ppm

Filename	amido sub Acetone-d6_P
Author	= delta
Experiment	= proton.jxp
Sample_Id	= amido sub column Acetone
Solvent	= ACETONE-D6
Actual_Start_Time	= 23-JAN-2023 13:13:15
Revision_Time	= 29-JAN-2023 19:45:52
Comment	= single pulse
Data_Format	$=1 \mathrm{COMPLEX}$
Dim_Size	= 13107
X Dommain	= Proton
Dim_Title	= Proton
Dim_Units	= [ppm]
Dimensions	= X
Site	= JNM-ECA500
Spectrometer	= DELTA2_NMR
Field_Strength	$=11.7473579[\mathrm{~T}] \quad(500[\mathrm{MHz}])$
x Acq-Duration	$=1.74587904[\mathrm{~s}$]
X Domain	$=1 \mathrm{H}$
X Freq	= $500.15991521[\mathrm{MHz}]$
X Offset	$=5.0[\mathrm{ppm}]$
x-Points	$=16384$
$\mathrm{x}^{\text {Prescans }}$	= 1
X^{-}Resolution	$=0.57277737[\mathrm{~Hz}]$
X Sweep	$=9.38438438[\mathrm{kHz}]$
X^{-}Sweep_Clipped	$=7.50750751[\mathrm{kHz}]$
Irr_Domain	= Proton
Irr_Freq	$=500.15991521[\mathrm{MHz}]$
Irr_off set	$=5.0[\mathrm{ppm}]$
Tri Domain	= Proton
Tri- Freq	$=500.15991521[\mathrm{MHz}]$
Tri_Off set	$=5.0[\mathrm{ppm}]$
Clipped	= FALSE
Scans	8
Total_Scans	8
Relaxation_Delay	= 5[s]
Recvr Gain	$=32$
Temp_Get	$=19.8$ [dC]
X $90-$ Width	= 12.9 [us]
$\overline{\mathrm{X}}$ Ac \bar{q} Time	$=1.74587904[\mathrm{~s}]$
$\mathrm{x}^{\text {Angle }}$	$=45[\mathrm{deg}]$
$\overline{\mathrm{x}}$ Atn	$=3.6[\mathrm{~dB}]$
X Pulse	= 6.45 [us]
Irr Mode	$=0 \mathrm{ff}$
Tri ${ }^{-}$Mode	$=0 \mathrm{ff}$
Dante_Presat	= FALSE
Initial wait	$=1[s]$
Repetition Time	$=6.74587904 \mathrm{rs} \mid$

X : parts per Million: Proton
S49
---- PROCESSING PARAME TERS ----
dc balance(0, EALSE)
zerofill($1, ~ T R U E) ~$
fft $1, ~ T R U E, ~ T R U E ~$
machinephase
ppm
Filename
Author
Experiment
Sample Id
Solvent

Actual_Start_Ti
Comment
Comment
Dim $\bar{S} i z e$
X Dōmain
Dim_Title
Dim-Units
Site
Spectrometer
Field_Strength
X Acq_Duration
X Domain
X Freq
X Offset
X -Points
${ }^{\mathrm{X}} \mathrm{C}$ Prescans
X^{-}Resolutio
X_Sweep_Clipped
Irr_Domain
${ }_{\text {Irr }}^{\text {Ireq }}$
Irr-Orfs
Scans
Relaxation_Delay
Recvr Gain
Temp_Get
X_90 Width
$\mathrm{X}_{-}^{-} \mathrm{Ac} \overline{\mathrm{q}}$ Time
X^{-}Angle
X Atn
X Pulse
$\mathrm{I} \overline{\mathrm{r}}$ Atn Dec
Irr_Atn Dec
Irr ${ }^{-1}{ }^{\text {Atn }}$ Noe
Irr_Noise
Irr_Pwidth
Decoupling
Initial_Wait
Noe
Nepetition Time
0

X : parts per Million : Carbon 13
$=35$ amido sub Acetone-d6_C
$=$ delta
$=$ delta
$=$ carbon. jxp
$=$ amido sub column Acetone-
$=23-$ JAN-2023 13:18:39
$=23-J A N-202313: 18: 39$
$=17-M A R-2023$ 16:00:05
$=$ single pulse decoupled ga
$=1 \mathrm{D}$ COMPLEX
$=26214$
$=$ Carbon
$=$ Carbon
$=$ Carbon13
$=[\mathrm{ppm}]$
$=X$
$=$ JNM-ECA500
$=$ DELTA2 ${ }^{\text {NMR }}$
$=11.7473579[\mathrm{~T}] \quad(500[\mathrm{MHz}])$
$=0.83361792[\mathrm{~s}]$
$=125.76529768[\mathrm{MHz}]$
$=100[\mathrm{ppm}]$
$=32768$
$=4$
$=1.19959034[\mathrm{~Hz}]$
$=39.3081761[\mathrm{kHz]}$
$=31.44654088[\mathrm{kHz}]$
$=31.44654088[\mathrm{kHz}]$
$=500.15991521[\mathrm{MHz}]$
$=5.0[\mathrm{ppm}]$
$=$ TRUE
$=1024$
$=2[\mathrm{~s}]$
$=50$
$=50.1[\mathrm{dC}]$
$=9.8$ [us]
$=0.83361792[\mathrm{~s}]$
$=30[\mathrm{deg}]$
$=4.1[\mathrm{~dB}]$
$=3.2666667$ [us]
$\begin{aligned}= & 3.26666667 \\ = & 21.078[\mathrm{~dB}]\end{aligned}$
$=21.078[\mathrm{~dB}]$
$=20.664[\mathrm{~dB}]$
$=$ WALTZ
$=92$ [us]
$=$ TRUE
$=1[\mathrm{~s}]$
$=\operatorname{TRUE}$
$=$ TRUE
$=2.83361792[\mathrm{~s}]$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(301 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right)$
S51

X : parts per Million : Carbon 13
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}\left(76 \mathrm{MHz}\right.$, Acetone $\left.-d_{6}\right)$
S52
---- PROCESSING PARAME TERS ---
dc balance(0, FALSE)
dc balance (0, FALSE
$\begin{array}{ll}\operatorname{sexp}(0.2[\mathrm{~Hz}], 0.0[\mathrm{~s}]) \\ \text { trapezoid (} 0[8], & 0[8], 80[8], 100[8])\end{array}$
zerofill(1 , TRUE)
machinephase
ppm

X : parts per Million: Proton

2b/2b'

Comment

Data Format
X Domain
Dim_Title
Dim_Units
Dimēnsions
Site
Spectrometer
Field Strength
X Acq-Duration
X Domän
X Freq
X_Offet
X -Points
X^{-}Prescans
X^{-}Resolution
X-Resolu
X Sweep
X Sweep
X^{-}Sweep
Irr Domain
${ }^{\text {Irr_Dramal }}$
Irr_Offset
Clipped
Scans
Total Scans
Relaxation_Delay
Recvr Gain ${ }^{-}$
Temp_Get
X 90 -Width
${ }^{\mathrm{X}}$ Ac \bar{q} Time
x^{-}Angle
X_Atn
X -Pulse
$\mathrm{I} \overline{\mathrm{r}} \mathrm{A}$ Atn Dec
${ }^{\text {Irr }}{ }^{-}{ }^{\text {Atn }}$ - ${ }^{\text {Nec }}$
${ }^{\text {Irr_At_Noe }}$
Irr-Pwidth
Decoupling
Initial_Wait
Noe -
Repetition Time
abundance

--- PROCESSING PARAME TERS --
dc_balance (0 , FALSE sexp ($0.2[\mathrm{~Hz}], 0.0[\mathrm{~s}])$
trapezoid ($0[8], 0[8], 80[8], 100[8]$) zerofill(1, TRUE) fft (1, TRUE, TRUE)
ppm

$2 \mathrm{c} / 2 \mathrm{c}^{\prime}$

Author
Experiment
Sample Id
Solvent
Actual_Start_Time Revision_Time
Comment
Data Format
${ }^{\text {Dim Size }}$
Xim_Title
Dim_Units
Dimēnsions
Site
Spectrometer
Field_Strength
X_Acq-Duration
X-Domain
X Freq
X Offset
${ }^{\mathbf{X}}{ }^{-}$Points
${ }^{\mathrm{X}} \mathrm{C}$ Prescans
X^{-}Resolutio
X Sweep
X Sweep
Irr Domain
Irr- Freq
Irr_Offset
Tri-Domain
Tri- Freq
Tri- offset
Clippe
Total_Scans
Relaxation_Delay
Recvr Gain
Temp_Get

${ }^{X^{-} \text {Ac } \bar{q}}{ }^{-1}$ Timgim
$\mathrm{X}^{\mathrm{X} \text { Ang }}$
${ }^{-}$Pulse
Irr_Mode
Tri-Mode
Dante Presat
Initial Wait
$=15 \mathrm{Ar} 4-\mathrm{Me}$ CDCl3_Proton-1 $=$ delta
$=$ proton. jxp
$=210556$ CDC13
$=210556$ CDC13
$=$ CHLOROFORM-D
$=25-N O N-202222: 43: 24$
$=11-$ JAN-2023
11-JAN-2023 10:08:11
$=$ single pulse
$=1 \mathrm{CDMPLEX}$
$=13107$
$=13107$
$=$ Proton
$=$ Proton
$=[\mathrm{ppm}]$
$=\mathrm{x}$
$=\operatorname{ECS} 400$
$=$ DELTA2 ${ }^{2}$ NMR
$=9.389766[\mathrm{~T}](400[\mathrm{MHz}])$
$=2.18365952$ [s]
$=399.78219838[\mathrm{MHz}]$
$=5[\mathrm{ppm}]$
$=16384$
$\begin{aligned} & =1 \\ & =0.45794685[\mathrm{~Hz}]\end{aligned}$
$=0.45794685[\mathrm{~Hz}]$
$=7.5030012[\mathrm{kHz}]$
$=6.00240096[\mathrm{kHz}]$
Proton
$=399.78219838[\mathrm{MHz}]$
$=5$ [ppm]
$=$ Proton
$=399.78219838[\mathrm{MHz}]$
$=39.78$
$=5[\mathrm{ppm}]$
$=$ FALSE
$=8$
$=8$
$=5[s]$
$=38$
$=19.7[\mathrm{dC}]$
$=12.4[\mathrm{us}]$
$=2.18365952[\mathrm{~s}]$
$=45$ [deg]
$=3[\mathrm{~dB}]$
$=6.2[\mathrm{us}]$
$=0.2 \mathrm{f}$
$=\mathrm{off}$
$=$ FALSE
$=1[\mathrm{~s}]$
$=7.18365952[\mathrm{~s}]$

X : parts per Million: Carbon 13

X : parts per Million : Fluorine19

 X : parts per Million : Proton

S75

---- PROCESSING PARAME TERS ---
dc balance (0 , FALSE)
machinephase

$$
\begin{aligned}
& \text { macn } \\
& \text { ppm }
\end{aligned}
$$

Filenam
Author
Sample Id
Solvent Actual_Start_Ti
Revision_Time

Comment
Data Format
Dim_Size
Dim_Title
Dim_Units
Dimēnsions
Site
Spectrometer
Field_Strength
x Acq-Duration
X Domän
X_Freq
X Offset
X Points
${ }^{-}$- Resolution
X^{-}Sweep
X Sweep Clipped
${ }_{\mathrm{I}}^{\mathrm{I} r} \mathrm{Ir}^{-}$Domāin
Irr_Preq
Irr_Offse
Scans
Total Scans
Relaxation_Delay
Recvr Gain
Temp_Get
${ }^{\text {X }} 90-$ Width
X^{-}Ac \bar{q} Tim
X^{-}Atn
X Pulse
Irr_Atn_Dec
Irr Atn Noe
Irr-Noise
Irr-Pwidth
Initial_Wait
Noe
Repetition Time
0

X : parts per Million : Carbon 13

X : parts per Million : Carbon13
${ }^{13} \mathrm{C}$ NMR spectrum of $(E)-\mathbf{4 b}\left(101 \mathrm{MHz}\right.$, Acetone $\left.-d_{6}\right)$
S81

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 1 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
S82

S84
---- PROCESSING PARAME TERS ----
dc balance(0, FALSE)
zerofill($1, ~ T R U E) ~$
fft $1, ~ T R U E, ~ T R U E ~$
machinephase
ppm
S14

S85

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 1 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
S86

S88

[^0]: ${ }^{a}$ NMR yield using 1,3,5-trimethoxybenzene as an internal standard material.
 ${ }^{b}$ not detected. ${ }^{c}$ no reaction.

[^1]: 0 ALERT level A = Most likely a serious problem - resolve or explain
 ALERT level B $=A$ potentially serious problem, consider carefully
 ALERT level $\mathbf{C}=$ Check. Ensure it is not caused by an omission or oversight
 ALERT level $G=$ General information/check it is not something unexpected
 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 13 ALERT type 2 Indicator that the structure model may be wrong or deficient
 5 ALERT type 3 Indicator that the structure quality may be low
 4 ALERT type 4 Improvement, methodology, query or suggestion
 0 ALERT type 5 Informative message, check

[^2]: X : parts per Million : Proton

[^3]: X : parts per Million : Carbon 13

[^4]: X : parts per Million: Fluorine19

[^5]: X : parts per Million : Proton

[^6]: X : parts per Million : Carbon 13

