Supporting Information

Heteroannulation of bicyclobutane derivatives via Au-catalyzed hydration to enol ethers and intramolecular cyclization giving spirocyclobutanes

Masaharu Takatsuki, Hiroshi Aoyama, Kenichi Murai, Mitsuhiro Arisawa*, Makoto Sako*

Graduate School of Pharmaceutical Sciences, Osaka University,

Yamada-oka 1-6, Suita, Osaka 565-0871, Japan.

E-mail: arisaw@phs.osaka-u.ac.jp; sako-m@phs.osaka-u.ac.jp

Contents					
1.	General Information	S2			
2.	Optimization of Reaction Conditions	S3			
3.	Mechanistic Studies	S5			
4.	Experimental Procedure	S6			
5.	References	S19			
6.	X-ray Crystallographic Analysis	S20			
7.	NMR Spectra	S24			

1. General Information

➢ ¹H, ¹³C, NMR spectra were measured by JEOL ECS 300, JEOL JNM-ECS 400 or JEOL JNMLA 500 spectrometers.

¹H NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of tetramethylsilane (TMS) at 0 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constants (Hz).

¹³C NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of triplet for CDCl₃ at 77 ppm, septet for acetone-d6 at 29.8 ppm, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constants (Hz).

 C_6F_6 (singlet at -164.9 ppm) was used as an external standard for ¹⁹F NMR.

- > MALDI-MS spectra were obtained with JMS-S3000 (JEOL).
- ▶ Melting points were measured by BÜCHI B-545.
- Column chromatography on SiO₂ was performed with Kanto Chemical Silica Gel 60 (spherical, 63-210 μm or spherical, 40-50 μm).
- > Commercially available organic and inorganic compounds were used without further purification.

2. Optimization of Reaction Conditions

General procedure for Table S1-S4

A flame dried test tube equipped with magnetic stirring bar was charged with Au catalyst (4.5 μ mol, 3.0 mol%) and Ag additive (4.5 μ mol, 3.0 mol%) under N₂ in glovebox. Dry solvent (3.0 mL, 0.05 M) and nucleophiles, H₂O or amines, (0.30 mmol, 2.0 eq. or specified eq.) was added to the mixture at ambient temperature. The solution was stirred at 25 °C for 5 min, and then the compound **1a** (0.15 mmol) was added. After specified reaction time, the mixture was filtered through short pad of silica gel. The yields of compounds **2** and **2**' were determined by ¹H NMR.

Table S1. Screening of Au catalysts and additives

\triangleright	SO ₂ Ph	[Au] (3 mol%) additive (3 mol%)	PhO ₂ S H	H SO ₂ Ph
	+ H ₂ O - (2.0 eq.)	CH ₂ Cl ₂ (0.05 M) 25 °C, time		
1a (0.15 mi	mol)		2a	2a'
entry	[Au]	additive	time	2a/2a' (%, <i>dr</i>) ^a
0	IPrAuNTf ₂		2 h	51%, (1.5 : 1)
1	IPrAuNTf ₂		13 h	67%, (1.3 : 1)
2	IPrAu(MeCN)BF ₄		20 h	16%, (0.81 : 1)
3	IPrAuCl	AgNTf ₂	13 h	56%, (0.79 : 1)
4	XPhosAuCI	AgOTf	"	83%, (0.90 : 1)
5	PPh ₃ AuCl	AgOTf	"	86%, (0.90 : 1)
6	PPh ₃ AuCl	AgOAc	"	N.D. ^b
7	PPh ₃ AuCl	AgBF ₄	"	34%, (0.51 : 1)
8	PPh ₃ AuCl	AgSbF ₆	"	54%, (0.80 : 1)
9	PPh ₃ AuCl	AgNTf ₂	"	76%, (0.80 : 1)
10 ^c		AgOTf	"	57%, (0.67 : 1)
11			11	N.R. ^d

^a NMR yield using 1,3,5-trimethoxybenzene as an internal standard material.

^b not detected. ^c used 6 mol% of additive. ^d no reaction.

Table S2.	Screening	of solvents

SO ₂ P	PPh ₃ AuCl (3 mol%) h AgOTf (3 mol%)	PhO ₂ S H H SO ₂ Ph
	+ H ₂ O (2.0 eq.) solvent (0.05 M) 25 °C, 13 h	
1a (0.15 mmol)		2a 2a'
entry	solvent	2a/2a' (%, <i>dr</i>) ^a
0	CH ₂ Cl ₂	86%, (0.90 : 1)
1	CHCl ₃	79%, (0.81 : 1)
2	PhMe	59%, (0.54 : 1)
3	THF	N.D. ^b
4	1,4-dioxane	52%, (0.55 : 1)
5	MeNO ₂	85%, (1.16 : 1)
6	EtOAc	73%, (0.48 : 1)
7	MeCN	17%, (0.32 : 1)
8	DMF	N.R. ^{<i>c</i>}

^a NMR yield using 1,3,5-trimethoxybenzene as an internal standard material.

^b not detected. ^c no reaction.

Table S3. Screening of H₂O loading

SO ₂ Ph		PPh ₃ AuCl (3 mol%) AgOTf (3 mol%)	PhO ₂ S H	H SO ₂ Ph
+	H ₂ O — (X eq.)	← CH ₂ Cl ₂ (0.05 M) 25 °C, 13 h		
1a (0.15 mmol)			2a	2a'
entry		Х	2a/2a' (%	ώ, <i>dr</i>)*
0		2	86%, (0.9	90 : 1)
1		1	78%, (0.9	92 : 1)
2		5	45%, (0.5	59 : 1)
3		10	10%, (0.4	45 : 1)

*NMR yield using 1,3,5-trimethoxybenzene as an internal standard material.

Table S4. Screening nucleophiles

SO ₂ Ph +	nucleophiles	PPh ₃ AuCl (3 mol%) AgOTf (3 mol%) CH₂Cl₂ (0.05 M)	Ph O=S=O		
	(2.0 eq.)	25 °C, 13 h			
1a (0.15 mmol)			desired products R : Boc, Ts, Ms, Ph		
entry	nucleophiles		results		
1	H ₂ N-Boc		complex mixture		
2	H ₂ N-Ts		complex mixture		
3	H ₂ N-Ms		complex mixture		
4	aniline		complex mixture		

3. Mechanistic Studies

3-1. Reaction using deuterium oxide

A flame dried test tube equipped with magnetic stirring bar was charged with PPh₃AuCl (2.2 mg, 4.5 μ mol, 3.0 mol%) and AgOTf (1.2 mg, 4.5 μ mol, 3.0 mol%) under N₂ in glovebox. Dry CH₂Cl₂ (3.0 mL, 0.05 M) and D₂O (5.4 μ L, 0.30 mmol, 2.0 eq.) was added to the mixture at ambient temperature. The solution was stirred at 25 °C for 5 min, and then the compound **1a** (0.15 mmol) was added. After 13 h, the mixture was filtered through short pad of silica gel. The obtained residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to give compounds **2a-D** and **2a'-D**.

3-2. NMR time course experiment

We conducted a time-course experiment using NMR to collect any information to shed light on the reaction mechanism. A solution of **1a** (0.15 mmol), H₂O (0.30 mmol) and 3 mol% of IPrAuNTf₂ in CDCl₃ was filled in a NMR tube. We recorded the ¹H NMR spectra of this reaction mixture at 10 and 30 min and at 1, 2, 3, 6, and 9 h after the start of the reaction and compared each spectrum with those of standard samples of **1a**, **2a** and **2a**'.

4. Experimental procedure

4-1. Preparation of starting materials

General procedure of Negishi coupling of bicyclobutane and aryl iodide

Starting materials **1** were prepared through slightly modified procedure of reported method reported by Anderson et al.¹

Under a nitrogen atmosphere, to a solution of BCB **S1** (1.00 g, 5.15 mmol, 1.2 eq.) in THF (10.3 mL, 0.50 M) was added *n*-BuLi (1.6 M in hexane, 3.43 mL, 1.2 eq.) dropwise at -78 °C. The mixture was stirred for 30 min, then a solution of ZnCl₂ (1.0 M in THF, 5.2 mL, 1.2 eq.) was added, and the reaction was stirred for 5 min at -78 °C before bringing to rt, and stirred for a further 10 min. The solution of organozinc was transferred *via* cannula to a vial containing Pd₂(dba)₃ (98.2 mg, 107 µmol, 2.5 mol%), P(*o*-furyl)₃ (99.6 mg, 429 µmol, 10 mol%) and aryl iodide **S2** (1.06 g, 4.29 mmol, 1.0 eq.). The reaction mixture was stirred overnight at 40 °C, then it was filtrated through celite using EtOAc. The filtrate was washed with water, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (hexane/EtOAc = 10:1 and toluene/hexane/EtOAc = 20:1:1) to give **1a** as pale yellow solid (818 mg, 2.62 mmol, 61% yield).

1-(phenylsulfonyl)-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane (**1a**) 61% yield, pale yellow solid, m.p. 57.0 – 58.0 °C ¹H NMR (301 MHz, Acetone- d_6) δ 7.76 – 7.74 (m, 2H), 7.66 (tt, J = 7.3, 1.4 Hz, 1H), 7.56-7.52 (m, 2H), 7.45 (dd, J = 7.8, 1.4 Hz, 1H), 7.33-7.28 (m, 1H), 7.08 (td, J = 7.6, 1.1 Hz, 1H), 7.01 (dd, J = 8.0, 1.1 Hz, 1H), 6.66 (dd, J = 13.6, 6.0 Hz, 1H), 4.66 (dd, J = 13.6, 1.5 Hz, 1H), 4.43 (dd, J = 6.0, 1.5 Hz, 1H), 2.94 (s, 2H), 1.66 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 155.9, 148.3, 140.7, 132.9, 129.8, 128.8, 128.7, 127.3, 123.4, 120.6, 117.3, 95.2, 37.7, 33.8, 28.1.

HRMS (MALDI) m/z calcd for C₁₈H₁₆O₃NaS ([M+Na]⁺): 335.0712, found 335.0710.

1-(5-methoxy-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1b)

69% yield, white solid, m.p. $69.7-70.3\ ^\circ C$

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.78-7.75 (m, 2H), 7.69-7.64 (m, 1H), 7.58-7.54

(m, 2H), 7.01 (d, J = 3.1 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 6.86 (dd, J = 8.8, 3.1 Hz,

1H), 6.58 (dd, *J* = 13.7, 6.1 Hz, 1H), 4.50 (dd, *J* = 13.7, 1.7 Hz, 1H), 4.31 (dd, *J* = 6.1, 1.7 Hz, 1H), 3.76 (s, 3H), 2.91 (s, 2H), 1.66 (s, 2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 155.7, 150.1, 149.7, 141.5, 133.3, 129.2, 127.2, 122.5, 119.5, 114.7, 114.0, 92.8, 55.1, 37.3, 34.0, 27.4.

sHRMS (MALDI) *m*/*z* calcd for C₁₉H₁₈O₄NaS ([M+Na]⁺): 365.0818, found 365.0818.

1-(5-methyl-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1c)

36% yield, colorless oil.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.74-7.72 (m, 2H), 7.67-7.63 (m, 1H), 7.55-7.51

(m, 2H), 7.19 (d, J = 1.8 Hz, 1H), 7.10 (dd, J = 8.2, 1.8 Hz, 1H), 6.89 (d, J = 8.2 Hz,

1H), 6.61 (dd, *J* = 13.6, 6.2 Hz, 1H), 4.60 (dd, *J* = 13.6, 1.5 Hz, 1H), 4.37 (dd, *J* = 6.2, 1.5 Hz, 1H), 2.93 (s, 2H), 1.63 (s, 2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 154.6, 149.9, 142.1, 134.0, 133.5, 131.1, 130.1, 129.9, 128.0, 121.4, 118.2, 94.6, 37.7, 34.6, 28.3, 20.6.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₁₈O₃NaS ([M+Na]⁺): 349.0869, found 349.0869.

1-(5-fluoro-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1d)

61% yield, colorless oil.

¹**H** NMR (301 MHz, CDCl₃) δ 7.79-7.76 (m, 2H), 7.61-7.55 (m, 1H), 7.49-7.44 (m, 2H), 7.10 (dd, J = 9.0, 2.7 Hz, 1H), 6.98-6.87 (m, 2H), 6.47 (dd, J = 13.8, 6.2 Hz, 1H),

F O

4.63 (dd, *J* = 13.8, 1.9 Hz, 1H), 4.40 (dd, *J* = 6.2, 1.9 Hz, 1H), 2.95 (s, 2H), 1.66 (s, 2H).

¹³C{¹H} NMR (76 MHz, Acetone-*d*₆) δ 159.1 (d, $J_{C-F} = 239.9$ Hz, aromatic C_α-F), 152.9 (d, $J_{C-F} = 2.2$ Hz, aromatic C_δ), 150.0, 142.1, 134.1, 130.1, 127.9, 124.4 (d, $J_{C-F} = 8.7$ Hz, aromatic C_γ), 120.1 (d, $J_{C-F} = 8.7$ Hz, aromatic C_γ), 116.9 (d, $J_{C-F} = 24.6$ Hz, aromatic C_β), 115.9 (d, $J_{C-F} = 23.1$ Hz, aromatic C_β), 95.0, 38.3, 35.3, 27.6. ¹⁹F NMR (283 MHz, Acetone-*d*6) δ -121.3.

HRMS (MALDI) *m*/*z* calcd for C₁₈H₁₅FO₃NaS ([M+Na]⁺):353.0618, found 353.0613.

1-(5-nitro-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1e)

Compound S3 was prepared through a reported method.²

MeO.

Me

SO₂Ph

SO₂Ph

SO₂Ph

To a solution of 4-nitro-2-iodophenol (\$3, 375 mg, 2.90 mmol, 1.0 eq.) and 1,2-dibromoethane (734 μ L, 8.52 mmol, 5.0 eq.) in acetone (18.9 mL, 0.09 M) was added K_2CO_3 (471 mg, 3.41 mmol, 2.0 eq.). The resulting mixture was stirred under reflux conditions for overnight. The reaction was quenched with water and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried over Na₂SO₄, and concentrated to get crude compound S4. To a solution of crude compound in THF (14.5 mL, 0.20 M) was added t-BuOK (390 mg, 3.48 mmol, 1.5 eq.) portionwise. The resulting mixture was stirred at room temperature for overnight. The reaction was quenched with sat. NH₄Cl aq. and extracted with EtOAc, dried over Na₂SO₄, and concentrated to get crude compound S5, which was used in next step without purification. Under a nitrogen atmosphere, to a solution of BCB S1 (676 mg, 3.48 mmol, 1.2 eq.) in THF (10.3 mL, 0.50 M) was added n-BuLi (1.6 M in hexane, 2.17 mL, 1.2 eq.) dropwise at -78 °C. The mixture was stirred for 30 min, then a solution of ZnCl₂ (1.0 M in THF, 3.48 mL, 1.2 eq.) was added, and the reaction was stirred for 5 min at -78 °C before bringing to rt, and stirred for a further 10 min. The solution of organozinc was transferred via cannula to a vial containing Pd₂(dba)₃ (72.5 µmol, 66.4 mg, 2.5 mol%), P(o-furyl)₃ (67.3 mg, 67.3 µmol, 10 mol%) and aryl iodide S5 (1.0 eq.). The reaction mixture was stirred overnight at 40 °C, then it was filtrated through celite using EtOAc. The filtrate was washed with water, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (hexane/EtOAc = 10:1 and toluene/hexane/EtOAc = 20:1:1) to give the BCB derivative 1e as colorless oil (139 mg, 377 µmol, 3 steps: 13% yield).

¹**H** NMR (500 MHz, Acetone- d_6) δ 8.24 (d, J = 2.8 Hz, 1H), 8.19 (dd, J = 9.0, 2.8 Hz, 1H), 7.80-7.78 (m, 2H), 7.68-7.64 (m, 1H), 7.58-7.54 (m, 2H), 7.27 (d, J = 9.0 Hz, 1H), 6.88 (dd, J = 13.3, 5.9 Hz, 1H), 5.01 (dd, J = 13.3, 1.7 Hz, 1H), 4.74 (dd, J = 5.9, 1.7 Hz, 1H), 3.12 (s, 2H), 1.79 (s, 2H).

¹³C{¹H} NMR (76 MHz, Acetone-*d*₆) δ 160.5, 146.6, 142.9, 141.1, 133.5, 129.3, 127.2, 125.6, 124.4, 122.2, 115.6, 98.6, 37.5, 34.6, 26.9.

HRMS (MALDI) *m*/*z* calcd for C₁₈H₁₅NO₅NaS ([M+Na]⁺): 380.0563, found 380.0566.

1-(3-chloro-2-(vinyloxy)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (1f) 53% yield, colorless oil. ¹H NMR (301 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.63-7.57 (m, 1H), 7.50-7.45 (m, 3H), 7.36 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.47 (dd, *J* = 13.9, 6.4 Hz, 1H), 4.27-4.18 (m, 2H), 2.87 (s, 2H), 1.67 (s, 2H).

¹³C{¹H} NMR (76 MHz, Acetone-*d*₆) δ 151.4, 151.2, 142.1, 134.2, 130.5, 130.1, 128.9, 128.7, 128.0, 127.8, 126.8, 91.6, 38.7, 35.9, 27.3.

HRMS (MALDI) *m*/*z* calcd for C₁₈H₁₅O₃NaSCl ([M+Na]⁺): 369.0323, found 369.0326.

13.7, 6.0 Hz, 1H), 4.87 (dd, *J* = 13.7, 1.4 Hz, 1H), 4.57 (dd, *J* = 6.0, 1.4 Hz, 1H), 3.12 (s, 2H), 1.71 (s, 2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 154.8, 148.7, 142.1, 134.5, 133.9, 130.9, 130.6, 129.9, 128.1, 128.1, 127.9, 127.5, 125.8, 122.2, 112.2, 96.6, 37.8, 34.9, 30.6.
HRMS (MALDI) *m/z* calcd for C₂₂H₁₈O₃NaS ([M+Na]⁺): 385.0869, found 385.0871.

Under a nitrogen atmosphere, to a solution of BCB S1 (820 mg, 4.22 mmol, 1.2 eq.) in THF (10.3 mL, 0.50 M) was added n-BuLi (1.6 M in hexane, 2.64 mL, 1.2 eq.) dropwise at -78 °C. The mixture was stirred for 30 min, then a solution of ZnCl₂ (1.0 M in THF, 4.22 mL, 1.2 eq.) was added, and the reaction was stirred for 5 min at -78 °C before bringing to rt, and stirred for a further 10 min. The solution of organozinc was transferred via cannula to a vial containing Pd₂(dba)₃ (80.4 mg, 88.0 µmol, 2.5 mol%), P(o-furyl)₃ (81.7 mg, 352 µmol, 10 mol%) and 1-(3bromopropoxy)-2-iodobenzene S6 (1.20 g, 3.52 mmol, 1.0 eq.). The reaction mixture was stirred overnight at 40 °C, then it was filtrated through celite using EtOAc. The filtrate was washed with water, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The mixture was filtered through a short pad of silica gel to get crude compound S8 which was used in next step without purification. To a solution of crude compound S8 in THF (17.6 mL, 0.20 M) was added t-BuOK (474 mg, 4.22 mmol, 1.5 eq.) portionwise. The resulting mixture was stirred at room temperature for overnight. The reaction was quenched with water and sat. NH₄Cl aq. and extracted with EtOAc, dried over Na₂SO₄, and concentrated to get crude compound S8 which was used in next step without purification. Then to a solution of crude compound S8 in CH₂Cl₂ (17.5 mL, 0.20 M) was added RuHCl(CO)(PPh₃)₃ (166 mg, 0.175 mmol, 5 mol%). The resulting mixture was stirred at room temperature for overnight. The reaction mixture was filtered and combined filtrate was concentrated. The residue was purified by a silica gel column chromatography (hexane/EtOAc = 10:1 and toluene/hexane/EtOAc = 20:1:1) to get compound **1h** as colorless oil (200 mg, 613 µmol, 3 steps: 40%).

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.74-7.70 (m, 2H), 7.65-7.60 (m, 1H), 7.53-7.49 (m, 2H), 7.40-7.38 (m, 1H), 7.28-7.24 (m, 1H), 7.01-6.95 (m, 2H), 6.36 (dq, J = 6.5, 1.7 Hz, 1H), 4.91-4.84 (m, 1H), 2.97 (s, 2H), 1.68 (dd, J = 6.5, 1.7 Hz, 3H), 1.65 (s, 2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 157.6, 142.2, 142.0, 133.9, 130.8, 130.0, 129.6, 127.9, 123.2, 120.9, 116.3, 107.6, 37.9, 34.4, 28.6, 9.6.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₁₈O₃NaS ([M+Na]⁺): 349.0869, found 349.0867.

1-((4-methoxyphenyl)sulfonyl)-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane (1i) 65% yield, colorless oil. ¹H NMR (400 MHz, Acetone- d_6) δ 7.64-7.60 (m, 2H), 7.42-7.40 (m, 1H), 7.32-7.27 (m, 1H), 7.06 (td, J = 7.7, 1.2 Hz, 1H), 7.02-6.98 (m, 3H), 6.64 (dd, J = 13.5, 6.2 Hz, 1H), 4.65 (dd, J = 13.5, 1.6 Hz, 1H), 4.42 (dd, J = 6.2, 1.6 Hz, 1H), 3.87 (s, 3H), 2.89 (s, 2H), 1.61 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.2, 155.9, 148.3, 132.2, 129.8, 129.6, 128.6, 123.4, 120.9, 117.3, 114.0, 95.2, 55.6, 37.4, 34.5, 27.5.

HRMS (MALDI) m/z calcd for C₁₉H₁₈O₄NaS ([M+Na]⁺): 365.0818, found 365.0819.

1-tosyl-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane (1j)

45% yield, colorless oil.

¹**H** NMR (400 MHz, Acetone-*d*₆) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.44-7.42 (m, 1H), 7.33-7.27 (m, 3H), 7.09-7.05 (m, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.64 (dd, *J* = 13.7, 6.1 Hz, 1H), 4.65 (dd, *J* = 13.7, 1.5 Hz, 1H), 4.42 (dd, *J* = 6.1, 1.5 Hz, 1H), 2.91 (s, 2H), 2.40 (s, 3H), 1.62 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.2, 141.8, 133.3, 133.0, 129.9, 129.1, 129.0, 127.6, 127.3, 127.1, 125.8, 91.4, 38.4, 38.2, 23.0, 12.6.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₁₈O₃NaS ([M+Na]⁺): 349.0869, found 349.0866.

1-(3-(phenylsulfonyl)bicyclo[1.1.0]butan-1-yl)-2-(vinyloxy)naphthalene (1k)

57% yield, white solid, m.p. 70.7 - 72.7 °C.

¹**H NMR** (301 MHz, CDCl₃) δ 8.21 (d, J = 8.6 Hz, 1H), 7.94-7.90 (m, 2H), 7.82 (d, J = 8.6 Hz, 2H), 7.59-7.46 (m, 4H), 7.43-7.38 (m, 1H), 7.31-7.28 (m, 1H), 6.76 (dd, J = 13.9,

SO₂Ph

6.0 Hz, 1H), 4.96 (dd, *J* = 13.9, 1.5 Hz, 1H), 4.60 (dd, *J* = 6.0, 1.5 Hz, 1H), 2.85 (s, 2H), 1.70 (s, 2H).

¹³C{¹H} NMR (76 MHz, Acetone-*d*₆) δ 152.8, 148.3, 143.0, 135.1, 133.1, 130.6, 130.0, 129.3, 128.7, 127.2, 127.0, 124.5, 124.2, 116.7, 114.1, 95.8, 37.6, 34.8, 28.1.

HRMS (MALDI) *m*/*z* calcd for C₂₂H₁₈O₃NaS ([M+Na]⁺): 385.0869, found 385.0868.

2-(3-(phenylsulfonyl)bicyclo[1.1.0]butan-1-yl)-3-(vinyloxy)pyridine (11)

77% yield, brown oil.

¹**H NMR** (301 MHz, Acetone- d_6) δ 8.20-8.18 (m, 1H), 7.66-7.61 (m, 3H), 7.51-7.46 (m, 2H), 7.37 (d, J = 8.3, 1H), 7.28-7.24 (m, 1H), 6.64 (dd, J = 13.7, 5.9 Hz, 1H), 4.75 (dd, J

N SO₂Ph

= 13.7, 1.7 Hz, 1H), 4.53 (dd, *J* = 5.9, 1.7 Hz, 1H), 3.28 (s, 2H), 1.78 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 152.5, 147.5, 143.9, 142.0, 140.6, 133.0, 128.9, 127.3, 124.1, 122.8, 97.1, 38.3, 35.9, 29.3.

HRMS (MALDI) *m*/*z* calcd for C₁₇H₁₆NO₃S ([M+H]⁺): 314.0845, found 314.0849.

N,*N*-diisopropyl-3-(2-(vinyloxy)phenyl)bicyclo[1.1.0]butane-1-carboxamide (**1m**) 83% yield, yellow oil.

¹**H** NMR (500 MHz, Acetone- d_6) δ 7.34 (dd, J = 7.7, 1.4 Hz, 1H), 7.19-7.15 (m, 1H), 7.03-7.00 (m, 1H), 6.92-6.91 (m, 1H), 6.62 (dd, J = 13.7, 6.0 Hz, 1H), 4.81 (br, 1H), 4.65 (dd, J = 13.7, 1.7 Hz, 1H), 4.41 (dd, J = 6.0, 1.7 Hz, 1H), 3.39 (br, 1H), 2.71 (s, 2H), 1.33

(s, 2H), 1.23 (d, J = 6.9 Hz, 12H). **13C(111)** NMP (126 MHz, A setupe d) \$167.0, 156.5, 140.8, 121.8

¹³C{¹H} NMR (126 MHz, Acetone-*d*₆) δ 167.0, 156.5, 149.8, 131.8, 128.2, 125.9, 123.8, 117.3, 95.1, 49.9, 46.2, 37.8, 25.5, 21.4, 21.1, 20.1.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₂₆NO₂ ([M+H]⁺): 300.1958, found 300.1956.

A flame dried test tube equipped with magnetic stirring bar was charged with the compound **S9** (460 mg, 1.32 mmol, 1.0 eq.), K₂CO₃ (91 mg, 0.66 mmol, 0.50 eq.), DPEphos (35.5 mg, 66 µmol, 5 mol%) and Pd(tfa)₂ (10.9 mg, 33 µmol, 2.5 mol%) under N₂ and dry 1,4-dioxane (13 mL, 0.10 M) was added. To a solution added ethynyltrimethylsilane (270 µL, 1.98 mmol, 1.5 eq.), then the mixture was stirred at 90 °C overnight. After completion of the reaction, the mixture was filtered and, concentrated to afford crude compound **S10**. To a solution of crude compound **S10** in THF (13.2 mL, 0.10 M) added TBAF (1.56 mL, 1.58 mmol, 1.0 M in THF solution, 1.2 eq.). The resulting mixture was stirred at 0 °C for 1 h followed by further stirring for 2 h at room temperature. The reaction mixture was quenched with water and extracted with CH₂Cl₂. The combined organic layer dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to give compound **3a** as yellow oil (160 mg, 2 steps : 41%).

¹**H** NMR (301 MHz, Acetone-*d*₆) δ 7.86-7.82 (m, 2H), 7.73-7.67 (m, 1H), 7.64-7.57 (m, 3H), 7.50 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.38 (td, *J* = 7.6, 1.6 Hz, 1H), 7.31 (td, *J* = 7.6, 1.6 Hz, 1H), 3.83 (s, 1H), 3.00 (s, 2H), 1.79 (s, 2H). ¹³C{¹H} NMR (76 MHz, Acetone-*d*₆) δ 142.6, 134.7, 134.2, 134.2, 130.1, 129.5, 128.8, 128.2, 127.9, 124.1, 83.5, 83.0, 39.2, 36.1, 30.4.

HRMS (MALDI) *m*/*z* calcd for C₁₈H₁₄O₂NaS ([M+Na]⁺): 317.0607, found 317.0600.

1-(2-(phenylethynyl)phenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (3b)

A flame dried test tube equipped with magnetic stirring bar was charged with a compound **S9** (348 mg, 1.0 mmol, 1.0 eq.), TEA (560 μ L, 4.0 mmol, 4.0 eq.), CuI (38 mg, 0.20 mmol, 20 mol%) and (PPh₃)₂PdCl₂ (70 mg, 0.10 mmol, 10 mol%) under N₂ and dry DMF (10 mL, 0.10 M) was added. To the solution added ethynylbenzene (164 μ L, 1.5 mmol, 1.5 eq.), then the

mixture was stirred at 90 °C overnight. After completion of the reaction, the mixture was filtered and concentrated. The residue purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to get **3b** as brown oil (209 mg, 564 μ mol, 56%).

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.85 (d, J = 8.2 Hz, 2H), 7.69-7.64 (m, 2H), 7.59-7.55 (m, 5H), 7.44-7.39 (m, 7.59) (m, 7.59)

3H), 7.37-7.31 (m, 2H), 3.10 (s, 2H), 1.86 (s, 2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 142.4, 134.1, 134.0, 133.5, 132.0, 130.1, 129.9, 129.4, 129.2, 128.9, 128.2, 127.9, 124.7, 123.8, 94.0, 89.1, 39.0, 36.1, 30.7.

SO₂Ph

Br

HRMS (MALDI) *m*/*z* calcd for C₂₄H₁₈O₂NaS ([M+Na]⁺): 393.0920, found 393.0920.

1-(2-bromophenyl)-3-(phenylsulfonyl)bicyclo[1.1.0]butane (S9)

83% yield, pale yellow oil.

¹**H NMR** (301 MHz, Acetone- d_6) δ 7.96-7.93 (m, 2H), 7.82 (dd, J = 7.9, 1.7 Hz, 1H), 7.77-

7.71 (m, 1H), 7.69-7.63 (m, 3H), 7.46-7.37 (m, 1H), 7.34-7.25 (m, 1H), 2.71 (s, 2H), 1.80 (s,

2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 142.2, 133.5, 133.3, 131.8, 130.0, 129.6, 129.5, 127.7, 127.1, 125.8, 39.5, 34.8, 31.8.

HRMS (MALDI) *m*/*z* calcd for C₁₆H₁₃BrO₂NaS ([M+Na]⁺): 370.9712, found 370.9712.

4-2. Heteroannulation of bicyclobutane derivatives via Au-catalyzed addition of water to enol ethers followed by intramolecular nucleophilic addition

General procedure

A flame dried test tube equipped with magnetic stirring bar was charged with PPh₃AuCl (2.2 mg, 4.5 μ mol, 3.0 mol%) and AgOTf (1.2 mg, 4.5 μ mol, 3.0 mol%) under N₂ in glovebox. Dry CH₂Cl₂ (3.0 mL, 0.05 M) and H₂O (5.4 μ L, 0.30 mmol, 2.0 eq.) was added to the mixture at ambient temperature. The solution was stirred at 25 °C for 5 min, and then the compound **1** (0.15 mmol) was added. After 13 h, the mixture was filtered through short pad of silica gel. The obtained residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to give compounds **2** and **2**'.

PhO₂S

(3'r,4r)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2a)

40% yield, pale yellow solid, m.p. 149.5-150.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H), 7.70-7.66 (m, 1H), 7.61-7.57 (m, 2H), 7.49 (dd, J = 7.8, 1.4 Hz, 1H), 7.22-7.17 (m, 1H), 7.04 (td, J = 7.6, 1.1 Hz, 1H), 6.81 (dd, J = 8.0, 1.1 Hz, 1H), 5.06 (q, J = 5.1 Hz, 1H), 4.07-3.99 (m, 1H), 3.16 (dd, J = 13.1, 8.9 Hz, 1H), 2.99 (dd, J = 13.1, 8.9 Hz, 1H), 2.62-2.48 (m, 2H), 1.52 (d, J = 5.1 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 152.2, 138.0, 133.9, 129.4, 129.0, 128.2, 126.3, 125.6, 121.9, 116.3, 93.1, 75.3, 50.9, 39.5, 37.1, 20.7.

HRMS (MALDI) m/z calcd for C₁₈H₁₈O₄NaS ([M+Na]⁺): 353.0818, found 353.0820.

J = 5.0 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 151.9, 137.9, 133.9, 129.4, 128.8, 128.4, 126.4, 123.3, 121.6, 116.8, 92.7, 72.1, 49.6, 40.4, 37.3, 20.7.

HRMS (MALDI) m/z calcd for $C_{18}H_{18}O_4NaS$ ([M+Na]⁺): 353.0818, found 353.0817.

6-methoxy-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (**2b**, **2b**') (diastereomixture) 60% yield (**2b**:**2b**' = 0.80:1), colorless oil. SO₂Ph

¹**H NMR** (301 MHz, CDCl₃) δ 7.91-7.88 (m, 2H), 7.68-7.61 (m, 1H), 7.58-7.52 (m, 2H), 7.07 (d, J = 2.4 Hz, 0.53H), 6.76-6.68 (m, 2H), 6.60 (m, 0.41H), 5.02 (q, J = 4.7 Hz, 0.45H), 4.97 (q, J = 5.0 Hz, 0.58H), 4.00 (quin., J = 8.6 Hz, 0.63H), 3.79 (m, 2.3H), 3.71 (s, 1.2H), 3.13 (dd, J = 13.2, 8.6 Hz, 1H), 2.97 (dd, J = 13.2, 8.6 Hz, 0.55H), 2.85 (dd, J = 12.0, 8.6 Hz, 0.45H), 2.75-2.44 (m, 2H), 1.49-1.46 (m, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.3, 154.1, 146.1, 145.8, 137.8, 137.7, 133.8, 133.8, 129.3, 128.2, 128.1, 127.0, 126.1, 117.2, 117.0, 115.5, 113.6, 110.2, 109.1, 93.0, 92.6, 75.1, 72.0, 55.7, 50.7, 49.5, 40.3, 39.4, 37.1, 37.0, 20.6, 20.5.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₂₀O₅NaS ([M+Na]⁺): 383.0924, found 383.0925.

2,6-dimethyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2c, 2c') (diastereomixture)

63% (**2c**:**2c**' = 1.2:1), colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95-7.91 (m, 2H), 7.70-7.65 (m, 1H), 7.60-7.56 (m, 2H), 7.17 (d, J = 1.4 Hz, 0.45H), 6.99-6.94 (m, 1H), 6.85 (d, J = 1.8 Hz, 0.55H), 6.69 (dd, J =8.2, 1.8 Hz, 1H), 5.06 (q, J = 5.0 Hz, 0.55H), 5.01 (q, J = 5.0 Hz, 0.45H), 4.06-3.97 (m, 0.45H), 3.85-3.76 (m, 0.55H), 3.17-3.10 (m, 1H), 2.97-2.85 (m, 1H), 2.75-2.64 (m, 1H),

2.58-2.44 (m, 1H), 2.29-2.38 (s, 1.4H), 2.20-2.29 (s, 1.7H), 1.52(m, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.1, 149.7, 137.9, 137.9, 133.9, 133.9, 131.2, 130.9, 129.7, 129.5, 129.4, 128.4, 128.3, 126.3, 126.0, 125.2, 123.5, 116.5, 116.1, 93.1, 92.6, 75.3, 72.1, 51.1, 49.6, 40.4, 39.5, 37.2, 37.1, 20.8, 20.8, 20.72, 20.65.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₂₀O₄NaS ([M+Na]⁺): 367.0975, found 37.0971.

6-fluoro-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (**2d**, **2d**') (diastereomixture) 92% yield (**2d**:**2d**' = 0.60:1), colorless oil. SO₂Ph

¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.91 (m, 1H), 7.70-7.67 (m, 1H), 7.61-7.57 (m, 1H), 7.19 (dd, J = 8.9, 3.0 Hz, 0.62H), 6.92-6.85 (m, 1H), 6.81-6.78 (m, 0.38H), 6.78-6.73 (m, 1H), 5.06 (q, J = 5.2 Hz, 0.38H), 5.01 (q, J = 5.2 Hz, 0.62H), 4.07-3.98 (m, 0.62H), 3.82-3.73 (m, 0.38H), 3.18 (dd, J = 13.3, 9.2 Hz, 0.38H), 3.09 (dd, J = 13.3, 8.7 Hz, 0.62H), 2.98-2.88 (m,

1H), 2.76-2.48 (m, 2H), 1.53 (d, J = 5.0 Hz, 1.1H), 1.51 (d, J = 5.5 Hz, 1.9H).

¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 157.48 (d, $J_{C-F} = 241$ Hz), 157.32 (d, $J_{C-F} = 241$ Hz), 148.3, 148.0, 137.8, 137.7, 134.0, 129.4, 128.3, 128.2, 127.2 (d, $J_{C-F} = 6.7$ Hz), 126.6 (d, $J_{C-F} = 6.7$ Hz), 118.0 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 126.6 (d, $J_{C-F} = 6.7$ Hz), 118.0 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 126.6 (d, $J_{C-F} = 6.7$ Hz), 126.6 (d, $J_{C-F} = 6.7$ Hz), 127.2 (d, $J_{C-F} = 6.7$ Hz), 127.2 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 6.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 7.7$ Hz), 128.3 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 7.7$ Hz), 117.5 (d, $J_{C-F} = 7.7$ Hz), 128.3 (d, J_{C-F} = 7.7

7.7 Hz), 116.2 (d, $J_{C-F} = 23$ Hz), 115.9 (d, $J_{C-F} = 23$ Hz), 112.5 (d, $J_{C-F} = 24$ Hz), 109.7 (d, $J_{C-F} = 24$ Hz), 93.3, 92.9, 74.9, 72.0, 50.7, 49.4, 40.2, 39.4, 37.12, 37.09, 20.60, 20.54.

¹⁹**F NMR** (283 MHz, CDCl₃) *δ* -123.642, -124.378.

HRMS (MALDI) *m*/*z* calcd for C₁₈H₁₇O₄FNaS ([M+Na]⁺): 371.0724, found 371.0725.

2-methyl-6-nitro-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (**2e**, **2e**') (diastereomixture) 12% yield (**2e**/**2e**' = 0.36:1), colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 2.7 Hz, 0.75H), 8.10-8.06 (m, 1H), 8.02 (d, J = 2.7 Hz, 0.25H), 7.96-7.93 (m, 2H), 7.73-7.68 (m, 1H), 7.63-7.59 (m, 2H), 6.92-6.88 (m, 1H), 5.21 (q, J = 5.0 Hz, 0.25H), 5.13 (q, J = 5.2 Hz, 0.70H), 4.10-4.01 (m, 0.72H), 3.94-3.85 (m, 0.22H), 3.27-3.21 (m, 0.23H), 3.16 (dd, J = 13.3, 8.7 Hz, 0.74H), 3.00-2.93 (m, 1H), 2.78-2.55 (m, 2H), 1.60 (d, J = 5.0 Hz, 0.70H), 1.57 (d, J = 5.0 Hz, 2.2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.3, 157.2, 142.1, 141.7, 137.6, 137.3, 134.2, 129.6, 129.5, 128.4, 126.6, 125.8, 124.9, 122.6, 119.8, 117.6, 117.2, 93.9, 93.6, 75.1, 72.2, 50.6, 48.9, 39.7, 39.3, 36.9, 36.7, 20.5, 20.4.
HRMS (MALDI) *m/z* calcd for C₁₈H₁₇NO₆NaS ([M+Na]⁺): 398.0669, found 398.0666.

8-chloro-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (**2f**, **2f**') (diastereomixture) 50% yield (**2f**:**2f**' = 0.67:1), colorless oil. SO₂Ph

¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.89 (m, 2H), 7.69-7.65 (m, 1H), 7.60-7.55 (m, 2H), 7.43 (dd, *J* = 7.8, 1.4 Hz, 0.60H), 7.27-7.22 (m, 1H), 7.00-6.94 (m, 1H), 6.86 (t, *J* = 8.0 Hz, 0.40H), 5.15 (q, *J* = 5.2 Hz, 0.40H), 5.08 (q, *J* = 5.2 Hz, 0.6H), 4.06-3.97 (m, 0.6H), 3.83-3.74 (m, 0.4H), 3.20-3.12 (m, 1H), 3.01-2.87 (m, 1H), 2.75-2.48 (m, 2H), 1.59 (m, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.3, 148.0, 137.9, 137.7, 134.0, 134.0, 129.4, 129.4,

129.3, 128.4, 128.2, 127.9, 127.3, 124.8, 121.9, 121.6, 121.6, 121.1, 93.8, 93.5, 75.1, 72.1, 50.8, 49.4, 40.2, 39.5, 37.1, 20.6, 20.5.

HRMS (MALDI) *m*/*z* calcd for C₁₈H₁₇O₄NaSCl ([M+Na]⁺): 387.0428, found 387.0424.

2'-methyl-3-(phenylsulfonyl)spiro[cyclobutane-1,4'-naphtho[2,3-*d*][1,3]dioxine] (**2g**, **2g**') (diastereomixture) 48% yield (**2g**:**2g**' = 0.55:1), colorless oil.

¹**H** NMR (301 MHz, CDCl₃) δ 7.99-7.96 (m, 2.7H), 7.93 (s, 0.7H), 7.73-7.57 (m, 4.7H), 7.45-7.29 (m, 2.1H), 7.20 (s, 1H), 5.23 (q, *J* = 5.2 Hz, 0.33H), 5.16 (q, *J* = 5.0 Hz, 0.69H), 4.14-4.05 (m, 0.68H), 4.02-3.94 (m, 0.34H), 3.35-3.23 (m, 1H), 3.10-2.95 (m, 1H), 2.90-2.60 (m, 2H), 1.61-1.57 (m, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.3, 150.0, 137.9, 137.8, 134.0, 133.9, 133.8, 129.4, 129.1, 128.8, 128.4, 128.3, 128.0, 127.9, 127.4, 127.1, 126.7, 126.6, 126.6, 126.4, 126.0, 124.3, 122.4, 111.7, 111.3, 93.3, 92.9, 75.7, 72.5, 51.0, 49.7, 40.7, 40.2, 37.8, 37.6, 20.9, 20.8.

HRMS (MALDI) *m*/*z* calcd for C₂₂H₂₀O₄NaS ([M+Na]⁺): 403.0975, found 403.0973.

2-ethyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2h, 2h') (diastereomixture)

63% (**2h**:**2h**' = 0.89:1), colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95-7.92 (m, 2H), 7.70-7.65 (m, 1H), 7.61-7.56 (m, 2H), 7.49-7.47 (m, 0.57H), 7.27-7.23 (m, 2H), 7.09 (dd, J = 7.8, 1.8 Hz, 0.45H), 7.0-7.01 (m, 1H), 6.95-6.92 (m, 0.45H), 6.83-6.80 (m, 1H), 4.88 (t, J = 5.0 Hz, 0.47H), 4.83 (t, J = 5.0 Hz, 0.53H),

4.06-3.98 (m, 0.52H), 3.87-3.78 (m, 0.43H), 3.16 (dd, *J* = 13.3, 9.2 Hz, 1H), 3.00-2.97 (m, 0.55H), 2.88-2.83 (m, 0.46H), 2.78-2.66 (m, 1H), 2.62-2.47 (m, 1H), 1.89-1.77 (m, 2H), 1.07-1.01 (m, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 152.5, 152.2, 138.1, 138.0, 134.0, 134.0, 129.5, 129.1, 129.0, 128.9, 128.5, 128.3, 126.7, 126.4, 126.0, 125.4, 123.4, 121.9, 121.6, 116.9, 116.5, 97.0, 96.5, 75.4, 72.3, 51.1, 49.7, 40.5, 39.5, 37.4, 37.3, 27.52, 27.50, 21.6, 8.0, 7.9.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₂₀O₄NaS ([M+Na]⁺): 367.0975, found 367.0974.

3'-((4-methoxyphenyl)sulfonyl)-2-methylspiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2i, 2i') (diastereomixture) quant. (2i:2i' = 0.78:1), colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87-7.82 (m, 2H), 7.48 (dd, J = 7.8, 1.4 Hz, 058H), 7.21-7.14 (m, 1H), 7.09 (dd, J = 7.8, 1.4 Hz, 0.40H), 7.04-7.01 (m, 3H), 6.96-6.91 (m, 0.38H), 6.81-6.76 (m, 1H), 5.11 (q, J = 5.2 Hz, 0.46H), 5.06 (q, J = 5.2 Hz, 0.59H), 4.03-3.95 (m, 0.53H), 3.88 (s, 3H), 3.82-3.74 (m, 0.41H), 3.16-3.10 (m, 1H), 2.96 (dd, J = 13.1, 8.9 Hz, 0.62H), 2.86 (dd, J = 12.4, 8.7 Hz, 0.40H), 2.76-2.64 (m, 0.88H), 2.61-2.47 (m, 1.2H), 1.54-1.51 (m, 3H).

Me

o=s=o

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 163.9, 163.9, 152.2, 151.9, 130.5, 130.4, 129.4, 129.3, 128.9, 128.8, 126.5, 126.4, 125.7, 123.3, 121.8, 121.6, 116.7, 116.2, 114.6, 93.1, 92.7, 75.2, 72.1, 55.7, 51.1, 49.8, 40.4, 39.6, 37.3, 37.1, 20.71, 20.65.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₂₀O₅NaS ([M+Na]⁺): 383.0924, found 383.0921.

2-methyl-3'-tosylspiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (**2j**, **2j**') (diastereomixture) 72% yield (**2j**:**2j**' = 0.87:1), colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.49 (dd, J = 7.8, 1.4 Hz, 0.52H), 7.37 (dd, J = 8.2, 2.7 Hz, 2H), 7.21-7.14 (m, 1H), 7.09 (dd, J = 8.0, 1.6 Hz, 0.40H), 7.06-7.02 (m, 0.58H), 6.96-6.92 (m, 0.42H), 6.82-6.79 (m, 1H), 5.11 (q, J = 5.0 Hz, 0.41H), 5.06 (q, J = 5.0 Hz, 0.52H), 4.05-3.96 (m, 0.59H), 3.83-3.74 (m, 0.40H), 3.18-3.12 (m,1H), 3.00-2.95 (m,0.60H), 2.91-2.86 (m, 0.44H), 2.76-2.65 (m, 1H), 2.61-2.48 (m, 1H), 2.46 (s, 3H), 1.54 (d, J = 5.0 Hz, 1.2H), 1.52 (d, J = 5.0 Hz, 1.6H).

5.0 Hz, 1.6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.2, 151.9, 144.9, 144.9, 135.0, 134.9, 130.0, 128.9, 128.8, 128.4, 128.2, 126.4, 126.4, 125.7, 123.3, 121.9, 121.6, 116.7, 116.3, 93.1, 92.7, 75.2, 72.1, 51.0, 49.6, 40.4, 39.5, 37.3, 37.1, 21.6, 20.71, 20.65.

HRMS (MALDI) *m*/*z* calcd for C₁₉H₂₀O₄NaS ([M+Na]⁺): 367.0975, found 367.0975.

2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 153.8, 143.9, 138.6, 136.3, 134.0, 133.8, 129.7, 129.6, 129.0, 128.5, 128.3, 128.2, 125.6, 120.6, 119.7, 96.8, 83.9, 47.5, 38.3.

HRMS (MALDI) m/z calcd for C₂₄H₂₀O₃NaS ([M+Na]⁺): 411.1025, found 411.1027.

4-3. Preparation of BCB units

Compounds **S1**, **S10**, **S11** were prepared according to the literature procedure.³ Compound **S12** was prepared according to the literature procedure.¹

4-4. Preparation of Ar units

To a solution of 2-iodophenol derivative (1.0 eq.) and 1,2-dibromoethane (5.0 eq.) in acetone (0.09 M) was added K_2CO_3 (2.0 eq.). The resulting mixture was stirred under reflux conditions for overnight. The reaction was quenched with water and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by a silica gel column chromatography (hexane/EtOAc = 20:1) to give 2-iodophenol bromoethyl ether derivative as a colorless oil or color solid.

To a solution of 2-iodophenol bromoethyl ether derivative (1.0 eq.) in THF (0.20 M) was added *t*-BuOK (1.5 eq.) portionwise. The resulting mixture was stirred at room temperature for overnight. The reaction mixture was filtered and washed with CH_2Cl_2 . The combined filtrate was concentrated, and the residue was purified by a silica gel column chromatography (hexane/EtOAc = 25:1) to give 2-iodophenol vinyl ether derivative (2 step yields) as oil or solid.

2-iodo-4-methoxy-1-(vinyloxy)benzene (S13)

62% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 2.7 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 6.86 (dd, J = 9.0, 2.7 Hz, 1H), 6.53 (dd, J = 14.0, 6.2 Hz, 1H), 4.58 (dd, J = 14.0, 2.1 Hz, 1H), 4.39 (dd, J = 6.2, 2.1 Hz, 1H), 3.77 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 156.3, 149.6, 149.4, 124.2, 119.0, 115.2, 93.9, 88.2, 55.8.

MeO

HRMS (MALDI) *m*/*z* calcd for C₉H₉O₂I ([M]⁺): 275.9642, found 275.9641.

1-chloro-3-iodo-2-(vinyloxy)benzene (S14)

58% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.0, 1.6 Hz, 1H), 7.41 (dd, J = 8.2, 1.4 Hz, 1H), 6.88 CI (t, J = 8.0 Hz, 1H), 6.56 (dd, J = 14.0, 6.3 Hz, 1H), 4.35 (dd, J = 6.3, 2.7 Hz, 1H), 4.24 (dd, J = 14.2, 2.7 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.9, 148.7, 138.1, 130.9, 127.9, 127.5, 92.1, 91.6. HRMS (MALDI) m/z calcd for C₈H₇OCII ([M+H]⁺): 280.9225, found 280.9231.

2-iodo-3-(vinyloxy)naphthalene (S15)

65% yield, pale yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 7.71 (t, J = 8.9 Hz, 2H), 7.48 (t, J = 7.4 Hz,

1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.30 (s, 1H), 6.71 (dd, *J* = 13.6, 5.8 Hz, 1H), 4.93 (dd, *J* = 13.6, 1.9 Hz, 1H), 4.62 (dd, *J* = 5.8, 1.9 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 152.9, 147.9, 139.6, 134.0, 131.7, 127.2, 127.0, 126.7, 125.4, 112.0, 97.0, 87.8.; HRMS (MALDI) *m/z* calcd for C₁₂H₁₀OI ([M+H]⁺): 296.9771, found 296.9764.

2-iodo-3-(vinyloxy)pyridine (S16)

46% yield, brown oil.

¹**H** NMR (301 MHz, Acetone- d_6) δ 8.12 (dd, J = 4.3, 1.9 Hz, 1H), 7.45-7.37 (m, 2H), 6.81 (dd, J

= 13.7, 6.0 Hz, 1H), 4.83 (dd, J = 13.7, 2.0 Hz, 1H), 4.64 (dd, J = 6.0, 2.0 Hz, 1H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 153.1, 147.6, 145.4, 124.2, 123.2, 111.9, 96.7.

HRMS (MALDI) *m*/*z* calcd for C₇H₇NOI ([M+H]⁺):247.9567, found 247.9563.

The compounds S2, S17, S18 were prepared according to the literature procedure.¹

The compound S19 was prepared according to the literature procedure.⁴

The compound S20 was prepared according to the literature procedure.⁵

5. References

- 1. R. E. McNamee, A. L. Thompson, E. A. Anderson, J. Am. Chem. Soc. 2021, 143, 21246-21251.
- 2. R. V. Rozhkov, R. C. Larock, J. Org. Chem. 2010, 75, 4131-4134.
- 3. M. Jung, V. N. G. Lindsay, J. Am. Chem. Soc. 2022, 144, 4764-4769.
- 4. A. Martins, U. Marquardt, N. Kasravi, D. Alberico, M. Lautens, J. Org. Chem. 2006, 71, 4937-4942.
- 5. N. Sakiyama, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 2012, 51, 5976-5980.

6. X-ray Crystallographic Analysis

 $(3'r,4r)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane]\ (\textbf{2a})$

CCDC number 2247662

Bond precision:	C-C = 0.0039 A	Wavelength=	Wavelength=0.71075			
Cell:	a=11.154(2) alpha=90	b=8.1794(13) beta=96.951(4)	c=17.502(3) gamma=90			
Temperature:	273 K		-			
	Calculated	Reported				
Volume	1585.0(5)	1585.1(5)				
Space group	P 21/n	P 1 21/n 1				
Hall group	-P 2yn	-P 2yn				
Moiety formula	C18 H18 O4 S	C18 H18 O4	S			
Sum formula	C18 H18 O4 S	C18 H18 O4	S			
Mr	330.38	330.40				
Dx,g cm-3	1.385	1.384				
Z	4	4				
Mu (mm-1)	0.222	0.222				
F000	696.0	696.0				
F000′	696.83					
h,k,lmax	14,10,22	14,10,22				
Nref	3645	3639				
Tmin, Tmax	0.961,0.978	0.344,0.97	8			
Tmin'	0.875					
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	imits: Tmin=0.344 Tma	ax=0.978			
Data completenes	ss= 0.998	Theta(max) = 27.514				
R(reflections)=	0.0695(2734)		wR2(reflections)=			
S = 1.018	Npar= 2	18	0.1001(0000)			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density 1.40 eA-3 3.4 prolat PLAT213_ALERT_2_C Atom O4 has ADP max/min Ratio PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 2.7 Note PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.689 Check PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.91Ang From O3 . 0.55 eA-3 PLAT975 ALERT 2 C Check Calcd Resid. Dens. 0.97Ang From 01 0.49 eA-3 . PLAT977_ALERT_2_C Check Negative Difference Density on H1A -0.31 eA-3 . PLAT977_ALERT_2_C Check Negative Difference Density on H1B -0.36 eA-3 PLAT977_ALERT_2_C Check Negative Difference Density on H1C -0.51 eA-3 .

```
Alert level G
```

CHEMS02_ALERT_1_G Please check that you have entered the correct _publ_requested_category classification of your compound; FI or CI or EI for inorganic; FM or CM or EM for metal-organic; FO or CO or EO for organic. From the CIF: _publ_requested_category CHOOSE FI FM FO CI CM CO or A From the CIF: _chemical_formula_sum :C18 H18 O4 S1 PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 4 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 2 Report PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.13 Report PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 1 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 1 Report 273 Check PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 273 Check PLAT230_ALERT_2_G Hirshfeld Test Diff for 02A --C2 6.0 s.u. . <code>PLAT301_ALERT_3_G</code> Main Residue Disorder (Resd 1) 4% Note PLAT793_ALERT_4_G Model has Chirality at C2 (Centro SPGR) R Verifv PLAT860_ALERT_3_G Number of Least-Squares Restraints 10 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 4 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2 Note PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 4.2 Low PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 3 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
10 ALERT level C = Check. Ensure it is not caused by an omission or oversight
16 ALERT level G = General information/check it is not something unexpected
4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
13 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

(3's,4s)-2-methyl-3'-(phenylsulfonyl)spiro[benzo[d][1,3]dioxine-4,1'-cyclobutane] (2a')

CCDC number 2247661

Bond precision:	C-C = 0.0055 A	=1.54187	
Cell:	a=8.3144(3)	b=9.8167(4)	c=20.8013(7)
Temperature:	296 K	beca=99.087(7)	gamma=90
	Calculated	Reported	
Volume	1676.49(11)	1676.48(1	1)
Space group	P 21/c	P 1 21/c	1
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C18 H18 O4 S	C18 H18 C	04 S
Sum formula	C18 H18 O4 S	C18 H18 0	04 S
Mr	330.38	330.40	
Dx,g cm-3	1.309	1.309	
Z	4	4	
Mu (mm-1)	1.865	1.866	
F000	696.0	696.0	
F000'	699.36		
h,k,lmax	10,11,25	9,11,24	
Nref	3067	3027	
Tmin, Tmax	0.671,0.756	0.513,0.7	56
Tmin'	0.411		
Correction metho AbsCorr = MULTI-	od= # Reported T I -SCAN	imits: Tmin=0.513 Tm	ax=0.756
Data completenes	ss= 0.987	Theta(max) = 68.19	4
R(reflections)= S = 1.026	0.0569(2023) Npar= :	208	wR2(reflections)= 0.1610(3027)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

PLAT241_ALERT_2_C	High '	MainMol' (0eq i	as Cor	wared 1	to (Neighbors o)Í	04	Check
PLAT340_ALERT_3_C	Low Bond	Precision	n on	C-C	Bonds			. 0	.0055	Ang.

Alert level G

CHEMS02_ALERT_1_G Please check that you have entered the correct __publ_requested_category classification of your compound; FI or CI or EI for inorganic; FM or CM or EM for metal-organic; FO or CO or EO for organic. From the CIF: __publ_requested_category CHOOSE FI FM FO CI CM CO or A From the CIF: __chemical_formula_sum :C18 H18 O4 S1 PLAT793_ALERT_4_G Model has Chirality at C18 (Centro SPGR) R Verify PLAT882_ALERT_1_G No Datum for __diffrn_reflns_av_unetI/netI Please Do ! PLAT986_ALERT_1_G No non-zero f' Anomalous Scattering Values Found Please Check

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

¹ H NMR spectrum of **1a** (301 MHz, Acetone- d_6)

 13 C NMR spectrum of **1a** (101 MHz, CDCl₃)

 13 C NMR spectrum of **1b** (101 MHz, Acetone- d_6)

¹ H NMR spectrum of **1c** (400 MHz, Acetone- d_6)

¹³C NMR spectrum of **1c** (101 MHz, Acetone- d_6)

S30

S31

X : parts per Million : Fluorine19

 13 C NMR spectrum of **1h** (101 MHz, Acetone- d_6)

 13 C NMR spectrum of **1**j (101 MHz, CDCl₃)

¹ H NMR spectrum of **1g** (400 MHz, Acetone- d_6)

 13 C NMR spectrum of **1g** (101 MHz, CDCl₃)

S47

 13 C NMR spectrum of **11** (101 MHz, CDCl₃)

¹³C NMR spectrum of **1m** (126 MHz, Acetone- d_6)

¹ H NMR spectrum of **3a** (301 MHz, Acetone- d_6)

¹ H NMR spectrum of **3b** (400 MHz, Acetone- d_6)

¹ H NMR spectrum of **S9** (301 MHz, Acetone- d_6)

S57

 13 C NMR spectrum of **2a** (101 MHz, CDCl₃)

S58

¹ H NMR spectrum of **2a'** (400 MHz, $CDCl_3$)

 13 C NMR spectrum of **2a'** (101 MHz, CDCl₃)

 13 C NMR spectrum of **2b/2b'** (101 MHz, CDCl₃)

 13 C NMR spectrum of **2c/2c'** (101 MHz, CDCl₃)

 13 C NMR spectrum of 2d/2d' (101 MHz, CDCl₃)

S67

X : parts per Million : Fluorine19

¹ H NMR spectrum of 2e/2e' (400 MHz, CDCl₃)

 13 C NMR spectrum of **2e/2e'** (101 MHz, CDCl₃)

S70

 13 C NMR spectrum of **2f/2f'** (101 MHz, CDCl₃)

S71

¹ H NMR spectrum of 2g/2g' (301 MHz, CDCl₃)

 13 C NMR spectrum of **2h/2h'** (101 MHz, CDCl₃)

¹ H NMR spectrum of 2j/2j' (400 MHz, CDCl₃)

 13 C NMR spectrum of **2j/2j**' (101 MHz, CDCl₃)

¹ H NMR spectrum of **S13** (400 MHz, $CDCl_3$)

 13 C NMR spectrum of **S13** (101 MHz, CDCl₃)

¹ H NMR spectrum of **S14** (400 MHz, $CDCl_3$)

 13 C NMR spectrum of **S14** (101 MHz, CDCl₃)

¹ H NMR spectrum of **S15** (500 MHz, $CDCl_3$)

 13 C NMR spectrum of **S15** (126 MHz, CDCl₃)

¹ H NMR spectrum of **S16** (301 MHz, Acetone- d_6)

