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S1 Theory and Computational Details

S1 Neural Networks

In this work, we have used two DNN architecture. The first is based upon the multilayer percep-
tron (MLP) model and closely follows the network described in ref. [1]. Briefly, this MLP model
comprises an input layer, two hidden layers, and an output layer. All layers are dense, i.e. fully
connected, and each hidden layer performs a nonlinear transformation using the hyperbolic
tangent (ReLU) activation function. The input layer comprises N neurons to accept a feature
vector of length N encoding the local environment around the absorbing atom. This featurisa-
tion is performed via dimensionality reduction using the wACSF descriptor of Gastegger and
Marquetand et al. [2]. In this Article, the input layer contains 97 neurons as the feature vector is
comprised of a global (G1) function, 32 radial (G2) functions, and 64 angular (G4) functions.

The first and second hidden layers comprises 512 neurons. The output layer comprises
226 neurons from which the discretised K-edge XANES spectrum is retrieved after regression.
The internal weights, W, are optimised via iterative feed-forward and backpropagation cycles to
minimise the empirical loss, J(W), defined here as the mean-squared error (MSE) between the
predicted, µpredict, and calculated, µcalculated, K-edge XANES spectra over the reference dataset,
i.e. an optimal set of internal weights, W∗, is sought that satisfies argmin

W
(J(W)).

Gradients of the empirical loss with respect to the internal weights, δJ(W)/δW, were esti-
mated over minibatches of 32 samples and updated iteratively according to the Adaptive Mo-
ment Estimation (ADAM) [3] algorithm. Throughout an annealed learning rate. The learning
rate was initially set to 2×10−3 and was reduced by a factor of 2 every 100 epochs. The internal
weights were initially set according to ref. [4]. Unless explicitly stated in this Article, optimisa-
tion was carried out over 500 iterative cycles through the network commonly termed epochs
meaning the final learning rate was 1.3×10−4. Regularisation was implemented to minimise the
propensity of overfitting.

Our second network is based upon a convolutional neural network. After featurisation, as
described above, this network contains two 1D convolutional layers, each of which is convolved
with its own set of 16 filters. In both cases, the kernel size is 3 and the stride for the cross-
correlation is 2. The output of these convolutional layers is passed into a MLP, containing
two hidden layers and an output layer. All layers are dense, i.e. fully connected, and each
hidden layer performs a nonlinear transformation using the hyperbolic tangent (ReLU) activation
function. The hidden layers have a dimension of 256. The output layer comprises 226 neurons
from which the discretised K-edge XANES spectrum is retrieved after regression. All others
hyperparameters are the same as the MLP model.

The DNN is programmed in Python 3 with Pytorch [5]. The Atomic Simulation Environment
[6] (ase) API is used to handle and manipulate molecular structures. The code is publicly
available under the GNU Public License (GPLv3) on GitLab. [7]

S2 Datasets

Our datasets containing X-ray absorption site geometries (samples) of first-row transition metal
(Ti-Zn) complexes have been harvested from the transition metal Quantum Machine (tmQM)
dataset [8,9]. K-edge XANES spectra (labels) for these structures were calculated using multi-
ple scattering theory (MST) as implemented in the FDMNES [10]. This led us to develop nine
independent reference datasets, one for each first-row transition metal (Ti-Zn) X-ray absorption
edge; the number of samples contained in the reference datasets scales from as few as ∼1100
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(V) to ∼8660 (Ni). 250 samples from each reference dataset were isolated at random to form
held-out testing datasets (evaluated post-optimisation only). These datasets were previously
presented in ref. [1] and can be obtained from ref. [9].

S3 Uncertainty Quantification Methods and Analysis

In the subsections below, the methods for uncertainty quantification are outlined. To assess
their performance we use a number of metrics namely: coverage, correlation between mean
squared error and standard deviation, calibration curves and sharpness.

Coverage refers to the percentage of calculated spectral data points from the held-out set
which fall within ±3σ of the average predicted spectra and therefore provides a direct assess-
ment for the uncertainty quantification method to recognise poor predictions. However, while
useful, the coverage metric can only be used if the true spectrum is calculated, which would
negate the purpose for the use of DNN for future applications. Consequently, we have also used
the correlation between the mean-squared error (MSE) between predicted, µpredicted, and cal-
culated, µcalculated spectra against the uncertainty (σ) calculated for every point in the spectrum
and averaged over each spectrum.

Calibration, sometimes referred to as honesty, displays the frequency of expected points in
each prediction interval relative to the predicted fraction of points in that interval [11]. In other
words, if a model is calibrated the predicted probability should be equal to the expected prob-
ability in that quantile. This is achieved by comparing the expected cumulative distribution of
points within a given confidence interval to the observed cumulative distributions of the pre-
dicted data. A plot of the observed cumulative distributions against the theoretical cumulative
distributions is called a calibration curve. A perfectly calibrated model would have normalised
residuals that are Gaussian, which would yield a diagonal calibration line. Finally, the sharp-
ness is used to define the size of the uncertainty, with it being defined as the mean of the σ
calculated over all data points in the files. To simultaneously take into account the dispersion of
the uncertainty estimates, we also calculate the coefficient of variation (Cv):

Cv =

√∑N
n=1(σn − σ)2

N − 1

σ
(1)

where σn is the predicted standard deviation of point n, σ is the average value of σn and N is
the total number of test points. Low values of Cv indicate a narrow dispersion of uncertainty
estimates.

S3.1 Ensembling

The initial weights in the XANES DNN are drawn from the uniform distribution according to
ref. [4]. However, there is no guarantee that there exists a single unique solution to the prob-
lem of finding a set of internal weights, W∗, which satisfy argmin

W
(J(W)). An ensemble of

statistically-initialised XANES DNNs optimised using the same reference dataset can conse-
quently yield different W∗. Deep ensembling involves optimising multiple instances of a ma-
chine learning model with the same reference dataset but with a different statistical initialisation
of the internal weights. The ensemble of N machine learning models is then used to produce
N independent predictions for each sample in the held-out testing dataset from which a mean
prediction and standard deviation for each sample can be derived. The latter quantifies the
ensemble uncertainty. The concept behind this interpretation is that different W∗ obtained from
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the N models in the ensemble will tend towards similar spectral predictions when the structural
inputs are comparable to those used in the training data. This is because each instance weights,
even if different, are optimised for comparable data. In contrast, if the structural inputs are dis-
similar to the structures used to train the model, each of the N independent predictions will be
more affected by the specificity’s of W∗, thus the higher standard deviation will be observed.

S3.2 Bootstrap Resampling

The bootstrap resampling technique, illustrated in Figure 1 in the main text, is used to esti-
mate statistics on a population by sampling a dataset with replacement, and can be used to
describe the uncertainty associated with incomplete training data. [12] N machine learning
models are optimised using N reference datasets sampled with replacement from the original
reference dataset; each one of these is the same size as the original reference dataset and,
consequently, may contain repeated instances of the same sample. The bootstrap resampling
technique provides increased dataset diversity to each instance of the machine learning model.
N independent instances of the machine learning model optimised using N bootstrapped ref-
erence datasets are then used to produce N independent predictions for each sample in the
"held-out" testing dataset from which a mean prediction and standard deviation for each sam-
ple can be derived. In contrast to ensembling, bootstrap resampling relies on injecting diversity
into the reference dataset, rather than simply sampling diverse machine learning model config-
urations. Throughout this work N=15, which as shown in Figure S1 below for the Fe K-edge
XANES spectra modelled using the MLP model, was selected as it achieved convergence in
the median coverage.

As a final note, while both approaches require running multiple models, the predictions from
them are close to instantaneous and so the time difference between 1 and 15 predictions is
insignificant (<1 secs). The increased computational burden associated with an ensemble of
models only occurs during the training of multiple models. However, as demonstrated by us in
ref. [1], these models can be optimised in as little as a minute using an off-the-shelf commercial-
grade central processing unit (CPU) (AMD Ryzen Threadripper 3970X, 3.7-4.5 GHz) or graph-
ics processing unit (GPU) (NVIDIA RTX 3070, 5888 CUDA cores, 1.5-1.7 GHz) and so the
difference between 1 and 15 models is not a limiting factor.

Figure S1: Plot of Median Coverage for the Fe K-edge XANES spectra as a function of the number of
models. Calculated using the Bootstrap resampling approach and the MLP network.
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S2 Supplementary Results

Edge ∆µ IQR Coverage ρall∆µ−σ ρspec∆µ−σ Sharp. Cv

MLP using Deep Ensembles
Ti 5.0 4.1 99.1 0.84 0.81 0.03 0.93
V 4.5 7.1 95.6 0.79 0.94 0.02 1.01
Cr 3.7 4.1 94.4 0.79 0.86 0.02 1.18
Mn 4.0 3.8 97.8 0.82 0.90 0.02 1.09
Fe 4.5 4.0 99.6 0.82 0.85 0.02 0.96
Co 4.1 3.8 99.3 0.81 0.88 0.02 1.02
Ni 4.0 3.7 99.7 0.82 0.89 0.02 0.92
Cu 3.7 3.5 100.0 0.81 0.88 0.01 0.91
Zn 3.2 3.0 100.0 0.79 0.87 0.01 1.27

CNN using Bootstrap Resampling
Ti 5.6 3.9 98.8 0.85 0.71 0.03 0.88
V 5.6 6.2 99.6 0.81 0.93 0.03 1.04
Cr 4.0 4.4 96.9 0.80 0.86 0.02 1.20
Mn 5.5 3.7 97.9 0.82 0.82 0.02 1.07
Fe 5.8 3.4 97.7 0.82 0.74 0.02 0.82
Co 5.6 4.1 97.8 0.81 0.75 0.20 0.89
Ni 4.9 3.6 93.4 0.83 0.73 0.02 0.87
Cu 5.1 2.8 96.9 0.79 0.72 0.01 0.83
Zn 3.8 2.9 97.3 0.80 0.84 0.01 1.09

CNN using Deep Ensembles
Ti 5.7 3.4 95.6 0.85 0.73 0.03 0.89
V 5.2 6.5 96.5 0.81 0.92 0.02 1.02
Cr 3.8 4.1 91.1 0.80 0.84 0.02 1.22
Mn 4.4 3.3 94.2 0.81 0.81 0.02 1.05
Fe 5.2 3.6 93.6 0.83 0.72 0.02 0.81
Co 4.7 3.1 94.2 0.81 0.73 0.01 0.85
Ni 5.1 2.7 92.0 0.81 0.69 0.02 0.89
Cu 4.1 2.4 93.4 0.79 0.70 0.01 0.86
Zn 3.7 2.8 92.0 0.80 0.84 0.01 1.05

Table S1: Summary of the median percentage errors, ∆µ (%), interquartile range, coverage and the
Pearson correlation between ∆µ and σ for each energy point (ρall∆µ−σ) and each spectra (ρspec∆µ−σ). The
sharpness (Sharp.) and coefficient of variation (Cv) for the uncertainty prediction are also shown as
discussed above.
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S1 Correlation between Mean Square Error and σ

Figure S2: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Ti K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S3: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated V K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S4: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Cr K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S5: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Mn K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S6: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Co K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S7: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Ni K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S8: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Cu K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.
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Figure S9: Parity plots for every data point (a) and spectrum (b) of the mean-squared error (MSE) be-
tween the predicted, µpredicted, and calculated, µcalculated Zn K-edge XANES spectra against the standard
deviation, σ, calculated using the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the Pearson correlation.

16



S2 Calibration curves and Distribution of Predicted Standard Deviations

Figure S10: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Ti K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.
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Figure S11: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the V K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.

Figure S12: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Cr K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.

18



Figure S13: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Mn K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.

Figure S14: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Fe K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.
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Figure S15: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Co K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.

Figure S16: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Ni K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.
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Figure S17: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Cu K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.

Figure S18: Calibration curve (a) and histogram of all predicted standard deviations used in the sharp-
ness analysis (b) at the Zn K-edge XANES spectra. Calculated using the Bootstrap resampling approach
and the MLP network.
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S3 Sample Spectra from Held-out Set: Bootstrap Resampling using MLP model

Figure S19: Example K-edge XANES spectra for Ti-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S20: Example K-edge XANES spectra for V-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S21: Example K-edge XANES spectra for Cr-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.

24



Figure S22: Example K-edge XANES spectra for Mn-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S23: Example K-edge XANES spectra for Co-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S24: Example K-edge XANES spectra for Ni-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S25: Example K-edge XANES spectra for Cu-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S26: Example K-edge XANES spectra for Zn-containing samples. The upper three panels show
K-edge XANES spectra from the 0th-10th percentiles, i.e. the best performers when held-out set is
ranked by MSE. The centre three panels show K-edge XANES spectra from the 45th-55th percentiles,
i.e. around the median. The lower three panels show K-edge XANES spectra from the 90th-100th

percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.
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Figure S27: Example K-edge XANES spectra for Fe-containing samples which are out of sample and
therefore significantly different from the training sets. These includes complexes with multiple metal sites
and heavy elements, such as Ru and Tc not in the original training set. The six-character labels in the
lower right of each panel are the Cambridge Structural Database (CSD) codes for the samples, the xyz
files are uploaded with the supporting information. All spectra exhibit, as expected, a larger σ, indicating
that the uncertainty quantification works for out of sample species.
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