Supporting Information

Ionic Liquid enables High-Performance, Self-Powered CsPbBr₃ Perovskite Nanonet Photodetector

Hai Zhou,^{1, 2, 3} * Rui Wang,^{1, 3} Xuhui Zhang,^{1, 3} Bo'ao Xiao, ^{1, 3} Zihao Shuang¹, Dingjun Wu¹ and Pingli Qin ^{2, *}

¹International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong, 523808, China

²Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, China

³Faculty of Physics & Electronic Science, Hubei University, Wuhan, 430062, China.

Corresponding Author Prof. Hai Zhou: <u>hizhou@dgut.edu.cn</u>

Prof. Pingli Qin:<u>qpl2015@wit.edu.cn</u>

(1) Materials

Tin dioxide (15% (wt%)) is purchased from Alfa Aeser, polyvinyl pyrrolidone (PVP), 2,2 '- azodiisobutyronitrile (AIBN) (99%), styrene (>99.5%), sodium dodecyl sulfate (>99%), dimethyl sulfoxide (>99.9%), cesium bromide (99.999%), lead bromide (99.99%), 1-butyl-3-methylimidazole bromide (>97%), and chlorobenzene (99%) are all purchased from Aladdin.

(2) Substrate treatment

The patterned ITO glass substrate in an orderly manner on a cleaning rack, and place it in a 250 mL beaker. Add washing solution, deionized water, acetone, and anhydrous ethanol in sequence and ultrasonically clean for 30 min to make the substrate surface as smooth as a mirror. After cleaning, put it in a 60°C oven to remove the ethanol on the substrate surface. Then, place the substrate in a UV ozone cleaner for 30 min to improve the adhesion of the substrate surface.

(3) Preparation of SnO_2 electron transport layer

Place the treated ITO substrate onto the spin coater, and $150 \ \mu\text{L}$ of SnO₂ solution is added to the substrate surface, and spin-coated at 3000 rpm for 30 s. Then, the substrate is put onto a hot plate at 150°C for approximately 30 min.

(4) Preparation of monolayer PS microspheres

Drop 100 μ L of ethanol dispersion containing PS microspheres into a beaker filled with deionized water. After the PS microspheres are evenly dispersed on the surface of the water, drop 1 mL of SDS solution from the edge of the beaker to form a dense monolayer of PS microspheres on the water surface. Insert the ITO substrate below the liquid surface and slowly lift it up to obtain a monolayer of PS microspheres. Use a piece of absorbent paper to remove the water at the edge, so that the PS microspheres can evenly attach to the substrate surface. Then place the substrate on a heating plate at 60°C for 1 hour for annealing.

(5) Preparation of CsPbBr₃ nanonet film

To investigate the effect of BMIMBr ionic liquid on the CsPbBr₃ perovskite PD, different concentrations of BMIMBr ionic liquid is added to the precursor solution to determine the optimal concentration. The specific experimental steps are as follows:

Dissolve various concentrations (0, 0.5, 1, 2, and 5 mg) of BMIMBr ionic liquid, 0.1064 g cesium bromide (99.999%), and 0.1835 g lead bromide (99.99%) in 1 mL of DMSO (99.9%) to form CsPbBr₃ solutions. After 12 hours of standing to ensure complete dissolution, the CsPbBr₃ solution is filtered through a filter head. Then, 80 μ L of the CsPbBr₃ solution is evenly dropped onto the substrate, and the spin coater is set to 1500 rpm for 40 s. After that, the substrate is transferred to a heating plate and annealed for 30 min. Finally, the prepared CsPbBr₃ thin film is immersed in a glass bottle filled with chlorobenzene for 1 min to remove the PS spheres, and then placed on a heating plate at 100 °C for 30 min to remove residual chlorobenzene.

(6) Fabrication of carbon electrode

A layer of carbon paste is scraped on the surface of the CsPbBr₃ film and annealed at 120 °C for 20 min to to obtain the CsPbBr₃ nanonet PD in this experiment.

(7) Characterization and measurement of devices

The field emission scanning electron microscope (FESEM, JEOL, JSM-6700F) is used to characterize the SEM images of the CsPbBr₃ nanonet film. X-ray diffraction (XRD, D8 FOCUS X-ray diffraction) is used to characterize the XRD patterns of the film. The UV-Vis-NIR spectrophotometer was used to measure the absorption spectrum of the film. Keithley 2400 source meter is used to measure the I-V and I-t curves of the PD, and the oscilloscope is used to measure the response time of the device. A 405 nm laser is used as the light source, and its intensity was calibrated by a standard silicon photodiode. The PL spectra of the nanonet film are measured using FluoTime 300 (PicoQuant GmbH).

Figure S1 Top (a) and cross-sectional (b) SEM image of the CsPbBr₃ perovskite nanonet film without BMIMBr ionic liquid.

Figure S2 The I-t curve of the CsPbBr₃ PD under 2 mW/cm² light: (a) without and with BMIMBr ionic liquid.

Device structure	Responsiv	Detectivit	$ au_{rise}$ / $ au_{fall}$	LD	Ref.
	ity (A/W)	y (Jones)	(ms)	R	
SnO ₂ /Cs ₂ AgBiBr ₆ / Carbon	7.5×10^{-2}	1.87 ×	0.24/0.29	-	1
		1012			

Table S1. Performance comparison of reported perovskite based-PDs.

ITO/SnO ₂ /MAPbI ₃ /Spiro-	0.48	2.7×10^{13}	0.054/0.01	-	2
OMeTAD)/MoO ₃ /Cu			1		
ZnO/MAPbI ₃	0.003	1.3×10^{11}	0.006/0.41	-	3
			4		
NiO/MAPbI3/PMMA/PCB	0.47	1.07 ×	0.05/0.017	12	4
M/ZnO/BCP/A1		10 ¹²		7	
Au/CsPbBr ₃ (PMMA)/ITO	3.7	-	6.6/11.3	-	5
Au/ CsPbBr ₃ single	0.028	10 ¹¹	<100	-	6
crystal/Au					
Au/ CsPbBr ₃ /Au	55	0.9×10^{13}	0.43/0.318	-	7
ITO/SnO ₂ /CsPbBr ₃ nanonet	0.19	4.31×10 ¹²	0.06/0.26	14	This
film/Carbon				0	work

References

- Shuang, Z.; Zhou, H.; Wu, D.; Zhang, X.; Xiao, B.; Ma, G.; Zhang, J.; Wang, H. Low-Temperature Process for Self-Powered Lead-Free Cs₂AgBiBr₆ Perovskite Photodetector with High Detectivity. *Chem. Eng. J.* 2022, *433*, 134544.
- (2) Li, G.; Wang, Y.; Huang, L.; Sun, W. High-Performance Self-Powered Perovskite Photodetector Based On Cesium Iodide Doped Spiro-OMeTAD Hole Transport Material. *Journal of Alloys and Compounds* 2022, 907, 164432.
- (3) Yan, J.; Li, Y.; Gao, F.; Gong, W.; Tian, Y.; Li, L. Reconfigurable Self-Powered Imaging Photodetectors by Reassembling and Disassembling ZnO/Perovskite Heterojunctions. J. Mater. Chem. C 2022,10(23), 8922-8930.
- (4) Kim, W.; Park, J.; Aggarwal, Y.; Sharma, S.; Choi, E. H.; Park, B. Highly Efficient and Stable Self-Powered Perovskite Photodiode by Cathode-Side Interfacial Passivation with Poly (Methyl Methacrylate). *Nanomaterials* 2023, *13*(3), 619.
- (5) Ou, Z.; Yi, Y.; Hu, Z.; Zhu, J.; Wang, W.; Meng, H.; Zhang, X.; Jing, S.; Xu, S.; Hong, F.; Huang, J.; Qin, J.; Xu, F.; Xu, R.; Zhu, Y.; Wang, L. Improvement of CsPbBr₃ Photodetector Performance

by Tuning the Morphology with PMMA Additive. *Journal of Alloys and Compounds*, 2020 821, 153344.

- (6) Ding, J.; Du, S.; Zuo, Z.; Zhao, Y.; Cui, H.; Zhan, X. High Detectivity and Rapid Response in Perovskite CsPbBr₃ Single-Crystal Photodetector. *J. Phys. Chem. C* 2017, *121*(9), 4917-4923.
- (7) Li, Y.; Shi, Z. F.; Li, S.; Lei, L. Z.; Ji, H. F.; Wu, D.; Xu, T.; Tian, Y.; Li, X. J. High-Performance Perovskite Photodetectors Based on Solution-Processed All-Inorganic CsPbBr₃ Thin Films. J. Mater. Chem. C 2017, 5(33), 8355-8360.