Electronic Supporting Information

Regulating structural asymmetry via fluorination engineering in hybrid lead bromide perovskites

Hua-Yang Ru, ${ }^{\text {a }}$ Zhao-Yang Wang, ${ }^{\text {a Hua-Li Liu, }}{ }^{*}$ a and Shuang-Quan Zang * a
${ }^{a}$ Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of

Experimental section

Materials and reagents

All reagents and solvents were used directly as received without further purification. Isopropylamine hydrochloride (97\%), (R)-1,1,1-trifluoropropan-2-amine hydrochloride (98\%) and (S)-1,1,1-trifluoropropan-2-amine hydrochloride were purchased from Leyan reagent. Lead(II) bromide $\left(\mathrm{PbBr}_{2}\right)$, and hydrobromic acid $\left(\mathrm{HBr}, 48 \mathrm{wt} . \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, methanol $\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{AR}\right)$ were purchased from Energy Chemical.

Synthesis

Preparation of $1 R / 2 S$ and $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ single crystals.

$\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ or $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ were prepared with stoichiometric quantities of $\mathrm{PbBr}_{2} \cdot(0.2 \mathrm{mmol}, 0.074$ $\mathrm{g})$ and $(R)-/(S)$-1,1,1-trifluoropropan-2-amine hydrochloride $(0.2 \mathrm{mmol}, 0.030 \mathrm{~g})$ or isopropylamine hydrochloride ($0.2 \mathrm{mmol}, 0.019 \mathrm{~g}$) in mixed solution of $\mathrm{HBr}(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$. A clear solution was afforded by heating the mixture at $130^{\circ} \mathrm{C}$ and stirring for 20 min . And the crystals of $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ or $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ were obtained at room temperature overnight. The crystals were washed with cold diethyl ether and dried under vacuum at $60^{\circ} \mathrm{C}$ for 2 h . (Yield: 72\%)

Fabrication of chiral thin films.

Quartz substrates $\left(1.5 \times 1.5 \mathrm{~cm}^{2}\right)$ were washed by ethanol, acetone and deionized water in the ultrasonic cleaner for 10 min , respectively. Then, the substrates were treated in a plasma-cleaner with oxygen plasma to improve the surface wettability. To prepare chiral thin films, $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ or $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ were dissolved in 0.1 mL DMF with a specific concentration ($20 \mathrm{wt} \%$) as the precursor solution. Subsequently, the resultant precursor solution was spin-coated on the quartz substrate at a speed of 3000 rpm for 30 s , followed by annealing at $60^{\circ} \mathrm{C}$ for 10 min on a hot plate to induce crystallization. Spin-coating and annealing were performed in the N_{2}-filled glove box.

Characterization

Powder X-ray Diffraction (PXRD) patterns of the samples were recorded on a D/MAX-3D diffractometer ($\mathrm{Cu} \mathrm{K} \alpha, \lambda=1.5418 \AA$). Simulated powder patterns were obtained with Mercury software and crystallographic information file (CIF) from a single crystal X-ray experiment. Steadystate photoluminescence (PL) spectroscopy were carried out with a HORIBA FluoroLog-3 fluorescence spectrometer. Luminescence lifetimes were performed on a HORIBA FluoroLog-3 fluorescence spectrometer that was equipped with a 370 nm -laser and was operating in timecorrelated single-photon counting (TCSPC) mode. The photoluminescence quantum yields PLQYs were measured using an integrating sphere on a HORIBA Scientific Fluorolog-3 spectrofluorometer. UV-vis absorption spectra were obtained by means of a Hitachi UH4150 UVvisible spectrophotometer. (FTIR-ATR) spectra were conducted in the range of $500-4000 \mathrm{~cm}^{-1}$ on a Bruker ALPHA spectrometer. The Raman spectra were recorded on labRAM HR EvolutionHORIBA Raman system equipped with a CCD detector using a $532 \mathrm{~nm} \mathrm{He}-\mathrm{Cd}$ laser as the excitation source. Circular dichroism (CD) spectra were recorded on a Chirascan V100 spectropolarimeter. Circularly polarized luminescence (CPL) spectra were measured on a JASCO CPL-300.

Single-crystal X-ray diffraction Analysis.

The diffraction data of $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ and $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ were collected on a Rigaku XtaLAB Pro diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA$) at 200 K . Data collection and reduction were
performed using the program CrysAlisPro. ${ }^{[1]}$ The crystal structures were solved with direct methods (SHELXS) ${ }^{[2]}$ and refined by full-matrix least squares on F^{2} using OLEX2, ${ }^{[3]}$ which utilizes the SHELXL-2015 module. ${ }^{[4]}$ The imposed restraints in least-squares refinement of each structure were noted in the corresponding CIF files. Thus only a general description of the structural refinement strategy is presented here. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealized geometries and assigned fixed isotropic displacement parameters. Detailed information about the X-ray crystal data, intensity collection procedure, and refinement results for all organic-inorganic hybrid perovskites compounds is summarized in Table S1 and Table S8.

Theoretical calculation.

We have employed the Vienna Ab initio Simulation Package (VASP) ${ }^{[5,6]}$ to perform all density functional theory (DFT) calculations within spin-polarized frame. The elemental core and valence electrons were represented by the projector augmented wave (PAW) method and plane-wave basis functions with a cutoff energy of 400 eV . Generalized gradient approximation with the Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation functional was employed in the calculations. ${ }^{[7]}$ Geometry optimizations were performed with the force convergency smaller than $0.05 \mathrm{eV} / \AA$. The DFT-D3 empirical correction method was employed to describe van der Waals interactions. ${ }^{[8,9]}$ The original bulk structures of $\mathbf{1 R}, \mathbf{2 S}$ and $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ have been optimized before the construction of surfaces with the Monkhorst-Pack k-point of $3 \times 2 \times 1,1 \times 2 \times 3$ and $3 \times 2 \times 1$, respectively. The formation and dissociation energies are defined as:

$$
\Delta E_{\mathrm{fe}}=[E(\mathrm{total})-E(\text { reference })] / \mu
$$

E (total) is the total energy of $\mathbf{1 R}$ or $\mathbf{2 S}$ or $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5} . \mu$ is the number of atoms in the cell. E (reference) is the energy of the $\mathrm{H}_{7} \mathrm{C}_{3} \mathrm{NF}_{3}, \mathrm{H}_{10} \mathrm{C}_{3} \mathrm{~N}$ molecule in the gas phase and the energy of Pb bulk, PbBr_{2} bulk, graphite.

Supporting Figures

Fig. S1 Powder X-ray diffraction patterns of (a) $\mathbf{1 R}$, (b) $\mathbf{2 S}$ and (c) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$.
(a)

(b)

Fig. S2 FTIR spectra of (a) $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ and (b) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ powders. The vibrational frequencies at 2881 and $1572 \mathrm{~cm}^{-1}$ in $\mathbf{1 R} / \mathbf{2 S}$, 2960 and $1591 \mathrm{~cm}^{-1}$ in $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$, assigned to the stretching and wagging modes of the $\mathrm{N}-\mathrm{H}$ bonds, respectively. The peaks located at 1386 and $1264 \mathrm{~cm}^{-1}$ in $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}, 1382$ and $1196 \mathrm{~cm}^{-1}$ in $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ were attributed to the stretching modes of C-H and $\mathrm{C}-\mathrm{N}$ bonds. The vibration peaks at $1334 \mathrm{~cm}^{-1}$ is attributed to the wagging mode of the $\mathrm{C}-\mathrm{F}$ bonds in $1 R / 2 S$

Fig. S3 Raman spectra of (a) $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ and (b) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ crystals recorded at room temperature. The observed bands at about 56, 75 and $110 \mathrm{~cm}^{-1}$ at $\mathbf{1 R} / \mathbf{2 S}, 41,59$ and $108 \mathrm{~cm}^{-1}$ at $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$, correspond to the bending mode of $\mathrm{Br}-\mathrm{Pb}-\mathrm{Br}$ bond, symmetric and asymmetric stretching mode of $\mathrm{Pb}-\mathrm{Br}$ bond.

Fig. S4 (a) Optical image and (b) fluorescent image of $\mathbf{1 R}$ under UV light (365 nm).
(a)

(b)

(c)

Fig. S5 The illustration of asymmetry unit of (a) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ and (c) $\mathbf{1 R}$. (b) Schematic structure of achiral ligand (left side) and F-substituted chiral ligand (right side).

Fig. S6 Infinite 1D chain of $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$

Fig. S7 Hydrogen-bonding interactions between the equatorial Br atoms and $R-/ S-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NF}_{3}{ }^{+}$ cations in (a) $\mathbf{1 R}$ and (b) $\mathbf{2 S}$.

The corresponding noncovalent $\mathrm{H}^{\cdots} \mathrm{Br}$ (yellow-labelled) contacts exceed the van der Waals cutoff of $3.05 \AA$, meaning that the $\mathrm{H}^{\cdots} \mathrm{Br}$ interactions are weak and negligible. The corresponding $\mathrm{H}^{\cdots} \mathrm{Br}$ (purple-marked) distances about both sides of the inorganic layer are $2.855 \AA, 2.783 \AA$ for 1 R , and $2.851 \AA, 2.715 \AA$ for 2S, respectively.

Fig. S8 Post-refinement analysis for missing symmetry using PLATON's ADDSYM tool on isolated inorganic frameworks (i.e., without organic cations) in (a) $\mathbf{1} \boldsymbol{R}$ and (b) $\mathbf{2 S}$. All the C, H, and N atoms were manually deleted from the fully refined structure using the CrystalMaker software.

Fig. S9 Post-refinement analysis for missing symmetry using PLATON's ADDSYM tool on isolated inorganic frameworks (i.e., without organic cations) in $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$. All the C, H, and N atoms were manually deleted from the fully refined structure using the CrystalMaker software.
(a)

(b)

(c)

Fig. S10 Solid-state UV-visible absorption spectra of (a) $\mathbf{1 R}$, (b) $\mathbf{2} \boldsymbol{S}$ and (c) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ at room temperature. The insets show the band gaps of $\mathbf{1 R} / \mathbf{2 S}$ and $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$.

The optical bandgaps $\left(E_{\mathrm{g}}\right)$ of $\mathbf{1 R} / \mathbf{2 S}$ were obtained from the Tauc plot equation $\left(h v F\left(R_{\infty}\right)\right)^{\mathrm{n}}=A\left(h v E_{\mathrm{g}}\right)$ where h is Planck's constant, $F\left(R_{\infty}\right)$ is the Kubelka-Munk function, v is the photon frequency, and A is the proportional constant. The bandgaps were estimated to be 2.91 (2.92) eV for $\mathbf{1 R}(\mathbf{2 S})$ and 2.89 eV for $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$.

Fig. S11 The optical photos of $\mathbf{1 R} / \mathbf{2} \boldsymbol{S}$ and $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ under natural (top) and ultraviolet light (bottom).

Fig. S12 The emission spectrum of chiral ligand salt $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N} \cdot \mathrm{HCl}$.

Fig. S13 CPL spectrum (top) of $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ and the corresponding emission spectrum (bottom) in the solid state.

Fig. S14 PXRD patterns of (a) $\mathbf{1 R}$, (b) $\mathbf{2 S}$ and (c) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ after exposure to 75% humidity for 7, 14 and 21 Days.

(b)

(c)

Fig. S15 The PL spectra of fresh (a) $\mathbf{1 R}$, (b) $\mathbf{2} \boldsymbol{S}$ and (c) $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ after exposure to 75% humidity for 7, 14 and 21 Days.

Fig. S16 The CD spectra of $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$ after exposure to 75% humidity for 7,14 and 21 Days.
(a)

(b)

Fig. $\mathbf{S 1 7}$ The layer distances of (a) $\mathbf{1} \boldsymbol{R}$ and (b) $\mathbf{2} \boldsymbol{S}$.

Table S1. Crystal data and structure refinement for compound $\mathbf{1 R}$ and $\mathbf{2 S}$

	1R	$2 S$
Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{4} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{~Pb}$	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{4} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{~Pb}$
Formula weight	755.02	755.02
Temperature/K	199.99(10)	200.00(10)
Crystal system	orthorhombic	orthorhombic
Space group	$P 22_{1} 2_{1}$	$P 2_{1} 2{ }_{1} 2$
a / \AA	7.9087(2)	24.2480(2)
b / \AA	8.9042 (3)	$8.90729(7)$
c / \AA	24.2405(8)	7.91028(7)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	90
γ^{\prime}	90	90
Volume $/ \AA^{3}$	1707.03(9)	1708.49(3)
Z	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	2.938	2.935
μ / mm^{-1}	30.669	30.643
F(000)	1360	1360
Crystal size $/ \mathrm{mm}^{3}$	$0.03 \times 0.02 \times 0.02$	$0.03 \times 0.02 \times 0.02$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2θ range for data collection/ ${ }^{\circ}$	7.294 to 147.568	10.58 to 147.482
Index ranges	$\begin{gathered} -9 \leq \mathrm{h} \leq 9,-6 \leq \mathrm{k} \leq 10,-30 \leq 1 \leq \\ 18 \end{gathered}$	$\begin{gathered} -30 \leq \mathrm{h} \leq 30,-10 \leq \mathrm{k} \leq 8,-9 \leq 1 \leq \\ 9 \end{gathered}$
Reflections collected	7425	15698
Independent reflections	$\begin{gathered} 3291\left[R_{\text {int }}=0.0724, R_{\text {sigma }}=\right. \\ 0.0840] \end{gathered}$	$\begin{gathered} 3382\left[R_{\text {int }}=0.0767, R_{\text {sigma }}=\right. \\ 0.0402] \end{gathered}$
Data/restraints/parameters	3291/0/176	3382/0/176
Goodness-of-fit on F^{2}	1.030	1.123
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$R_{1}=0.0592, w R_{2}=0.1555$	$R_{1}=0.0627, w R_{2}=0.1930$
Final R indexes [all data]	$R_{1}=0.0622, w R_{2}=0.1587$	$R_{1}=0.0636, w R_{2}=0.1944$
Largest diff. peak/hole / e \AA^{-3}	2.92/-2.62	6.42/-4.43
Flack parameter	0.00(2)	-0.001(11)
CCDC	2249682	2249985

$$
R_{1}=\sum\left\|F _ { \mathrm { o } } \left|-\left|F_{\mathrm{c}} \| \sum /\left|F_{\mathrm{o}}\right| . w R_{2}=\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}\right.\right.\right.
$$

Table S2. Selected bond lengths (\AA) for compound $\mathbf{1 R}$

Bond lengths $(\AA$)			
$\mathrm{Pb} 1-\mathrm{Br} 2$	$3.177(17)$	$\mathrm{Pb} 1-\mathrm{Br} 1$	$2.946(2)$
$\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	$2.979(15)$	$\mathrm{Pb} 1-\mathrm{Br} 4$	$2.986(17)$
$\mathrm{Pb} 1-\mathrm{Br} 3$	$3.014(2)$	$\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	$3.118(15)$

Symmetry codes: ${ }^{1} 1-x,-1 / 2+y, 1 / 2-z ;{ }^{2}-x, 1 / 2+y, 1 / 2-z ;{ }^{3} 1-x, 1 / 2+y, 1 / 2-z ;{ }^{4}-x,-1 / 2+y, 1 / 2-z$

Table S3. Selected bond angles $\left({ }^{\circ}\right)$ for compound $\mathbf{1 R}$

	Bond angles $\left({ }^{\circ}\right)$		
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 2$	$97.05(2)$	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 3$	$168.13(6)$
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 3$	$98.70(5)$	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 4$	$89.48(5)$
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 4$	$90.90(5)$	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	$85.25(6)$
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	$173.06(5)$	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 2$	$172.05(5)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 2$	$87.70(5)$	$\mathrm{Br} 4^{2}-\mathrm{Pb} 1-\mathrm{Br} 2$	$76.22(4)$
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	$82.89(6)$	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 3$	$91.18(6)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 2$	$93.14(5)$	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	$95.830(16)$
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 2$	$90.00(5)$		

Symmetry codes:1-x, -1/2+y, $1 / 2-z ;{ }^{2}-x, 1 / 2+y, 1 / 2-z ;{ }^{3} 1-x, 1 / 2+y, 1 / 2-z ;{ }^{4}-x,-1 / 2+y, 1 / 2-z$

Table S4. Selected bond lengths (\AA) for compound $2 S$

Bond lengths $(\AA$)			$3.016(2)$
$\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	$2.980(17)$	$\mathrm{Pb} 1-\mathrm{Br} 4$	$3.114(17)$
$\mathrm{Pb} 1-\mathrm{Br} 2$	$3.180(17)$	$\mathrm{Pb} 1-\mathrm{Br} 5^{2}$	$2.9923(18)$
$\mathrm{Pb} 1-\mathrm{Br} 3$	$2.949(2)$	$\mathrm{Pb} 1-\mathrm{Br} 5$	

Symmetry codes: ${ }^{1} 1 / 2-x,-1 / 2+y, 1-z ;{ }^{2} 1 / 2-x, 1 / 2+y,-z ;{ }^{3} 1 / 2-x, 1 / 2+y, 1-z ;{ }^{4} 1 / 2-x,-1 / 2+y,-z$

Table S5. Selected bond angles $\left({ }^{\circ}\right)$ for compound $2 S$

	Bond angles $\left({ }^{\circ}\right)$		
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 2$	$97.03(2)$	$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 5^{2}$	$85.25(5)$
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 4$	$98.73(5)$	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 2$	$87.67(5)$
$\mathrm{Br} 2^{2}-\mathrm{Pb} 1-\mathrm{Br} 5$	$90.88(5)$	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 5^{2}$	$82.91(5$
$\mathrm{Br}^{1}-\mathrm{Pb} 1-\mathrm{Br} 5^{2}$	$173.06(5)$	$\mathrm{Br} 5^{2}-\mathrm{Pb} 1-\mathrm{Br} 2$	$76.26(5)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	$93.08(5)$	$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 2$	$172.09(5)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 2$	$89.99(5)$	$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 4$	$91.20(5)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 4$	$168.15(6)$	$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 5^{2}$	$95.830(18)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 5$	$89.51(5)$		

[^0]Table S6. Parameters of the hydrogen bonds in compound $\mathbf{1 R}$

D-H	$\mathrm{d}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{d}(\mathrm{H} . . \mathrm{A})(\AA)$	$<$ DHA $\left({ }^{\circ}\right)$	$\mathrm{d}(\mathrm{D} . . \mathrm{A})(\AA)$	A
N1-H1A	0.910	2.554	152.68	3.388	BR3
N1-H1B	0.910	2.774	126.30	3.393	BR2
N1-H1B	0.910	3.048	110.82	3.477	BR5
N1-H1C	0.910	2.391	177.93	3.301	BR4
N3-H3A	0.910	2.858	117.35	3.374	BR2
N3-H3B	0.910	2.458	162.84	3.338	BR4
N3-H3C	0.910	2.429	155.42	3.279	BR3
C13-H13A	0.980	2.639	120.11	3.244	F7
C13-H13C	0.980	3.011	137.55	3.792	BR3
C15-H15A	0.980	3.041	114.65	3.563	BR4
C15-H15B	0.980	2.980	136.36	3.750	BR3
C15-H15C	0.980	3.056	147.77	3.920	BR5

Symmetry codes: $-x, y+1 / 2,-z+1 / 2 ;-x,-y+5 / 2, z+1 / 2 ; x, y+1, z ;-x+1, y+1 / 2,-z+1 / 2$.

Table S7. Parameters of the hydrogen bonds in compound $2 S$

D-H	$\mathrm{d}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{d}(\mathrm{H} . . \mathrm{A})(\AA)$	$<$ DHA $\left({ }^{\circ}\right)$	$\mathrm{d}(\mathrm{D} . . \mathrm{A})(\AA)$	A
N1-H1A	0.910	2.706	135.63	3.417	BR2
N1-H1A	0.910	3.045	112.50	3.495	BR5
N1-H1B	0.910	2.489	163.18	3.371	BR4
N1-H1C	0.910	2.424	168.12	3.320	BR3
C8-H8A	0.980	2.614	122.16	3.243	F10
C8-H8B	0.980	2.982	138.17	3.769	BR4
N9-H9A	0.910	2.425	156.23	3.278	BR4
N9-H9B	0.910	2.453	164.67	3.339	BR3
N9-H9C	0.910	2.835	118.73	3.368	BR2
C10-H10B	0.980	3.048	128.37	3.736	BR4
C10-H10C	0.980	3.048	115.16	3.576	BR3

Symmetry codes: $-x+1 / 2, y-1 / 2,-z ; x-1 / 2,-y+1 / 2,-z ; x, y, z-1 ;-x+1 / 2, y+1 / 2,-z$.

Table S8. Crystal data and structure refinement for compound $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$

	$\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{PbBr}_{5}\right.$
Empirical formula	$\mathrm{C}_{9} \mathrm{H}_{30} \mathrm{Br}_{5} \mathrm{~N}_{3} \mathrm{~Pb}$
Formula weight	787.10
Temperature/K	$200.00(10)$
Crystal system	orthorhombic
Space group	$P 2_{1} 2_{1} 2_{1}$
a / \AA	$8.6172(3)$
b / \AA	$11.8062(5)$
c / \AA	$21.5472(9)$
$\alpha /{ }^{\circ}$	90

$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2192.13(15)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	
μ / mm^{-1}	2.385
$\mathrm{~F}(000)$	16.802
Crystal size $/ \mathrm{mm}^{3}$	1448
Radiation	$0.03 \times 0.02 \times 0.02$
Mo K $\alpha(\lambda=0.71073)$	
Index ranges	3.78 to 57.748
Reflections collected	$-11 \leq \mathrm{h} \leq 9,-12 \leq \mathrm{k} \leq 16,-23 \leq 1 \leq 28$
Independent reflections	12421
Data/restraints $/$ parameters	$4853\left[R_{\text {int }}=0.0357, R_{\text {sigma }}=0.0531\right]$
Goodness-of-fit on F^{2}	$4853 / 34 / 181$
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	1.160
Final R indexes [all data]	$R_{1}=0.0353, w R_{2}=0.0890$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$R_{1}=0.0470, w R_{2}=0.1142$
Flack parameter	$1.35 /-2.15$
CCDC	$-0.014(7)$
2249681	
$R_{1}=\Sigma F^{\circ}$	

$R_{1}=\sum\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| \sum /\left|F_{\mathrm{o}}\right| . w R_{2}=\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}\right.\right.\right.$

Table S9. Selected bond lengths (\AA) for compound $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$

Bond lengths (\AA)			$2.935(16)$
$\mathrm{Pb} 1-\mathrm{Br} 5$	$3.048(15)$	$\mathrm{Pb} 1-\mathrm{Br} 2$	$3.098(17)$
$\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	$3.103(14)$	$\mathrm{Pb} 1-\mathrm{Br} 4$	$2.912(17)$
$\mathrm{Pb} 1-\mathrm{Br} 3$	$3.005(14)$	$\mathrm{Pb} 1-\mathrm{Br} 1$	

Symmetry codes: ${ }^{1} 1 / 2+x, 3 / 2-y, 1-z ;{ }^{2}-1 / 2+x, 3 / 2-y, 1-z$.

Table S10. Selected bond angles $\left({ }^{\circ}\right)$ for compound $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$

	Bond angles $\left({ }^{\circ}\right)$		
$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	$81.89(4)$	$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 3$	$85.50(4)$
$\mathrm{Br} 5-\mathrm{Pb} 1-\mathrm{Br} 4$	$91.56(5)$	$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	$85.21(4)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 5$	$172.18(4)$	$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 4$	$164.84(5)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	$92.422(15)$	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	$85.90(4)$
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 4$	$82.63(4)$	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 5$	$98.58(5)$

$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 5$	$99.30(4)$	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 3$	$87.71(5)$
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	$173.19(5)$	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 4$	$100.87(5)$
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 2$	$88.01(5)$		

Symmetry codes ${ }^{1} 1 / 2+x, 3 / 2-y, 1-z ;{ }^{2}-1 / 2+x, 3 / 2-y, 1-z$.

Table S11. Parameters of the hydrogen bonds in compound $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{3} \mathrm{PbBr}_{5}$

D-H	$\mathrm{d}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{d}(\mathrm{H} . . \mathrm{A})(\AA)$	$<$ DHA $\left({ }^{\circ}\right)$	$\mathrm{d}(\mathrm{D} . . \mathrm{A})(\AA)$	A
C3-H3A	0.980	3.037	111.43	3.516	BR3
C3-H3B	0.980	3.057	119.27	3.638	BR3
C3-H3C	0.980	2.556	168.71	3.523	BR5
C8-H8B	0.980	2.597	159.56	3.532	BR2
C8-H8A	0.980	2.568	160.05	3.505	BR3
C4-H4A	0.980	2.384	162.22	3.331	BR4
C4-H4B	0.980	2.554	134.99	3.320	BR5
C4-H4C	0.980	2.415	166.80	3.376	BR1
C1-H1F	0.980	3.053	132.91	3.789	BR2
C7-H7A	0.980	3.132	139.05	3.925	BR2
C6-H6C	0.980	3.063	150.46	3.945	BR5
C9-H9A	1.00	2.964	132.23	3.711	BR4

Symmetry codes: $x-1 / 2,-y+3 / 2,-z+1 ; x-1, y, z ; x+1 / 2,-y+3 / 2,-z+1 ; x+1, y, z ;-x+1, y+1 / 2,-z+1 / 2$;

References

[1] CrysAlisPro 2012, Agilent Technologies. Version 1.171.36.31.
[2] Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71, 3-8.
[3] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339-341.
[4] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3-8.
[5] Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Open-Shell Transition Metals Phy. Rev. B 1993, 48, 13115-13118.
[6] Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Planewave Basis Set. Phy. Rev. B 1996, 54, 11169-11186.
[7] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[8] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[9] Grimme, S., Wiley Interdiscip. Rev. Mol. Sci. 2011, 1, 211-228.

[^0]: Symmetry codes ${ }^{1} 1 / 2-x,-1 / 2+y, 1-z ;{ }^{2} 1 / 2-x, 1 / 2+y,-z ;{ }^{3} 1 / 2-x, 1 / 2+y, 1-z ;{ }^{4} 1 / 2-x,-1 / 2+y,-z$

