Electronic Supporting Information

Regulating structural asymmetry via fluorination engineering in

hybrid lead bromide perovskites

Hua-Yang Ru, a Zhao-Yang Wang, a Hua-Li Liu, * a and Shuang-Quan Zang * a

^aHenan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of

Chemistry, Zhengzhou University, Zhengzhou 450001, China.

Experimental section

Materials and reagents

All reagents and solvents were used directly as received without further purification. Isopropylamine hydrochloride (97%), (R)-1,1,1-trifluoropropan-2-amine hydrochloride (98%) and (S)-1,1,1-trifluoropropan-2-amine hydrochloride were purchased from Leyan reagent. Lead(II) bromide (PbBr₂), and hydrobromic acid (HBr, 48 wt.% in H₂O), methanol (CH₃OH, AR) were purchased from Energy Chemical.

Synthesis

Preparation of 1*R*/2*S* and (C₃H₁₀N)₃PbBr₅ single crystals.

1*R*/**2***S* or $(C_3H_{10}N)_3PbBr_5$ were prepared with stoichiometric quantities of PbBr₂·(0.2 mmol, 0.074 g) and (*R*)-/(*S*)-1,1,1-trifluoropropan-2-amine hydrochloride (0.2 mmol, 0.030 g) or isopropylamine hydrochloride (0.2 mmol, 0.019 g) in mixed solution of HBr (1 mL) and CH₃OH (1 mL). A clear solution was afforded by heating the mixture at 130 °C and stirring for 20 min. And the crystals of **1***R*/**2***S* or $(C_3H_{10}N)_3PbBr_5$ were obtained at room temperature overnight. The crystals were washed with cold diethyl ether and dried under vacuum at 60 °C for 2 h. (Yield: 72%)

Fabrication of chiral thin films.

Quartz substrates $(1.5 \times 1.5 \text{ cm}^2)$ were washed by ethanol, acetone and deionized water in the ultrasonic cleaner for 10 min, respectively. Then, the substrates were treated in a plasma-cleaner with oxygen plasma to improve the surface wettability. To prepare chiral thin films, 1R/2S or $(C_3H_{10}N)_3PbBr_5$ were dissolved in 0.1 mL DMF with a specific concentration (20 wt%) as the precursor solution. Subsequently, the resultant precursor solution was spin-coated on the quartz substrate at a speed of 3000 rpm for 30 s, followed by annealing at 60 °C for 10 min on a hot plate to induce crystallization. Spin-coating and annealing were performed in the N₂-filled glove box.

Characterization

Powder X-ray Diffraction (PXRD) patterns of the samples were recorded on a D/MAX-3D diffractometer (Cu K α , λ = 1.5418 Å). Simulated powder patterns were obtained with Mercury software and crystallographic information file (CIF) from a single crystal X-ray experiment. Steady-state photoluminescence (PL) spectroscopy were carried out with a HORIBA FluoroLog-3 fluorescence spectrometer. Luminescence lifetimes were performed on a HORIBA FluoroLog-3 fluorescence spectrometer that was equipped with a 370 nm-laser and was operating in time-correlated single-photon counting (TCSPC) mode. The photoluminescence quantum yields PLQYs were measured using an integrating sphere on a HORIBA Scientific Fluorolog-3 spectrofluorometer. UV-vis absorption spectra were obtained by means of a Hitachi UH4150 UV-visible spectrophotometer. (FTIR-ATR) spectra were conducted in the range of 500-4000 cm⁻¹ on a Bruker ALPHA spectrometer. The Raman spectra were recorded on labRAM HR Evolution-HORIBA Raman system equipped with a CCD detector using a 532 nm He-Cd laser as the excitation source. Circular dichroism (CD) spectra were measured on a JASCO CPL-300.

Single-crystal X-ray diffraction Analysis.

The diffraction data of 1R/2S and $(C_3H_{10}N)_3PbBr_5$ were collected on a Rigaku XtaLAB Pro diffractometer with Cu-K α radiation ($\lambda = 1.54184$ Å) at 200 K. Data collection and reduction were

performed using the program CrysAlisPro.^[1] The crystal structures were solved with direct methods (SHELXS)^[2] and refined by full-matrix least squares on F² using OLEX2,^[3] which utilizes the SHELXL-2015 module.^[4] The imposed restraints in least-squares refinement of each structure were noted in the corresponding CIF files. Thus only a general description of the structural refinement strategy is presented here. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealized geometries and assigned fixed isotropic displacement parameters. Detailed information about the X-ray crystal data, intensity collection procedure, and refinement results for all organic-inorganic hybrid perovskites compounds is summarized in Table S1 and Table S8.

Theoretical calculation.

We have employed the Vienna Ab initio Simulation Package (VASP)^[5, 6] to perform all density functional theory (DFT) calculations within spin-polarized frame. The elemental core and valence electrons were represented by the projector augmented wave (PAW) method and plane-wave basis functions with a cutoff energy of 400 eV. Generalized gradient approximation with the Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation functional was employed in the calculations.^[7] Geometry optimizations were performed with the force convergency smaller than 0.05 eV/Å. The DFT-D3 empirical correction method was employed to describe van der Waals interactions.^[8, 9] The original bulk structures of **1***R*, **2***S* and ($C_{3}H_{10}N$)₃PbBr₅ have been optimized before the construction of surfaces with the Monkhorst-Pack k-point of $3 \times 2 \times 1$, $1 \times 2 \times 3$ and $3 \times 2 \times 1$, respectively. The formation and dissociation energies are defined as:

 $\Delta E_{\text{fe}} = [E(\text{total}) - E(\text{reference})]/\mu$

E(total) is the total energy of **1***R* or **2***S* or ($C_3H_{10}N$)₃PbBr₅. μ is the number of atoms in the cell. *E*(reference) is the energy of the H₇C₃NF₃, H₁₀C₃N molecule in the gas phase and the energy of Pb bulk, PbBr₂ bulk, graphite.

Fig. S1 Powder X-ray diffraction patterns of (a) 1R, (b) 2S and (c) (C₃H₁₀N)₃PbBr₅.

Fig. S2 FTIR spectra of (a) 1R/2S and (b) $(C_3H_{10}N)_3PbBr_5$ powders. The vibrational frequencies at 2881 and 1572 cm⁻¹ in 1R/2S, 2960 and 1591 cm⁻¹ in $(C_3H_{10}N)_3PbBr_5$, assigned to the stretching and wagging modes of the N-H bonds, respectively. The peaks located at 1386 and 1264 cm⁻¹ in 1R/2S, 1382 and 1196 cm⁻¹ in $(C_3H_{10}N)_3PbBr_5$ were attributed to the stretching modes of C-H and C-N bonds. The vibration peaks at 1334 cm⁻¹ is attributed to the wagging mode of the C-F bonds in 1R/2S.

Fig. S3 Raman spectra of (a) 1R/2S and (b) $(C_3H_{10}N)_3PbBr_5$ crystals recorded at room temperature. The observed bands at about 56, 75 and 110 cm⁻¹ at 1R/2S, 41, 59 and 108 cm⁻¹ at $(C_3H_{10}N)_3PbBr_5$, correspond to the bending mode of Br-Pb-Br bond, symmetric and asymmetric stretching mode of Pb-Br bond.

Fig. S4 (a) Optical image and (b) fluorescent image of 1*R* under UV light (365 nm).

Fig. S5 The illustration of asymmetry unit of (a) $(C_3H_{10}N)_3PbBr_5$ and (c) **1***R*. (b) Schematic structure of achiral ligand (left side) and F-substituted chiral ligand (right side).

Fig. S6 Infinite 1D chain of (C₃H₁₀N)₃PbBr₅

Fig. S7 Hydrogen-bonding interactions between the equatorial Br atoms and R-/S-C₃H₇NF₃⁺ cations in (a) **1***R* and (b) **2***S*.

The corresponding noncovalent H^{...}Br (yellow-labelled) contacts exceed the van der Waals cutoff of 3.05 Å, meaning that the H^{...}Br interactions are weak and negligible. The corresponding H^{...}Br (purple-marked) distances about both sides of the inorganic layer are 2.855 Å, 2.783 Å for 1R, and 2.851 Å, 2.715 Å for 2S, respectively.

Fig. S8 Post-refinement analysis for missing symmetry using PLATON's ADDSYM tool on isolated inorganic frameworks (i.e., without organic cations) in (a) **1***R* and (b) **2***S*. All the C, H, and N atoms were manually deleted from the fully refined structure using the CrystalMaker software.

Criteria: 1.00 D Symm. Input Red Elem Cell Boy Cel	eg (Metric), uced (Ang) . Roy d T	0.25 Ang (A (Deg)	() (Ang) FLt MaxDev.	g ([nv], 0.25 Ar	npui Cell TolMeta
2 [1 0 0] [I 1	0 01 8.62	2 1 0.00	100 0	Through D Screy = 1/2	3/4 L/2 0 0
	-1 0] 11.81 0 1] 21.55	2 l 0.00 2 l 0.00	100 0 100 0	Through 1/2 Screw = 0 Through 1/4	0 1/4 TolTrar 1/2 0 NFTPe 1/2 0
Reduced-to-Conv	ent In	put-to-Reduc	ed T = In	put-to-Convent:	a' = T a
	0) (0) X (1) (1 0 0 -1 0 0	0) (0) = (-1) (1 0 0) 0 -1 0) 0 0 -1)	Det(T) NoSub = 1.000 KeepM
Cell Lattice a	Ь	c Alpha	Beta Gamma	Volume Crystals	ystem Loue
[nput of 8.617	11.806 21	547 90.00	90.00 90.00	2192 Orthorno	mble mmm
Convent of 8.617	11.806 21	.547 90.00	30.00 30.00	2192 Orthorno	mble mmm
:: Origin Shifted	to: 0.500.	0.500, 0.500	after Cell T	ransformation	

Fig. S9 Post-refinement analysis for missing symmetry using PLATON's ADDSYM tool on isolated inorganic frameworks (i.e., without organic cations) in $(C_3H_{10}N)_3PbBr_5$. All the C, H, and N atoms were manually deleted from the fully refined structure using the CrystalMaker software.

Fig. S10 Solid-state UV-visible absorption spectra of (a) $\mathbf{1R}$, (b) $\mathbf{2S}$ and (c) (C₃H₁₀N)₃PbBr₅ at room temperature. The insets show the band gaps of $\mathbf{1R}/\mathbf{2S}$ and (C₃H₁₀N)₃PbBr₅.

The optical bandgaps (E_g) of **1R/2S** were obtained from the Tauc plot equation $(hv F(R_\infty))^n = A(hv E_g)$ where *h* is Planck's constant, $F(R_\infty)$ is the Kubelka–Munk function, *v* is the photon frequency, and *A* is the proportional constant. The bandgaps were estimated to be 2.91 (2.92) eV for **1R (2S)** and 2.89 eV for $(C_3H_{10}N)_3PbBr_5$.

Fig. S11 The optical photos of 1R/2S and $(C_3H_{10}N)_3PbBr_5$ under natural (top) and ultraviolet light (bottom).

Fig. S12 The emission spectrum of chiral ligand salt C3H9N·HCl.

Fig. S13 CPL spectrum (top) of $(C_3H_{10}N)_3PbBr_5$ and the corresponding emission spectrum (bottom) in the solid state.

Fig. S14 PXRD patterns of (a) 1R, (b) 2S and (c) $(C_3H_{10}N)_3PbBr_5$ after exposure to 75% humidity for 7, 14 and 21 Days.

Fig. S15 The PL spectra of fresh (a) 1R, (b) 2S and (c) $(C_3H_{10}N)_3PbBr_5$ after exposure to 75% humidity for 7, 14 and 21 Days.

Fig. S16 The CD spectra of $(C_3H_{10}N)_3PbBr_5$ after exposure to 75% humidity for 7, 14 and 21 Days.

Fig. S17 The layer distances of (a) 1*R* and (b) 2*S*.

	1 <i>R</i>	25
Empirical formula	$C_6H_{14}Br_4F_6N_2Pb$	$C_6H_{14}Br_4F_6N_2Pb$
Formula weight	755.02	755.02
Temperature/K	199.99(10)	200.00(10)
Crystal system	orthorhombic	orthorhombic
Space group	P22 ₁ 2 ₁	$P2_{1}2_{1}2$
a/Å	7.9087(2)	24.2480(2)
$b/{ m \AA}$	8.9042(3)	8.90729(7)
c/Å	24.2405(8)	7.91028(7)
$lpha/^{\circ}$	90	90
β/°	90	90
γ/°	90	90
Volume/Å ³	1707.03(9)	1708.49(3)
Ζ	4	4
$ ho_{ m calc} { m g} \ / \ { m cm}^3$	2.938	2.935
μ/mm^{-1}	30.669	30.643
F(000)	1360	1360
Crystal size/mm ³	$0.03 \times 0.02 \times 0.02$	$0.03 \times 0.02 \times 0.02$
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka (λ = 1.54184)
2θ range for data collection/°	7.294 to 147.568	10.58 to 147.482
Index ranges	$-9 \le h \le 9, -6 \le k \le 10, -30 \le l \le 18$	$-30 \le h \le 30, -10 \le k \le 8, -9 \le l \le 9$
Reflections collected	7425	15698
Independent reflections	3291 $[R_{int} = 0.0724, R_{sigma} = 0.0840]$	$3382 [R_{int} = 0.0767, R_{sigma} = 0.0402]$
Data/restraints/parameters	3291/0/176	3382/0/176
Goodness-of-fit on F ²	1.030	1.123
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0592, wR_2 = 0.1555$	$R_1 = 0.0627, wR_2 = 0.1930$
Final R indexes [all data]	$R_1 = 0.0622, wR_2 = 0.1587$	$R_1 = 0.0636, wR_2 = 0.1944$
Largest diff. peak/hole / e Å $^{-3}$	2.92/-2.62	6.42/-4.43
Flack parameter	0.00(2)	-0.001(11)
CCDC	2249682	2249985

Table S1. Crystal data and structure refinement for compound 1R and 2S

 $R_{1} = \sum ||F_{o}| - |F_{c}|| \sum /|F_{o}|. \ wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$

Bond lengths (Å)					
Pb1–Br2	3.177(17)	Pb1–Br1	2.946(2)		
Pb1–Br2 ¹	2.979(15)	Pb1–Br4	2.986(17)		
Pb1–Br3	3.014(2)	Pb1–Br4 ²	3.118(15)		

Table S2. Selected bond lengths (Å) for compound 1R

Symmetry codes: ¹*I*-*x*, -*1*/2+*y*, *1*/2-*z*; ²-*x*, *1*/2+*y*, *1*/2-*z*; ³*I*-*x*, *1*/2+*y*, *1*/2-*z*; ⁴-*x*, -*1*/2+*y*, *1*/2-*z*

Table S3. Selected bond angles (°) for compound 1R							
Bond angles (°)							
Br2 ¹ -Pb1-Br2	97.05(2)	Br1-Pb1-Br3	168.13(6)				
Br2 ¹ -Pb1-Br3	98.70(5)	Br1-Pb1-Br4	89.48(5)				
Br2 ¹ -Pb1-Br4	90.90(5)	Br1-Pb1-Br4 ²	85.25(6)				
Br21-Pb1-Br42	173.06(5)	Br4-Pb1-Br2	172.05(5)				
Br3-Pb1-Br2	87.70(5)	Br4 ² -Pb1-Br2	76.22(4)				
Br1-Pb1-Br2 ¹	82.89(6)	Br4-Pb1-Br3	91.18(6)				
Br3-Pb1-Br2	93.14(5)	Br4-Pb1-Br4 ²	95.830(16)				
Br1-Pb1-Br2	90.00(5)						

Symmetry codes: 1-x, -1/2+y, 1/2-z; ²-x, 1/2+y, 1/2-z; ³1-x, 1/2+y, 1/2-z; ⁴-x, -1/2+y, 1/2-z

Bond lengths (Å)					
Pb1–Br21	2.980(17)	Pb1–Br4	3.016(2)		
Pb1–Br2	3.180(17)	Pb1–Br5 ²	3.114(17)		
Pb1–Br3	2.949(2)	Pb1–Br5	2.9923(18)		

Symmetry codes: ¹1/2-x, -1/2+y, 1-z; ²1/2-x, 1/2+y,-z; ³1/2-x, 1/2+y, 1-z; ⁴1/2-x, -1/2+y, -z

Table S5. Selected bond angles (°) for compound 2S

Bond angles (°)					
Br2 ¹ -Pb1-Br2	97.03(2)	Br3-Pb1-Br5 ²	85.25(5)		
Br21-Pb1-Br4	98.73(5)	Br4-Pb1-Br2	87.67(5)		
Br2 ¹ -Pb1-Br5	90.88(5)	Br4-Pb1-Br5 ²	82.91(5		
Br2 ¹ -Pb1-Br5 ²	173.06(5)	Br5 ² -Pb1-Br2	76.26(5)		
Br3-Pb1-Br2 ¹	93.08(5)	Br5-Pb1-Br2	172.09(5)		
Br3-Pb1-Br2	89.99(5)	Br5-Pb1-Br4	91.20(5)		
Br3-Pb1-Br4	168.15(6)	Br5-Pb1-Br5 ²	95.830(18)		
Br3-Pb1-Br5	89.51(5)				

Symmetry codes ¹1/2-x, -1/2+y, 1-z; ²1/2-x, 1/2+y, -z; ³1/2-x, 1/2+y, 1-z; ⁴1/2-x, -1/2+y, -z

Table S6. Parameters of the hydrogen bonds in compound 1R

D-H	d(D-H) (Å)	d(HA) (Å)	<dha (°)<="" th=""><th>d(DA) (Å)</th><th>А</th></dha>	d(DA) (Å)	А
N1-H1A	0.910	2.554	152.68	3.388	BR3
N1-H1B	0.910	2.774	126.30	3.393	BR2
N1-H1B	0.910	3.048	110.82	3.477	BR5
N1-H1C	0.910	2.391	177.93	3.301	BR4
N3-H3A	0.910	2.858	117.35	3.374	BR2
N3-H3B	0.910	2.458	162.84	3.338	BR4
N3-H3C	0.910	2.429	155.42	3.279	BR3
C13-H13A	0.980	2.639	120.11	3.244	F7
C13-H13C	0.980	3.011	137.55	3.792	BR3
C15-H15A	0.980	3.041	114.65	3.563	BR4
C15-H15B	0.980	2.980	136.36	3.750	BR3
C15-H15C	0.980	3.056	147.77	3.920	BR5

Symmetry codes: -*x*, *y*+1/2, -*z*+1/2; -*x*, -*y*+5/2, *z*+1/2; *x*, *y*+1, *z*; -*x*+1, *y*+1/2, -*z*+1/2.

Table S7. Parameters of the hydrogen bonds in compound 2S

D-H	d(D-H) (Å)	d(HA) (Å)	<dha (°)<="" th=""><th>d(DA) (Å)</th><th>А</th></dha>	d(DA) (Å)	А
N1-H1A	0.910	2.706	135.63	3.417	BR2
N1-H1A	0.910	3.045	112.50	3.495	BR5
N1-H1B	0.910	2.489	163.18	3.371	BR4
N1-H1C	0.910	2.424	168.12	3.320	BR3
C8-H8A	0.980	2.614	122.16	3.243	F10
C8-H8B	0.980	2.982	138.17	3.769	BR4
N9-H9A	0.910	2.425	156.23	3.278	BR4
N9-H9B	0.910	2.453	164.67	3.339	BR3
N9-H9C	0.910	2.835	118.73	3.368	BR2
C10-H10B	0.980	3.048	128.37	3.736	BR4
C10-H10C	0.980	3.048	115.16	3.576	BR3

Symmetry codes: -*x*+1/2, *y*-1/2, -*z*; *x*-1/2, -*y*+1/2, -*z*; *x*, *y*, *z*-1; -*x*+1/2, *y*+1/2, -*z*.

Tabl	le S8.	Crystal	data and	structure re	finement for	r compound	$(C_{3}H_{10}N)$	$\sqrt{3}PbBr_5$
------	--------	---------	----------	--------------	--------------	------------	------------------	------------------

	$(C_3H_{10}N)_3PbBr_5$
Empirical formula	$C_9H_{30}Br_5N_3Pb$
Formula weight	787.10
Temperature/K	200.00(10)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	8.6172(3)
b/Å	11.8062(5)
$c/ m \AA$	21.5472(9)
$lpha/^{\circ}$	90

β/°	90
γ/°	90
Volume/Å ³	2192.13(15)
Z	4
$ ho_{ m calc} { m g}$ / ${ m cm}^3$	2.385
μ/mm^{-1}	16.802
F(000)	1448
Crystal size/mm ³	$0.03\times0.02\times0.02$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	3.78 to 57.748
Index ranges	$-11 \le h \le 9, -12 \le k \le 16, -23 \le l \le 28$
Reflections collected	12421
Independent reflections	4853 [$R_{int} = 0.0357, R_{sigma} = 0.0531$]
Data/restraints/parameters	4853/34/181
Goodness-of-fit on F ²	1.160
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0353, wR_2 = 0.0890$
Final R indexes [all data]	$R_1 = 0.0470, wR_2 = 0.1142$
Largest diff. peak/hole / e Å ⁻³	1.35/-2.15
Flack parameter	-0.014(7)
CCDC	2249681

 $R_1 = \sum ||F_o| - |F_c|| \sum /|F_o|. \ wR_2 = \left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{1/2}$

Table S9. Selected bond lengths (Å) for compound	$(C_3H_{10}N)_3PbBr_5$

Bond lengths (Å)				
Pb1–Br5	3.048(15)	Pb1–Br2	2.935(16)	
Pb1–Br3 ¹	3.103(14)	Pb1–Br4	3.098(17)	
Pb1–Br3	3.005(14)	Pb1–Br1	2.912(17)	

Symmetry codes: ¹1/2+x, 3/2-y, 1-z; ²-1/2+x, 3/2-y, 1-z.

Table S10.	Selected bond	angles (°)	for compound	$(C_3H_{10}N)_3PbBr_3$

Bond angles (°)					
Br5-Pb1-Br3 ¹	81.89(4)	Br2-Pb1-Br3	85.50 (4)		
Br5-Pb1-Br4	91.56(5)	Br2-Pb1-Br31	85.21(4)		
Br3-Pb1-Br5	172.18(4)	Br2-Pb1-Br4	164.84(5)		
Br3-Pb1-Br31	92.422(15)	Br4-Pb1-Br31	85.90(4)		
Br3-Pb1-Br4	82.63(4)	Br1-Pb1-Br5	98.58(5)		

Br2-Pb1-Br5	99.30(4)	Br1-Pb1-Br3	87.71(5)
Br1-Pb1-Br3 ¹	173.19(5)	Br1-Pb1-Br4	100.87(5)
Br1-Pb1-Br2	88.01(5)		

Symmetry codes ¹1/2+x, 3/2-y, 1-z; ²-1/2+x, 3/2-y, 1-z.

Table S11. Parameters of	the hydrogen bonds in compou	nd (C ₃ H ₁₀ N) ₃ PbBr ₅

D-H	d(D-H) (Å)	d(HA) (Å)	<dha (°)<="" th=""><th>d(DA) (Å)</th><th>А</th></dha>	d(DA) (Å)	А
С3-НЗА	0.980	3.037	111.43	3.516	BR3
C3-H3B	0.980	3.057	119.27	3.638	BR3
C3-H3C	0.980	2.556	168.71	3.523	BR5
C8-H8B	0.980	2.597	159.56	3.532	BR2
C8-H8A	0.980	2.568	160.05	3.505	BR3
C4-H4A	0.980	2.384	162.22	3.331	BR4
C4-H4B	0.980	2.554	134.99	3.320	BR5
C4-H4C	0.980	2.415	166.80	3.376	BR1
C1-H1F	0.980	3.053	132.91	3.789	BR2
С7-Н7А	0.980	3.132	139.05	3.925	BR2
C6-H6C	0.980	3.063	150.46	3.945	BR5
С9-Н9А	1.00	2.964	132.23	3.711	BR4

Symmetry codes: *x*-*1/2*, -*y*+*3/2*, -*z*+*1*; *x*-*1*, *y*, *z*; *x*+*1/2*, -*y*+*3/2*, -*z*+*1*; *x*+*1*, *y*, *z*; -*x*+*1*, *y*+*1/2*, -*z*+*1/2*;

References

- [1] CrysAlisPro 2012, Agilent Technologies. Version 1.171.36.31.
- [2] Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71, 3-8.
- [3] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339-341.

[4] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3-8.

[5] Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Open-Shell Transition Metals *Phy. Rev. B* 1993, *48*, 13115–13118.

[6] Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Planewave Basis Set. *Phy. Rev. B* **1996**, *54*, 11169–11186.

[7] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.

[8] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, *132*, 154104.
[9] Grimme, S., Wiley Interdiscip. *Rev. Mol. Sci.* 2011, *1*, 211–228.