SI

Phase transition and Ionic conduction enhancement induced by co-doping LiI and MnI_2 in one-dimensional lead iodide perovskite

Ya-Ru Kong,^a Wei Qiu,^b Guo-Qin Zhang,^a Dong-sheng Shao,^a Zheng-Fang Tian,^b Hong-Bin Luo,^{*a} Xue-Wei Pan,^a Jin Zhang,^a Xiao-Ming Ren^{*a, c, d}

^a State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China

^b Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, P. R. China

^c College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China

^d State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China

Tel: 86-25-58139476

E-mail: <u>hbluo@ njtech.edu.cn (HBL); xmren@njtech.edu.cn (XMR)</u>

Content

Experimental section

Table S1: Microanalysis for C, H and N elements and EDS for Pb and Mn elements in each hybrid

Table S2: XPS binding energies in each hybrid and references

Fig. S1: Optical pictures of samples with x = 0-0.14.

Fig. S2: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3(x = 0)$. (a) Image, (b) element overlay,

(c) C, (d) N, (e) I and (f) Pb elements.

Fig. S3: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.011). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

Fig. S4: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.042). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

Fig. S5: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.11). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

Fig. S6: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.14). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

Fig. S7: Experimental and simulated PXRD patterns of [Bu₄N]PbI₃, and the simulated PXRD pattern was obtained from single crystal diffraction data of [Bu₄N]PbI₃.

Fig. S8: TG plots of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (*x* = 0–0.14).

Fig. S9: IR spectra of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (*x* = 0–0.14).

Fig. S10: Experimental and simulated EPR spectra of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.011-0.14) with g value ≈ 2.0 and average A value ~ 110 Gauss.

Fig. S11: DSC Plots of with x = (a) 0, (b, c) 0.011, (d) 0.042, (e) 0.11, (f) 0.14 with four heating and cooling cycles. (g) Variable-temperature PXRD patterns of Bu₄N_{1-x}Li_xMn_xPb_{1-x}I₃ with x = 0.14.

Fig. S12: Plots of dielectric permittivity *versus* temperature at the selected frequencies for $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = (a) 0, (b) 0.011, (c) 0.042 and (d) 0.11. (e) Resistance plots and (f) Arrhenius plots of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0-0.14) at 273–373K.

Fig. S13: Plots of (a, b) chronoamperometry of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = 0-0.14. (c) Transference numbers of ion vs. temperature for $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = 0.14. (d) solid ultraviolet-visible near-IR spectra of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = 0-0.14.

References

Experimental section

Chemicals and Materials

All of chemicals and solvents were purchased from commercial suppliers and used without further purification. $[Bu_4N]PbI_3$ (Bu_4N^+ = tetrabutylammonium) was prepared following the procedure in literature.¹

Preparation of co-doped Mn²⁺ and Li⁺ samples

The co-doped samples $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ were mechanochemically prepared using a similar procedure. The *x* value was determined by ICP technique, and the five hybrids are labeled as $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (*x* = 0, 0.011, 0.042, 0.11 and 0.14). Each sample was also characterized by EDS and microanalysis for C, H and N elements, and these results are summarized in Table S1.

Characterization

Elemental analyses (C, H, N) were performed with an Elementar Vario EL. Inductively coupled plasma-mass spectrometry (ICP-MS) analyses were performed by a PHI 5000 Versa Probe ICP spectrometer. EDS was carried out by means of a Hitachi S-3400N scanning electron microscope. Thermogravimetric (TG) measurements were performed with a SDT Q600 thermogravimetric analyzer in 300–1073 K under N₂ atmosphere, and the heating rate is 20 K min⁻¹. DSC measurements were performed on a NETZSCH DSC 204F1 Phoenix with a temperature change rate of 10 K min⁻¹. Raman spectra was conducted on a Thermo Fisher Scientific DXR2 instrument with a 532 nm laser light irradiation from 26–3500 cm⁻¹. Fourier transform infrared (FT-IR) spectrum was recorded on a Thermo Scientific Nicolet iS10 spectrophotometer in the regime of 4000–400 cm⁻¹. X-band EPR spectra were obtained using Bruker EMX Electron Spin Resonance system at ambient condition. X-ray photoelectron spectroscopy (XPS) equipped with a standard and monochromatic Al K_a X-ray source (Thermo Fisher Nexsa) operated at 72 W (12 kV, 6 mA) was employed for surface analysis, and the binding energies were referenced to the internal standard C 1s main peak at 285.0 eV.

Powder X-ray diffraction (PXRD) data were collected on a MiniFlex600 powder diffractometer at ambient temperature, and the measurement was operated at 40 kV and

40 mA, and using Cu K α radiation ($\lambda = 1.5404$ Å). Temperature dependent PXRD patterns were recorded by Bruker D8 ADVANCE instrument equipped with an xrk900 sample cell.

Dielectric permittivity and impedance spectra were recorded by a concept 80 system (Novocontrol, Germany) in 273–373 K, and the frequencies span from 1 to 10⁷ Hz. The chronoamperometry was recorded by a Gamry Reference 600+ electrochemical workstation in 318–373 K. All of samples were prepared in the form of a disk with the diameter of 7 mm and the thickness of ca.1.4 mm.

Table S1: Microanalysis for C, H and N elements and EDS for Pb and Mn elements in each hybrid

Bu ₄ N _{1-x} Li _x Mn _x Pb ₁₋	Micro analysis/found(calc.)			EDS mapping results		
$ \begin{array}{c} \mathbf{D}\mathbf{u}_{41}\mathbf{v}_{1-x}\mathbf{D}\mathbf{u}_{x}\mathbf{l}\mathbf{v}_{11}\mathbf{u}_{x}\mathbf{l} \mathbf{v}_{12}\\ \mathbf{x}\mathbf{I}_{3} \end{array} $	C / %	Η/%	N / %	Pb/at.%	Mn/at.%	Mn/Pb (found/calc.)
x = 0	23.09	4.30	1.58	NT A	NA	NA
	(23.14)	(4.37)	(1.69)	NA		
x = 0.011	22.35	4.19	1.46	1.91	0.06	0.031
	(23.01)	(4.34)	(1.68)			(0.010)
x = 0.042	22.00	4.05	1.48	4.22	0.21	0.049
	(22.61)	(4.27)	(1.65)			(0.053)
x = 0.11	21.08	3.98	1.40	3.19	0.38	0.119
	(21.71)	(4.10)	(1.58)			(0.11)
w = 0, 14	20.78	3.94	1.40	2.56	0.45	0.176
x = 0.14	(21.32)	(4.03)	(1.55)			(0.17)

Table S2: XPS binding energies in each hybrid and references

Element	E_b / eV						
	$\mathbf{x} = 0$	x = 0.011	x = 0.042	x = 0.11	x = 0.14	Ref.	
Pb 4f	141.83(4f _{5/2})	142.12(4f _{5/2})	$142.00(4f_{5/2})$	141.94(4f _{5/2})	141.87(4f _{5/2})	2	
	136.27(4f _{7/2})	137.21(4f _{7/2})	137.11(4f _{7/2})	137.02(4f _{7/2})	137.05(4f _{7/2})	<i>L</i>	
I 3d	629.08(3d _{3/2})	$629.40(3d_{3/2})$	629.30(3d _{3/2})	629.29(3d _{3/2})	629.17(3d _{3/2})	2	
	617.63(3d _{5/2})	617.98(3d _{5/2})	617.82(3d _{5/2})	617.74(3d _{5/2})	617.76(3d _{5/2})		
N 1s	400.74	401.25	401.30	401.17	401.23	3	
C 1s	283.99	284.32	284.20	284.13	284.83	4	

Fig. S1: Optical pictures of samples with x = 0-0.14.

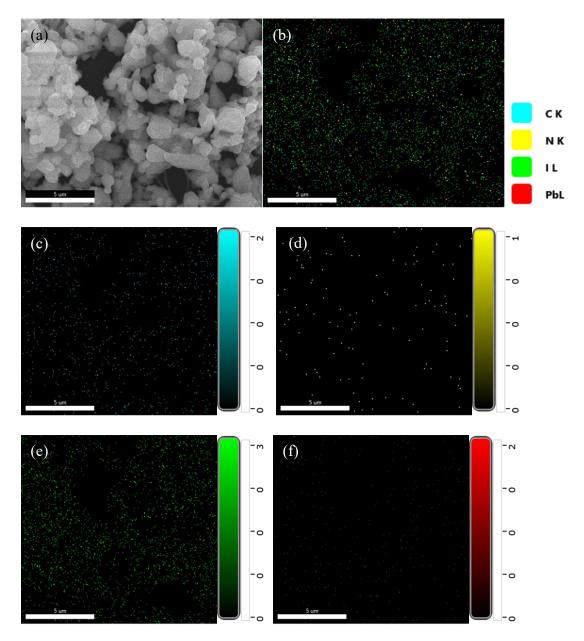


Fig. S2: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0). (a) Image, (b) element overlay, (c) C, (d) N, (e) I and (f) Pb elements.

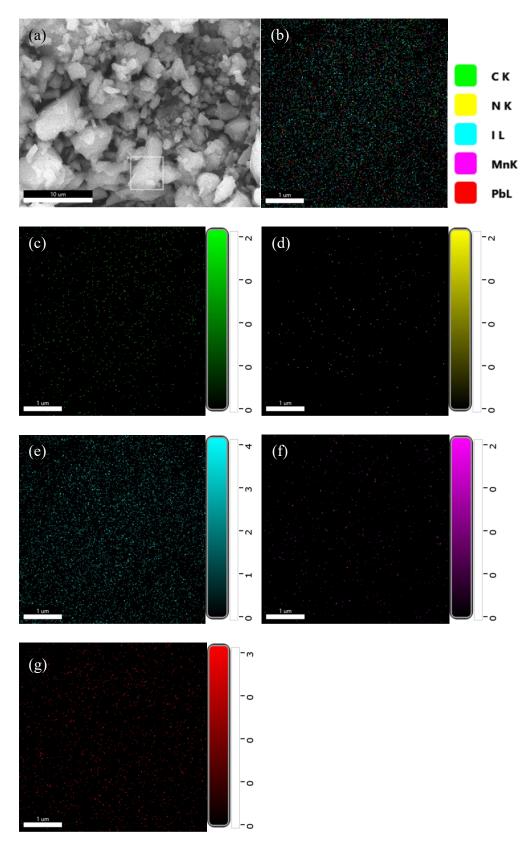


Fig. S3: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.011). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

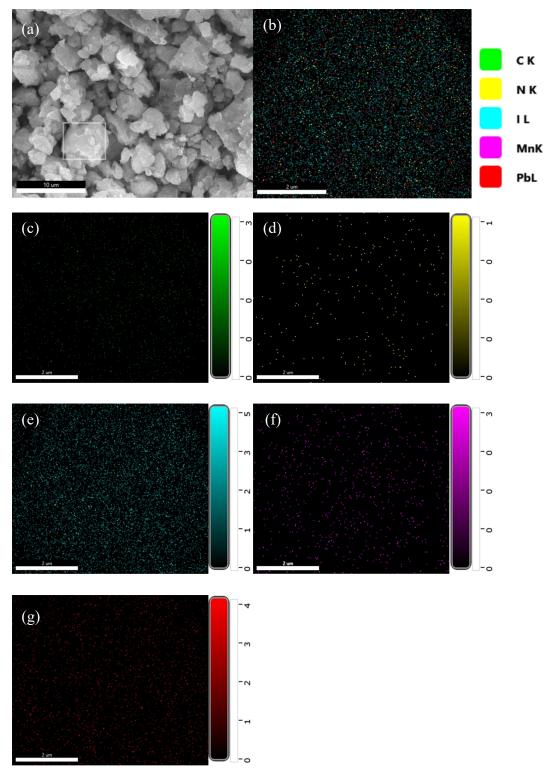


Fig. S4: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.042). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

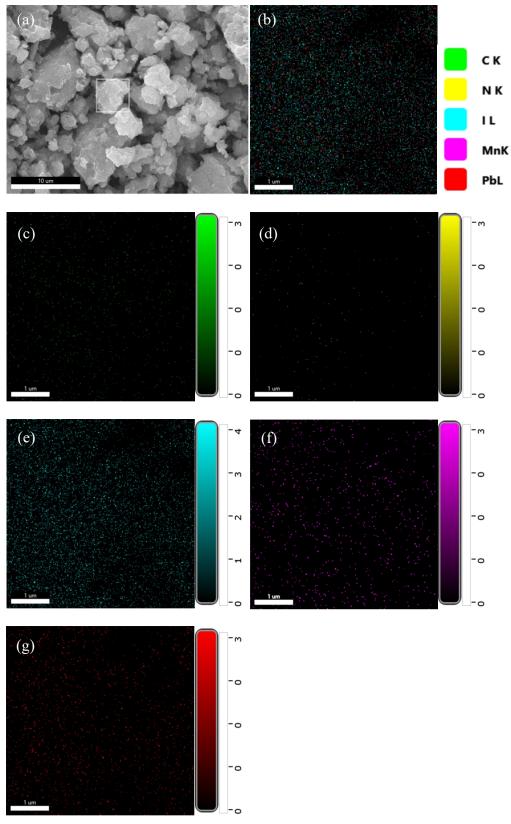


Fig. S5: SEM image and EDS of $Bu_4N_{1-x} Li_xMn_xPb_{1-x}I_3$ (x = 0.11). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

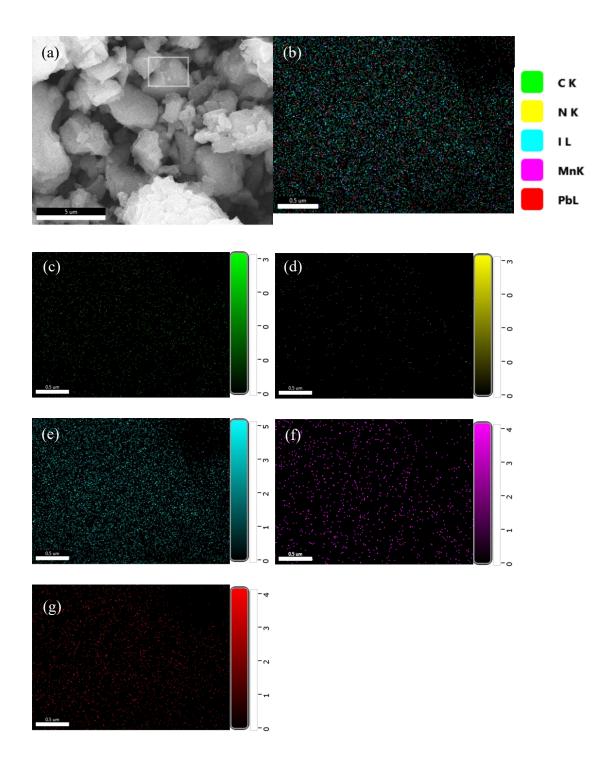


Fig. S6: SEM image and EDS of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.14). (a) Image, (b) element overlay, (c) C, (d) N, (e) I, (f) Mn and (g) Pb elements.

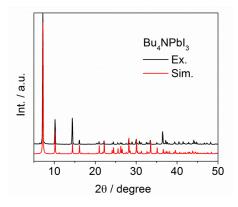


Fig. S7: Experimental and simulated PXRD patterns of [Bu₄N]PbI₃, and the simulated PXRD pattern was obtained from single crystal diffraction data of [Bu₄N]PbI₃.

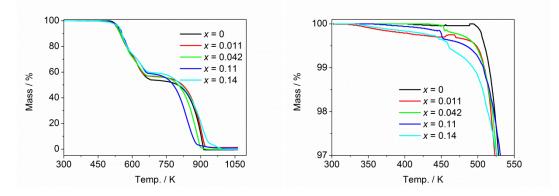


Fig. S8: TG plots of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (*x* = 0–0.14).

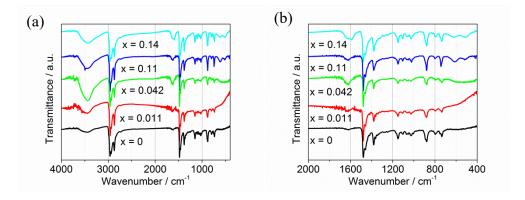


Fig. S9: IR spectra of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (*x* = 0–0.14).

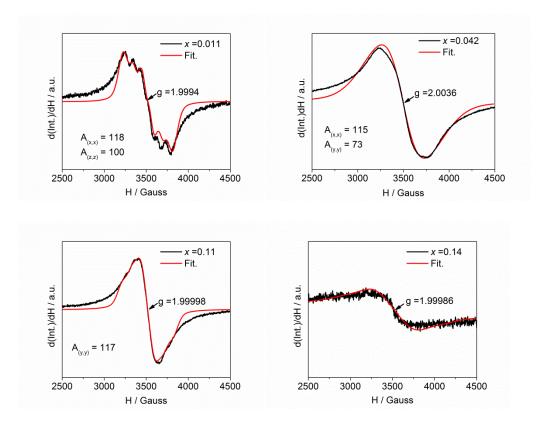


Fig. S10: Experimental and simulated EPR spectra of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0.011-0.14) with g value ≈ 2.0 and average A value ~ 110 Gauss.

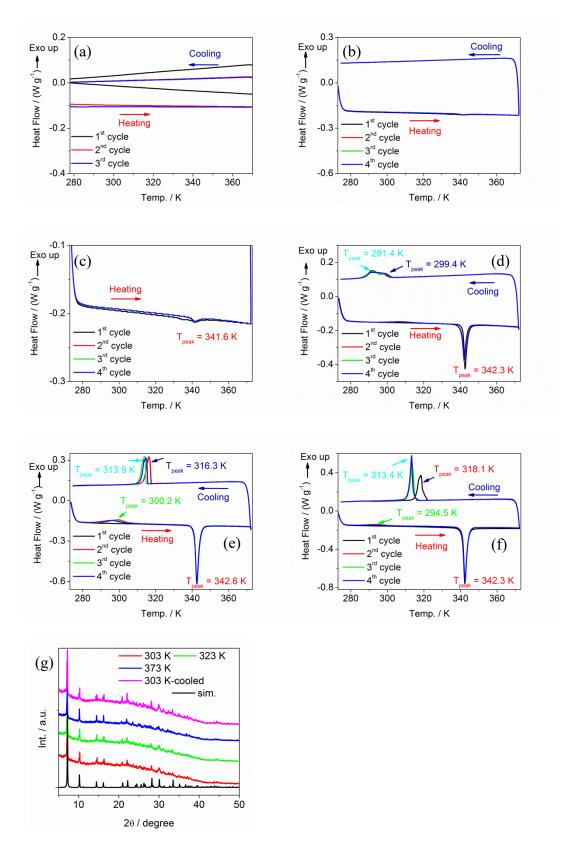


Fig. S11: DSC Plots of with x = (a) 0, (b, c) 0.011, (d) 0.042, (e) 0.11, (f) 0.14 with four heating and cooling cycles. (g) Variable-temperature PXRD patterns of Bu₄N₁₋ _xLi_xMn_xPb_{1-x}I₃ with x = 0.14.

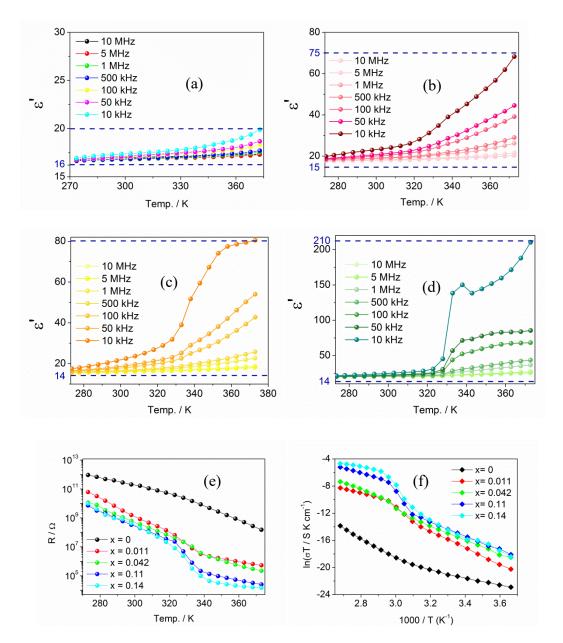


Fig. S12: Plots of dielectric permittivity *versus* temperature at the selected frequencies for $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = (a) 0, (b) 0.011, (c) 0.042 and (d) 0.11. (e) Resistance plots and (f) Arrhenius plots of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ (x = 0-0.14) at 273–373K.

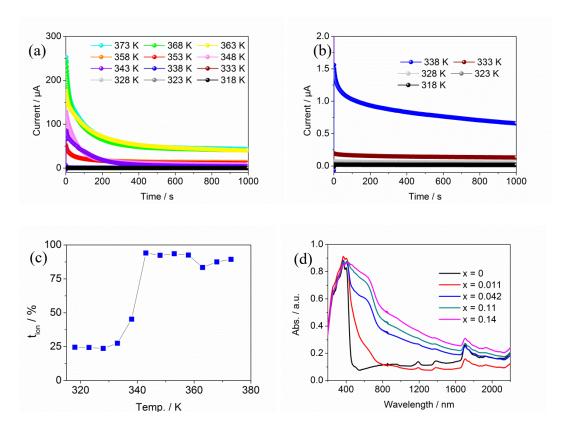


Fig. S13: Plots of (a, b) chronoamperometry of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = 0-0.14. (c) Transference numbers of ion vs. temperature for $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = 0.14. (d) solid ultraviolet-visible near-IR spectra of $Bu_4N_{1-x}Li_xMn_xPb_{1-x}I_3$ with x = 0-0.14.

References

- 1. Y. J. She, S. P. Zhao, Z. F. Tian, X. M. Ren, *Inorg. Chem. Commun.* 2014, 46, 29–32.
- P. T. Zhang, K. Gaurav, H. Kengo, P. S. Shyam, T. L. Ma, H. Shuzi, ACS Sustain. Chem. Eng. 2018, 6, 10221–10228.
- 3. S. G. Liu, P.J. Wu, Y. Q. Liu, D. B. Zhu, Mol. Cryst. Liq. Cryst., 1997, 86, 2265-2266.
- A. Daniel, S. Sadasivan, A. A. David, A. A. Jouse, K. Bindu, Sol. Energy. 2019, 187, 427– 437.