Electronic Supplementary Information (ESI)

Synthesis and Structural Evaluation of Closed-Shell Folded and Open-Shell Twisted Hexabenzo[5.6.7]quinarene

Tomohiko Nishiuchi,^{a,b}* Kazuyuki Uchida,^a and Takashi Kubo^{a,b}*

- [a] Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan. E-mail: <u>nishiuchit13@chem.sci.osaka-u.ac.jp</u>, kubo@chem.sci.osaka-u.ac.jp
- [b] Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.

Contents

S3
S3
S6
S7
S 8
S8
S9
S9
S10
S10
S11
S12
S12
S13
S14
S15
S16
S20

General information

All experiments with moisture- or air-sensitive compounds were performed in anhydrous solvents under nitrogen atmosphere in well-dried glassware. Dried solvents (THF and dichloromethane) were purchased from KANTO CHEMICAL. Column chromatography was performed with silica gel [Silica gel 60N (KANTO CHEMICAL)]. ¹H and ¹³C NMR spectra were recorded on JEOL lambda-500 spectrometer or Bruker AVANCENEO600 spectrometer. Positive EI mass spectra were taken by using Shimadzu QP-5050. MALDI TOF MS spectra were taken by KRATOS AXIMA-PERFORMANCE (Shimazu). Dithranol was used for the matrix. Data collection for X-ray crystal analysis was performed on Rigaku XtaLAB Synaergy Custom (Detector is Hypix-6000HE. Mo-K α ($\lambda = 0.71069$ Å)). The structure was solved with direct methods and refined with full-matrix least squares. UV-vis absorption spectra were measured in anhydrous dichloromethane, DMF, and toluene with a JASCO V-570 spectrometer. Cyclic voltammetric measurement was performed with a grassly carbon working electrode, an Ag/AgNO₃ reference electrode, and a Pt counter electrode in DCM containing 0.1 M "Bu₄NPF₆ as a supporting electrolyte.

Computational Methods. All DFT calculations were performed with the Gaussian 16 program. Structure optimization in both ground states were performed by $(U)\omega B97XD/6-31G^{**}$. TD-DFT calculations of **1** and **1**²⁺ were performed by a $(U)CAM-B3LYP/6-31G^{**}$ method with a tuned-parameter method ($\mu = 0.150$, $\alpha = 0.0799$, $\beta = 0.9201 [\alpha + \beta = 1.0]$)^[S1], using optimized structures by $(U)\omega B97XD/6-31G^{**}$ method.

Reference:

[S1] K. Okubo, Y. Shigeta, R. Kishi, M. Nakano, Chem. Phys. Lett. 2013, 585, 201.

Synthesis

5-(10-Bromoanthracen-9-yl)-5*H*-dibenzo[*a*,*d*]cyclohepten-5-ol (2)

To a suspension of 9,10-dibromoanthracene (2.7 g, 7.9 mmol) in THF (70 mL) was added ⁿBuLi (1.6 M, 7.9 mmol) at -78 °C under nitrogen atmosphere. After stirring for 1 hour, to the solution was added a solution of 5*H*-dibenzo[*a,d*]cyclohepten-5-one (1.5 g, 7.2 mmol) in THF (20 mL). After the reaction mixture was stirred at room temperature for 14 hours, aqueous ammonium chloride was added for quenching. The reaction mixture was extracted with ether, and the organic layer was separated and washed with brine, dried over anhydrous sodium sulfate. After filtration, the filtrate was evaporated, and the residual solid was washed with DCM/hexane to give **2** as a pale yellow solid (2.4 g, 73%). Mp > 115 °C (decomp.); *R_f*= 0.47 (DCM/hexane 50%); ¹H NMR (500 MHz, Acetone-*d*₆) δ 8.54 (dd, *J* = 8.0 Hz, 1.0 Hz, 2H), 8.35 (ddd, *J* = 8.5 Hz, 1.0 Hz, 0.5 Hz, 2H), 7.72 (dt, *J* = 9.0 Hz, 0.5 Hz, 2H), 7.58 (ddd, *J* = 8.5 Hz, 7.0 Hz, 1.0 Hz, 2H), 7.31 (ddd, *J* = 8.5 Hz, 6.5 Hz, 1.0 Hz, 2H), 7.16 (td, *J* = 7.5 Hz, 1.5 Hz, 2H), 6.94 (dd, *J* = 7.5 Hz, 1.5 Hz, 2H), 6.78 (ddd, *J* = 9.0 Hz, 6.5 Hz, 1.0 Hz, 2H), 6.71 (s, OH), 5.95 (s, 2H); ¹³C NMR (126 MHz, Acetone-*d*₆) δ 147.59, 138.58, 132.89, 131.73, 131.15, 130.91, 128.95, 128.54, 127.69, 127.58, 126.72, 126.15, 123.68, 123.30, 122.92, 79.72; EI-MS *m/z* 464 ([M+1]⁺), 462 ([M-1]⁺); Anal. Calcd for C₂₉H₁₉BrO: C, 75.17; H, 4.13. Found: C, 74.91; H, 4.09.

10-(5H-dibenzo[a,d]cyclohepten-5-ylidene)anthracen-9(10H)-one (3)

To a solution of **2** (0.60 g, 1.3 mmol) in 1,2-dichloroethane (24 mL) was added trifluoroacetic acid (6 mL) and water (6 mL), and then the reaction mixture was stirred for 48 hours at 85 °C. After the solution was cooled to room temperature, the organic layer was separated, washed with aqueous sodium carbonate, and dried over anhydrous sodium sulfate. After filtration, the filtrate was evaporated and the residue was purified by column chromatography on silica gel (DCM/hexane 50%) to give **3** as a pale yellow solid (0.45 g, 91%). Mp 282–283 °C; R_f = 0.27 (DCM/hexane 50%); ¹H NMR (500 MHz, dichloromethane- d_2) δ 8.06 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.32-7.27 (m, 6H), 7.12 (t, J = 8.0 Hz, 2H), 7.02 (t, J = 8.0 Hz, 2H), 6.81 (d, J = 7.5 Hz, 2H), 6.55 (d, J = 8.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 186.14, 142.12, 138.95, 138.46, 134.95, 133.44, 131.25, 130.09, 129.33, 129.24, 128.84, 128.03, 127.97, 127.14, 127.11, 126.24; EI-MS m/z 382 ([M]⁺); Anal. Calcd for C₂₉H₁₈O: C, 91.07; H, 4.74. Found: C, 91.07; H, 4.72.

5-(10-(9*H*-fluoren-9-ylidene)anthracen-9(10*H*)-ylidene)-5*H*-dibenzo[*a*,*d*]heptene (1)

To a solution of (9*H*-fluoren-9-yl)trimethylsilane (0.23 g, 0.95 mmol) in THF (10 mL) was added ⁿBuLi (1.6 M, 0.95 mmol) at -78 °C under nitrogen atmosphere, and the solution was stirred for 1 hour. To the solution was added **3** (0.31 g, 0.81 mmol) in THF (10 mL), and then the reaction mixture was stirred at room temperature. After 18 hours stirring, aqueous ammonium chloride was added for quenching. The reaction mixture was extracted with DCM, and the organic layer was separated, washed with brine, dried over sodium sulfate. After filtration, the filtrate was evaporated and the residue was purified by column chromatography on silica gel (DCM/hexane 10%) to give **1** (**1**-F) as a pale yellow solid (0.32 g, 74%). Mp > 300 °C; R_f = 0.27 (DCM/hexane 20%); ¹H NMR (600 MHz, dichloromethane- d_2) δ 7.87 (d, J = 8.4 Hz, 2H), 7.82 (dd, J = 7.2 Hz, 0.6 Hz, 2H), 7.78 (d, J = 7.2 Hz, 2H), 7.45 (dd, J = 7.8 Hz, 1.2 Hz, 2H), 7.36 (td, J = 7.2 Hz, 1.2 Hz, 2H), 7.28 (td, J = 7.2 Hz, 1.2 Hz, 2H), 7.20 (s, 2H), 7.14-7.09 (m, 6H), 6.98 (dd, J = 7.8 Hz, 1.2 Hz, 2H), 6.91 (td, J = 7.2 Hz, 1.2 Hz, 2H), 6.58 (dd, J = 7.8 Hz, 0.6 Hz, 2H); ¹³C NMR (126 MHz, dichloromethane- d_2) δ 140.48, 138.95, 138.43, 138.35, 138.31, 138.22, 137.01, 135.09, 135.06, 130.98, 130.06, 129.16, 128.21, 128.11, 127.84, 127.75, 127.13, 126.71, 126.07, 125.93, 124.92, 124.71, 119.10; EI-MS *m/z* 530 ([M]⁺); Anal. Calcd for C₄₂H₂₆: C, 95.06; H, 4.94. Found: C, 95.11; H, 5.01.

To a solution of 1 (53 mg, 0.094 mmol) in DCM (10 mL) was added antimony(V) chloride (1.0 M, 0.37 mmol) at 0 °C under nitrogen atmosphere. After the reaction mixture was stirred for 30 min., hexane (10 mL) was added. The precipitate of 1^{2+} salt that appeared after the addition of hexane was collected and washed with hexane. The crude product was purified by the reprecipitation from DCM/hexane to give $1^{2+}\cdot2SbCl_6^-$ as a dark red solid (115 mg, 96%). ¹H NMR (500 MHz, dichloromethane- d_2) δ 9.54 (s, 2H), 8.97 (d, J = 8.5 Hz, 2H), 8.82 (d, J = 9.0 Hz, 2H), 8.67 (t, J = 7.5 Hz, 2H), 8.18 (t, J = 7.5 Hz, 2H), 8.05 (d, J = 9.0 Hz, 2H), 7.84 (t, J = 8.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.03 (d, J = 7.0 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.87 (t, J = 7.5 Hz, 2H); Anal. Calcd for C₄₂H₂₆Cl₁₂Sb₂: C, 42.05; H, 2.18. Found: C, 41.91; H, 2.33.

Diradical of 5-(10-(9H-fluoren-9-ylidene)anthracen-9(10H)-ylidene)-5H-dibenzo[a,d]heptene (1-T)

To a solution of 1^{2+} (13 mg, 0.010 mmol) in MeCN (3 mL) was added zinc powder (13 mg 0.20 mmol) at -40 °C under nitrogen atmosphere. After the reaction mixture was stirred for 1 hour, brown to black precipitate was collected by filtration. After dried the precipitate under vacumm, this precipitate (2~3 mg) was used for the measurement of ESR and UV-vis spectra.

Reference data of 9-anthryl substituted fluorenyl and dibenzosuberenyl radicals

Figure S1. (a) Cyclic voltammogram of 9-anthryl substituted fluorenyl radical. (b) Cyclic voltammogram of 9-anthryl substituted dibenzosuberenyl radical. Due to high reactivity of 8π -electron antiaromatic system in the seven-membered ring of dibenzosuberenyl anion, irreversible wave was observed at $E_{pc} = -1.78$ V. Measurement condition: 0.1 m nBu_4PF_6 in CH₂Cl₂, scan rate = 100 mV s⁻¹, room temperature.

Figure S2. (a) UV-vis spectrum of 9-anthryl substituted fluorenyl radical in CH_2Cl_2 . (b) UV-vis spectrum of 9-anthryl substituted dibenzosuberenyl radical in CH_2Cl_2 .

X-ray crystallographic data

Crystal data for 1-F. CCDC 2256324. $C_{42}H_{26}$, Mw = 530.63 g/mol, monoclinic, space group C2/c (no. 15), a = 26.2349(11)Å, b = 10.4272(3) Å, c = 24.3603(10) Å, $\beta = 123.766(6)^{\circ}$, V = 5539.8(5) Å³, Z = 8, T = 120.15 K, μ (Mo K α) = 0.072 mm⁻¹, $D_{calc} = 1.272$ g/cm³, 45228 reflections measured ($3.664^{\circ} \le 2\theta \le 61.528^{\circ}$), 7363 unique ($R_{int} = 0561$, $R_{sigma} = 0.0450$) which were used in all calculations. The final R_1 was 0.0456 (I > 2 σ (I)) and w R_2 was 0.1080 (all data), GOF = 1.061.

Figure S3. X-ray crystal structure of 1-F. (a) Side view 1, (b) top view with C-C bond length (Å) of the central anthracene core., and (c) side view 2 with bent angles θ_1 and θ_2 of the central anthraquinodimethane core. Protons are omitted for clarity.

Crystal data for 1²⁺. CCDC 2256323. C₄₃H₂₈Cl₁₄Sb₂, Mw = 1284.45 g/mol, monoclinic, space group $P2_1/n$ (no. 14), a = 10.6573(2) Å, b = 34.0386(6) Å, c = 14.0166(2) Å, $\beta = 97.905(2)^\circ$, V = 5036.34(15) Å³, Z = 4, T = 120.15 K, μ (Mo K α) = 1.846 mm⁻¹, $D_{calc} = 1.694$ g/cm³, 111156 reflections measured ($3.786^\circ \le 2\theta \le 61.47^\circ$), 13835 unique ($R_{int} = 0.0750$, $R_{sigma} = 0.0536$) which were used in all calculations. The final R_1 was 0.0456 (I > 2 σ (I)) and w R_2 was 0.1177 (all data)., GOF = 1.042.

Figure S4. X-ray crystal structure of 1^{2+} . (a) Whole structure of 1^{2+} with counter anions of SbCl₆⁻ and dichloromethane. (b) Bond length (Å) of the central anthracene core. Protons are omitted for clarity.

UV-vis spectra of 1-F

Figure S6. UV-vis spectra of 1-F in toluene (blue line), DCM (black line), and DMF (red line).

Relative energy differences of 1 conformers

Figure S7. (a) Energy differences of 1-F (*exo*-form), 1-F (*endo*-form), 1-T (open-shell singlet), and 1-T (triplet). (b) Bond length and twist angles of 1-T (open-shell singlet and triplet). ($(U)\omega B97X-D/6-31G^{**}$).

NICS calculations of 1²⁺

Figure S8. (a) NICS(0) values of 1^{2+} at each aromatic rings (*a* to *f*). (CAM-B3LYP-D3/6-311+G**// ω B97X-D/6-31G**)

Charge distribution of 1²⁺

Figure S9. (a) Charge distribution on fluorenyl, anthryl, and dibenzosuberenyl units of 1^{2+} calculated using natural population analysis. The dibenzosuberenyl cation unit has a positive charge of +0.992 and the fluorenyl cation unit has a lesser positive charge of +0.911. The residual positive charge localizes in the central anthryl unit (+0.125). (b) Electrostatic potential surface of 1^{2+} shows positive π -surface (The color bar of energy ranges from +120 (red) to +157 (blue) kcal mol⁻¹). (ω B97X-D/6-311+G**// ω B97X-D/6-31G**).

UV-vis spectra of 1²⁺

Figure S10. UV-vis spectra of $1^{2+} \cdot 2SbCl_6^-$ in DCM.

Kohn-Sham molecular orbitals and TD-DFT calculations of 1²⁺

Figure S11. Kohm-Sham molecular orbitals and its energy of 1²⁺ (CAM-B3LYP/6-31G**//\0010B97X-D/6-31G**).

Table S1. TD-DFT calculation result (nstate=5) of 1²⁺ (CAM-B3LYP/6-31G**//ωB97X-D/6-31G**).

Excited State 138 ->139	1:	Singlet-A 0.70393 (99%)	1.3817 eV	897.35 nm	<i>f</i> =0.1502
Excited State 137 ->139	2:	Singlet-A 0.70267 (99%)	1.4390 eV	861.61 nm	<i>f</i> =0.0021
Excited State 138 ->140	3:	Singlet-A 0.69947 (98%)	1.8685 eV	663.53 nm	<i>f</i> =0.0002
Excited State 133 ->139 134 ->139 135 ->139	4:	Singlet-A 0.10314 (2%) 0.15759 (5%) 0.67523 (91%)	2.4885 eV	498.24 nm	<i>f</i> =0.0151
Excited State 136 ->140	5:	Singlet-A 0.69850 (98%)	2.5158 eV	492.83 nm	<i>f</i> =0.0644

Plausible competitive equilibrium of 1-T

Scheme S1. (a) Plausible competitive equilibriums of intramolecular isomerization of 1-T to 1-F and intermolecular dimerization of 1-T to $(1-T)_2$. (b) Typical example of the intermolecular dimerization of biradicaloid observed in Chichibabin's hydrocarbon.

UV-vis spectra of 1-T with different solvents

Figure S12. UV-vis spectra of 1-T in toluene (blue line), DCM (black line), and DMF (red line).

Kohn-Sham molecular orbitals and TD-DFT calculations of 1-T

Figure S13. Kohm-Sham molecular orbitals and its energy of 1-T (UCAM-B3LYP/6-31G**//U@B97X-D/6-31G**).

Table S2. TD-DFT calculation result (nstate=5) of 1-T (CAM-B3LYP/6-31G**//\0B97X-D/6-31G**).

Excited State 1: 137A ->142A 136B ->142B 139B ->142B	2.402-A -0.12683 -0.10570 0.97491	1.6221 eV (2%) (1%) (95%)	764.34 nm	<i>f</i> =0.0005	<s**2>=1.193</s**2>
Excited State 2: 138A ->141A 139A ->141A 138B ->141B 138B ->141B	2.976-A 0.35873 0.36772 0.73371 -0.40542	1.7063 eV (13%) (14%) (54%) (16%)	726.61 nm	f=0.0123	<s**2>=1.964</s**2>
Excited State 3: 139B ->140B 139B ->141B	1.569-A 0.88326 -0.43372	1.7402 eV (78%) (19%)	712.48 nm	f=0.0001	<s**2>=0.366</s**2>
Excited State 4: 137B ->140B 137B ->141B	2.329-A 0.97751 0.10859	1.8181 eV (96%) (1%)	681.95 nm	f=0.0007	<s**2>=1.106</s**2>
Excited State 5: 138A ->141A 139A ->141A 138B ->140B 138B ->141B	2.927-A -0.38030 -0.38996 0.65581 0.48818	2.0980 eV (14%) (15%) (43%) (24%)	590.97 nm	f=0.0473	<s**2>=1.892</s**2>

Electrostatic potential surface of 1-T

Figure S14. (a) Electrostatic potential surface of 1-T (open-shell singlet, biradical character $y_0 = 99\%$). (b) Electrostatic potential surface of 1-T (triplet). The color bar of energy ranges from -18.7 (red) to +18.7 (blue) kcal mol⁻¹). Computations were performed using U ω B97X-D/6-31G** level of theory.

Spin density of 1-T

Figure S15. (a) Spin density map of 1-T (open-shell singlet) (left) and its values on significant positions (right). (b) Spin density map of 1-T (triplet) (left) and its values on significant positions (right). $(U\omega B97X-D/6-31G^{**})$.

NMR Chart

0.00 ppm 0.10 Hz 46

29.80 ppm 1.50 Hz 56

Figure S16. ¹H NMR (500 MHz) of compound 2 (Acetone-*d*₆).

Figure S17. ¹³C NMR (126 MHz) of compound 2 (Acetone-*d*₆).

FILE	67-C-0_1H(500	MHz) CD2C12.al
OMNT	single pulse	
MITA	2016-03-25 11	1:09:42
BNUC	1H	
XMOD	proton.jxp	
BFRQ	500.16	MHz
BSET	2.41	KHz
BFIN	6.01	Hz
TMIO	52428	
REQU	7507.51	Hz
CANS	8	
COLM	6.9835	sec
D	5.0000	sec
W1	5.25	usec
RNUC	1H	
TEMP	25.0	с
LVNT	CD2CL2	
XREF	5.32	ppm
F	1.50	Hz
GAIN	50	

Figure S18. ¹H NMR (500 MHz) of compound 3 (CD₂Cl₂).

Figure S19. ¹³C NMR (126 MHz) of compound **3** (CDCl₃).

DFILE	567_1H(600MH	z)_DCM.als
COMNT	new experime	nt
DATIM	2016-02-22 1	6:00:22
OBNUC	H1	
EXMOD	s2pul	
OBFRQ	599.91	MHz
OBSET	5.39	KH2
OBFIN	2.00	Hz
POINT	32768	
FREQU	9615.38	Hz
SCANS	1	
ACOLN	3.4000	sec
PD	1.6000	sec
PW1	7.20	usec
IRNUC		
CTEMP	25.0	с
SLVNT	cd2c12	
EXREF	5.32	ppm
BF	0.10	Hz
RGAIN	48	

Figure S20. ¹H NMR (600 MHz) of compound 1-F (CD₂Cl₂).

Figure S21. ¹³C NMR (126 MHz) of compound 1-F (CD₂Cl₂).

Figure S22. ¹H NMR (500 MHz) of compound 1²⁺·2SbCl₆⁻ (CD₂Cl₂).

Calculated Cartesian coordination

Table S3. Cartesian Coordinates of 1-F (exo form) (C₄₂H₂₆, total 68 atoms) (ωB97X-D/6-31G**).

Center	Atomic	A	tomic Co	ordinates (An	gstroms)	Center	Atomic	Ā	Atomic Co	ordinates (Ans	gstroms)
Number	Number	T	ype X	Y	Z	Number	Numbe	rТ	Type X	Y	Z
1	6	0	0.96775	1 4.254578	0.732377	35	6	0	1.32200	2 -4.393616	2.817179
2	6	0	0.96775	1 4.254578	-0.732377	36	6	0	1.86650	4 -3.471144	3.696899
3	6	0	0.25795	6 3.125454	-1.184007	37	6	0	1.89794	4 -2.120776	3.352270
4	6	0	-0.32472	9 2.423802	0.000000	38	6	0	1.36223	6 -1.707531	2.141695
5	6	0	0.25795	6 3.125454	1.184007	39	6	0	1.36223	5 -1.707531	-2.141695
6	6	0	0.26853	3 2.824774	2.545459	40	6	0	1.89794	4 -2.120776	-3.352270
7	6	0	0.92390	0 3.678887	3.430607	41	6	0	1.86650	4 -3.471144	-3.696899
8	6	0	1.57319	5 4.825328	2.977041	42	6	0	1.32200	2 -4.393616	-2.817179
9	6	0	1.60880	4 5.112760	1.616065	43	1	0	-0.20977	3 1.934307	2.929403
10	6	0	1.60880	6.112760	-1.616065	44	1	0	0.92944	9 3.440394	4.489502
11	6	0	1.57319	4.825328	-2.977041	45	1	0	2.07072	22 5.482106	3.683548
12	6	0	0.92390	0 3.678887	-3.430607	46	1	0	2.14619	5.982549	1.250203
13	6	0	0.26853	3 2.824774	-2.545459	47	1	0	2.14619	5.982549	-1.250203
14	6	0	-1.20750	04 1.399507	0.000000	48	1	0	2.07072	22 5.482106	-3.683548
15	6	0	-1.70129	0.688695	-1.211285	49	1	0	0.9294	49 3.440394	-4.489502
16	6	0	-1.48258	36 -0.698648	-1.224740	50	1	0	-0.2097	73 1.934307	-2.929403
17	6	0	-0.85987	70 -1.275176	-0.000000	51	1	0	-1.7604	30 -2.527322	2.315774
18	6	0	-1.48258	36 -0.698648	1.224740	52	1	0	-2.9811	81 -1.442135	4.177426
19	6	0	-1.70129	0.688695	1.211285	53	1	0	-3.4403	18 0.995776	4.108769
20	6	0	-1.93625	50 -1.456959	2.303272	54	1	0	-2.6130	12 2.357412	2.205730
21	6	0	-2.62397	78 -0.844851	3.344786	55	1	0	-2.6130	12 2.357412	-2.205730
22	6	0	-2.87928	0.524493	3.308258	56	1	0	-3.4403	18 0.995776	-4.108769
23	6	0	-2.42310	57 1.289502	2.240597	57	1	0	-2.9811	81 -1.442135	-4.177426
24	6	0	-2.42310	57 1.289502	-2.240597	58	1	0	-1.7604	30 -2.527322	-2.315774
25	6	0	-2.87928	0.524493	-3.308258	59	1	0	-0.0517	56 -5.942426	-1.163638
26	6	0	-2.62397	78 -0.844851	-3.344786	60	1	0	-0.0517	56 -5.942426	1.163638
27	6	0	-1.93625	50 -1.456959	-2.303272	61	1	0	1.3066	02 -5.447717	3.080503
28	6	0	0.16173	9 -2.150862	-0.000000	62	1	0	2.2701	46 -3.802549	4.648189
29	6	0	0.79577	7 -2.628847	-1.255661	63	1	0	2.3259	57 -1.391130	4.031818
30	6	0	0.80422	-3.998436	-1.574389	64	1	0	1.3546	45 -0.654730	1.876418
31	6	0	0.28837	8 -5.033055	-0.672148	65	1	0	1.3546	45 -0.654730	-1.876418
32	6	0	0.28837	8 -5.033055	0.672148	66	1	0	2.32595	57 -1.391130	-4.031818
33	6	0	0.80422	-3.998436	1.574389	67	1	0	2.27014	-3.802549	-4.648189
34	6	0	0.79577	-2.628847	1.255661	68	1	0	1.30660	02 -5.447717	-3.080503

Zero-point correction=	0.549341 (Hartree/Particle)
Thermal correction to Energy=	0.578983
Thermal correction to Enthalpy=	0.579928
Thermal correction to Gibbs Free Ener	gy= 0.488294
Sum of electronic and zero-point Energy	gies= -1615.091363
Sum of electronic and thermal Energies	s= -1615.061720
Sum of electronic and thermal Enthalpi	ies= -1615.060776
Sum of electronic and thermal Free End	ergies= -1615.152409

|--|

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)	Center	Atomic	Ator	nic Coord	inates (Ang	stroms)
Number	Number	Туре	Х	Y	ŹŹ	Number	Number	Туре	e X	Y	Z
1	6	0 -0.7	34255	-3.458578	0.179364	35	1	0	-2.305159	3.435788	-1.294032
2	6	0 0.7	29121	-3.459739	0.179362	36	1	0	2.310245	3.432551	-1.293783
3	6	0 1.1	83194	-2.344441	-0.550001	37	1	0	4.158363	2.742085	-2.789240
4	6	0 -0.0	01090	-1.618249	-1.098286	38	1	0	4.089554	0.536029	-3.916765
5	6	0 -1.1	86577	-2.342598	-0.550070	39	1	0	2.194224	-1.015705	-3.489667
6	6	0 -2.5	49962	-2.050721	-0.552398	40	1	0	-4.490560	-2.648745	0.130855
7	6	0 -3.4	31442	-2.886053	0.131250	41	1	0	-3.678462	-4.649139	1.341094
8	6	0 -2.9	74832	-4.009064	0.818227	42	1	0	3.671543	-4.655076	1.340726
9	6	0 -1.6	13881	-4.297283	0.851518	43	1	0	4.486741	-2.655861	0.130645
10	6	0 1.6	507483	-4.299893	0.851369	44	6	0	0.001461	2.048167	0.606217
11	6	0 2.9	68888	-4.013829	0.817980	45	6	0	-1.251971	1.995903	1.402161
12	6	0 3.4	27244	-2.891478	0.131088	46	6	0	-2.120924	3.083243	1.488387
13	6	0 2.5	547029	-2.054691	-0.552400	47	1	0	-1.839285	4.018979	1.015128
14	6	0 -0.0	000195	-0.481628	-1.826505	48	1	0	-4.006296	3.824231	2.203366
15	6	0 -1.2	208788	0.330436	-2.140041	49	6	0	-3.335387	2.972682	2.153392
16	6	0 -1.2	222343	1.598317	-1.530666	50	6	0	-3.694687	1.758865	2.734672
17	6	0 0.0	01462	1.900839	-0.729748	51	1	0	-4.650399	1.656427	3.238599
18	6	0 1.2	24890	1.596601	-1.530530	52	6	0	-2.824293	0.680503	2.675284
19	6	0 1.2	209606	0.328722	-2.139885	53	1	0	-3.098645	-0.264006	3.136665
20	6	0 -2.2	227912	-0.039459	-3.010245	54	6	0	-1.577762	0.784438	2.042522
21	6	0 -3.2	290590	0.830954	-3.240612	55	6	0	-0.672966	-0.369162	2.083463
22	6	0 -3.3	326036	2.070176	-2.608869	56	6	0	1.254697	1.994283	1.402346
23	6	0 -2.2	290011	2.458223	-1.762053	57	6	0	2.125064	3.080488	1.488664
24	6	0 2.2	93776	2.455014	-1.761821	58	1	0	1.844743	4.016558	1.015281
25	6	0 3.3	329323	2.065537	-2.608562	59	6	0	3.339241	2.968357	2.153931
26	6	0 3.2	92192	0.826377	-3.240311	60	1	0	4.011270	3.819016	2.204006
27	6	0 2.2	28279	-0.042555	-3.010019	61	6	0	3.696806	1.754086	2.735343
28	1	0 -2.9	939407	-1.174539	-1.049672	62	1	0	4.652274	1.650419	3.239480
29	1	0 -1.2	244660	-5.151444	1.411313	63	6	0	2.825018	0.676848	2.675806
30	1	0 1.2	236980	-5.153536	1.411109	64	1	0	3.098044	-0.267996	3.137284
31	1	0 2.9	37737	-1.179045	-1.049642	65	6	0	1.578765	0.782401	2.042778
32	1	0 -2.	195197	-1.012687	-3.489827	66	6	0	0.672455	-0.370025	2.083551
33	1	0 -4.0	088316	0.541713	-3.917112	67	1	0	1.162407	-1.333744	2.205016
34	1	0 -4.	154116	2.747872	-2.789636	68	1	0	-1.164179	-1.332244	2.204878
-				–						· · ·	

Zero-point correction=0.549208 (Hartree/Particle)Thermal correction to Energy=0.578779Thermal correction to Enthalpy=0.579724Thermal correction to Gibbs Free Energy=0.488994Sum of electronic and zero-point Energies=-1615.087734Sum of electronic and thermal Enthalpies=-1615.058163Sum of electronic and thermal Enthalpies=-1615.057219Sum of electronic and thermal Free Energies=-1615.147948

Table S5. Cartesian Coordinates of 1^{2+}	$(C_{42}H_{26}, \text{ total 68 atoms}) (\omega B97X-D/6-31G^{**}).$
--	--

Center	Atomic	A	tomic Coor	dinates (Ang	gstroms)	Center	Atomic	Ate	omic Coord	inates (Ang	stroms)
Number	Number	Ţ	ype X	Y	Z	Number	Number	Ty	pe X	Y	Z
1	6	0	-5.153857	-0.735127	-0.097168	35	6	0	5.241350	2.726572	-1.172743
2	6	0	-5.153835	0.735215	0.097285	36	6	0	4.341124	3.674964	-1.583666
3	6	0	-3.799355	1.149412	0.182255	37	6	0	2.962561	3.414020	-1.472662
4	6	0	-2.951396	0.000010	0.000067	38	6	0	2.529241	2.223552	-0.958256
5	6	0	-3.799389	-1.149373	-0.182097	39	6	0	2.529249	-2.223910	0.957462
6	6	0	-3.463762	-2.499124	-0.308664	40	6	0	2.962571	-3.414564	1.471435
7	6	0	-4.496363	-3.432354	-0.384050	41	6	0	4.341136	-3.675355	1.582783
8	6	0	-5.822848	-3.014618	-0.316543	42	6	0	5.241359	-2.726575	1.172752
9	6	0	-6.169181	-1.655570	-0.162955	43	1	0	-2.426062	-2.812153	-0.356006
10	6	0	-6.169127	1.655693	0.163061	44	1	0	-4.269173	-4.486358	-0.491019
11	6	0	-5.822747	3.014727	0.316680	45	1	0	-6.614452	-3.754437	-0.373576
12	6	0	-4.496250	3.432414	0.384231	46	1	0	-7.211290	-1.364643	-0.091123
13	6	0	-3.463680	2.499147	0.308859	47	1	0	-7.211245	1.364805	0.091205
14	6	0	-1.497637	0.000002	0.000032	48	1	0	-6.614327	3.754573	0.373708
15	6	0	-0.795980	-0.470323	-1.143219	49	1	0	-4.269024	4.486408	0.491220
16	6	0	0.638498	-0.474595	-1.131967	50	1	0	-2.425969	2.812136	0.356228
17	6	0	1.321999	-0.000012	-0.000022	51	1	0	2.425807	0.957313	2.278004
18	6	0	0.638550	0.474587	1.131952	52	1	0	1.217214	1.692756	4.272483
19	6	0	-0.795931	0.470329	1.143255	53	1	0	-1.271124	1.580754	4.338773
20	6	0	1.341734	0.939706	2.288003	54	1	0	-2.532175	0.796462	2.419342
21	6	0	0.671986	1.345223	3.402354	55	1	0	-2.532255	-0.796424	-2.419270
22	6	0	-0.746075	1.289381	3.435826	56	1	0	-1.271255	-1.580707	-4.338743
23	6	0	-1.453149	0.857517	2.351551	57	1	0	1.217082	-1.692740	-4.272515
24	6	0	-1.453228	-0.857493	-2.351507	58	1	0	2.425730	-0.957311	-2.278045
25	6	0	-0.746184	-1.289353	-3.435803	59	1	0	6.894209	-1.043316	0.449154
26	6	0	0.671878	-1.345210	-3.402369	60	1	0	6.894206	1.044405	-0.446617
27	6	0	1.341656	-0.939707	-2.288029	61	1	0	6.303806	2.926063	-1.257878
28	6	0	2.833960	-0.000011	-0.000013	62	1	0	4.689497	4.617650	-1.991006
29	6	0	3.425120	-1.194979	0.513310	63	1	0	2.241763	4.156148	-1.795963
30	6	0	4.834913	-1.479395	0.635744	64	1	0	1.464448	2.059814	-0.889544
31	6	0	5.908454	-0.624401	0.268890	65	1	0	1.464454	-2.060310	0.888435
32	6	0	5.908452	0.625101	-0.267254	66	1	0	2.241776	-4.156954	1.794141
33	6	0	4.834908	1.479577	-0.635305	67	1	0	4.689511	-4.618208	1.989732
34	6	0	3.425117	1.194929	-0.513394	68	1	0	6.303816	-2.925891	1.258283
									-		

Zero-point correction=0.549893 (Hartree/Particle)Thermal correction to Energy=0.579931Thermal correction to Enthalpy=0.580876Thermal correction to Gibbs Free Energy=0.487973Sum of electronic and zero-point Energies=-1614.544218Sum of electronic and thermal Energies=-1614.514180Sum of electronic and thermal Enthalpies=-1614.513236Sum of electronic and thermal Free Energies=-1614.606138

Table S6. Car	tesian Coordinates	of 1-T (open-sh	nell singlet, C ₄₂ H ₂₆ ,	, total 68 atoms) (Uω	B97X-D/6-31G**).
		· ·			

Center	r Atomic Atomi		tomic Coord	mic Coordinates (Angstroms)			Atomic	Atom	ic Coordi	Coordinates (Angstroms)		
Number	Number	Ту	/pe X	Y	Z	Number	Number	Туре	Х	Y	Z	
1	6	0	-5.174425	-0.729908	-0.075382	35	6	0	5.262664	2.792225	-1.027431	
2	6	0	-5.174447	0.729888	0.075403	36	6	0	4.371181	3.784796	-1.394678	
3	6	0	-3.819773	1.153252	0.125390	37	6	0	3.008515	3.516341	-1.297941	
4	6	0	-2.963667	0.000022	0.000031	38	6	0	2.575388	2.285938	-0.844490	
5	6	0	-3.819739	-1.153237	-0.125316	39	6	0	2.575267	-2.286069	0.844108	
6	6	0	-3.507519	-2.509508	-0.253476	40	6	0	3.008332	-3.516505	1.297530	
7	6	0	-4.547916	-3.428767	-0.339178	41	6	0	4.370985	-3.784922	1.394560	
8	6	0	-5.880081	-3.007940	-0.292947	42	6	0	5.262518	-2.792300	1.027573	
9	6	0	-6.201763	-1.654198	-0.158749	43	1	0	-2.471680	-2.832327	-0.291767	
10	6	0	-6.201811	1.654152	0.158741	44	1	0	-4.324173	-4.485685	-0.442128	
11	6	0	-5.880167	3.007900	0.292969	45	1	0	-6.675849	-3.742900	-0.360547	
12	6	0	-4.548014	3.428760	0.339260	46	1	0	-7.240380	-1.339312	-0.119591	
13	6	0	-3.507591	2.509529	0.253585	47	1	0	-7.240418	1.339241	0.119547	
14	6	0	-1.493611	0.000039	0.000015	48	1	0	-6.675956	3.742839	0.360548	
15	6	0	-0.785640	-0.405594	-1.151939	49	1	0	-4.324302	4.485683	0.442232	
16	6	0	0.648088	-0.415667	-1.143807	50	1	0	-2.471761	2.832372	0.291920	
17	6	0	1.351445	0.000029	-0.000017	51	1	0	2.424026	0.856427	2.307829	
18	6	0	0.648123	0.415747	1.143788	52	1	0	1.202418	1.530046	4.328260	
19	6	0	-0.785611	0.405683	1.151946	53	1	0	-1.292607	1.450691	4.367900	
20	6	0	1.339840	0.840708	2.323163	54	1	0	-2.540039	0.740381	2.390252	
21	6	0	0.660691	1.212019	3.443397	55	1	0	-2.540083	-0.740275	-2.390229	
22	6	0	-0.760855	1.172180	3.463765	56	1	0	-1.292680	-1.450556	-4.367900	
23	6	0	-1.457426	0.779013	2.360923	57	1	0	1.202344	-1.529904	-4.328310	
24	6	0	-1.457470	-0.778907	-2.360913	58	1	0	2.423982	-0.856323	-2.307857	
25	6	0	-0.760912	-1.172057	-3.463770	59	1	0	6.926867	-1.062418	0.390627	
26	6	0	0.660635	-1.211899	-3.443428	60	1	0	6.926925	1.062463	-0.389917	
27	6	0	1.339795	-0.840610	-2.323194	61	1	0	6.329181	2.986221	-1.097683	
28	6	0	2.854332	0.000006	0.000018	62	1	0	4.730088	4.745211	-1.748558	
29	6	0	3.457902	-1.240056	0.457286	63	1	0	2.276620	4.267383	-1.577035	
30	6	0	4.853035	-1.532758	0.563972	64	1	0	1.509099	2.119437	-0.785473	
31	6	0	5.942133	-0.628728	0.231218	65	1	0	1.508985	-2.119613	0.784840	
32	6	0	5.942167	0.628731	-0.230766	66	1	0	2.276399	-4.267610	1.576355	
33	6	0	4.853117	1.532704	-0.563830	67	1	0	4.729844	-4.745339	1.748484	
34	6	0	3.457970	1.239992	-0.457364	68	1	0	6.329025	-2.986269	1.098045	
-	-	-						-				

Zero-point correction=	0.546304 (Hartree/Particle)
Thermal correction to Energy=	0.576407
Thermal correction to Enthalpy=	0.577351
Thermal correction to Gibbs Free Ener	rgy= 0.483368
Sum of electronic and zero-point Energy	gies= -1615.059381
Sum of electronic and thermal Energie	-1615.029278
Sum of electronic and thermal Enthalp	bies= -1615.028334
Sum of electronic and thermal Free En	ergies= -1615.122317

Table S7. Cartesian Coordinates of 1-T (tripl	et, $C_{42}H_{26}$, total 68 atoms) (U ω B97X-D/6-31G**).
---	---

enter	Atomic	Atom	ic Cooi	dinates (Ang	gstroms)		Center	Center Atomic	Center Atomic Atom	Center Atomic Atomic Coordi	Center Atomic Atomic Coordinates (Angs
umber	Number	Туре	Х	Y	ŹŹ		Number	Number Number	Number Number Type	Number Number Type X	Number Number Type X Y
1	6	0 -:	5.174372	-0.730030	-0.074242		35	35 6	35 6 0	35 6 0 5.262586	35 6 0 5.262586 2.795588
2	6	0 -4	5.174377	0.730036	0.074342		36	36 6	36 6 0	36 6 0 4.371115	36 6 0 4.371115 3.789378
3	6	0 -3	8.819611	1.153417	0.123280		37	37 6	37 6 0	37 6 0 3.008455	37 6 0 3.008455 3.520550
4	6	0 -2	2.963737	0.000018	-0.000024		38	38 6	38 6 0	38 6 0 2.575305	38 6 0 2.575305 2.288636
5	6	0 -3	8.819603	-1.153391	-0.123282		39	39 6	39 6 0	39 6 0 2.575215	39 6 0 2.575215 -2.288696
6	6	0 -3	3.507127	-2.509715	-0.250149		40	40 6	40 6 0	40 6 0 3.008319	40 6 0 3.008319 -3.520566
7	6	0 -4	1.547422	-3.429181	-0.334974		41	41 6	41 6 0	41 6 0 4.370969	41 6 0 4.370969 -3.789358
8	6	0 -	5.879633	-3.008420	-0.289342	42		6	6 0	6 0 5.262476	6 0 5.262476 -2.795603
9	6	0 -6	5.201549	-1.654534	-0.156779	43		1	1 0	1 0 -2.471204	1 0 -2.471204 -2.832328
10	6	0 -	6.201561	1.654525	0.156947	44		1	1 0	1 0 -4.323599	1 0 -4.323599 -4.486189
11	6	0 -	5.879656	3.008417	0.289475	45		1	1 0	1 0 -6.675305	1 0 -6.675305 -3.743546
12	6	0 -	4.547448	3.429198	0.335006	46		1	1 0	1 0 -7.240229	1 0 -7.240229 -1.339764
13	6	0 -	3.507145	2.509748	0.250112	47		1	1 0	1 0 -7.240240	1 0 -7.240240 1.339741
14	6	0 -	1.493379	0.000020	-0.000035	48		1	1 0	1 0 -6.675334	1 0 -6.675334 3.743531
15	6	0 -	0.785688	-0.402474	-1.152948	49		1	1 0	1 0 -4.323633	1 0 -4.323633 4.486210
16	6	0	0.648081	-0.412405	-1.144965	50		1	1 0	1 0 -2.471225	1 0 -2.471225 2.832375
17	6	0	1.351314	0.000001	-0.000070	51		1	1 0	1 0 2.423884	1 0 2.423884 0.849611
18	6	0	0.648118	0.412428	1.144847	52		1	1 0	1 0 1.201917	1 0 1.201917 1.518667
19	6	0 -	0.785656	0.402512	1.152860	53		1	1 0	1 0 -1.293133	1 0 -1.293133 1.440945
20	6	0	1.339684	0.834203	2.325511	54		1	1 0	1 0 -2.540470	1 0 -2.540470 0.735987
21	6	0	0.660332	1.202994	3.446409	55		1	1 0	1 0 -2.540522	1 0 -2.540522 -0.735946
22	6	0 -	0.761327	1.163970	3.466268	56		1	1 0	1 0 -1.293221	1 0 -1.293221 -1.440886
23	6	0 -	1.457780	0.773752	2.362374	57		1	1 0	1 0 1.201829	1 0 1.201829 -1.518603
24	6	0 -	1.457831	-0.773706	-2.362454	58		1	1 0	1 0 2.423833	1 0 2.423833 -0.849578
25	6	0 -	0.761396	-1.163915	-3.466362	59		1	1 0	1 0 6.926800	1 0 6.926800 -1.063821
26	6	0	0.660264	-1.202945	-3.446533	60		1	1 0	1 0 6.926843	1 0 6.926843 1.063643
27	6	0	1.339633	-0.834172	-2.325640	61		1	1 0	1 0 6.329103	1 0 6.329103 2.989826
28	6	0	2.854292	-0.000028	-0.000066	62		1	1 0	1 0 4.730032	1 0 4.730032 4.750969
29	6	0	3.457811	-1.241480	0.453282	63		1	1 0	1 0 2.276562	1 0 2.276562 4.272487
30	6	0	4.852973	-1.534598	0.558899	64		1	1 0	1 0 1.509008	1 0 1.509008 2.121977
31	6	0	5.942063	-0.629556	0.228913	65		1	1 0	1 0 1.508924	1 0 1.508924 -2.122076
32	6	0	5.942089	0.629431	-0.228890	66		1	1 0	1 0 2.276397	1 0 2.276397 -4.272503
33	6	0	4.853034	1.534533	-0.558829	67		1	$1 \qquad 0$	l 0 4.729850	1 0 4.729850 -4.750895
	6 6	0	4.853034 3.457862	1.534533 1.241416	-0.558829 -0.453358	(57 58	57 I 58 I	57 1 0 58 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Zero-point correction=	0.546349 (Hartree/Particle)
Thermal correction to Energy=	0.576447
Thermal correction to Enthalpy=	0.577391
Thermal correction to Gibbs Free Ener	gy= 0.482423
Sum of electronic and zero-point Energy	gies= -1615.059285
Sum of electronic and thermal Energie	-1615.029187
Sum of electronic and thermal Enthalp	ies= -1615.028243
Sum of electronic and thermal Free En	ergies= -1615.123212
	•