Kim, [‡] Jo, [‡] Lee, * Chung*

Stereochemical Modulation of Ketyl Radical Cyclization Enabled by Pyridine-Boryl Radical: Catalytic Diastereoselective Synthesis of *trans*-2-Alkyl-1-Indanols

Somi Kim,^{‡a} Junhyuk Jo,^{‡a} Sunggi Lee^{*b} and Won-jin Chung^{*a}

^a Department of Chemistry, GIST, Gwangju 61005, Republic of Korea.

^b Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea.

Electronic Supplementary Information

1. General experimental ······ S2
2. Experimental procedures ······ S2
2.1. Preparation of substrates ······ S2
2.1.1. Preparation of 2-cinnmaylbenzaldehyes ······ S2
2.1.2. Preparation of other 2-allylic benzaldehydes ······ S3
2.2. Pyridine catalyst survey ······ S3
2.3. Pyridine-boryl radical-promoted cyclization of 2-allylic benzaldehydes (Scheme 2)
3. DFT calculation ······ S8
3.1. Method
3.2. Computational data (Figure 2) ······ S9
3.2.1. 2-Allylbenzaldehyde ······ S9
3.2.2. 2-Crotylbenzaldehyde ·····S14
3.2.3. 2-Cinnamylbenzaldehyde ······S20
3.3. NCI plot analysis ······S27
4. References
5. ¹ H, ¹³ C, and ¹⁹ F NMR spectra ······S29

1. General experimental

All the reactions were carried out under an atmosphere of argon using oven-dried (140 °C) or flame-dried glassware unless otherwise noted. Tetrahydrofuran (THF), diethyl ether (Et₂O), and dichloromethane (CH₂Cl₂) were dried by percolation through a column packed with neutral alumina and a column packed with Q5 reactant, a supported copper catalyst for scavenging oxygen, under a positive pressure of argon. α , α , α -Trifluorotoluene (Acros, 99+%) was dried with CaH₂ (Alfa, 90~95%), distilled under argon, and degassed by freeze-pump-thaw. γ -Terpinene (**H4**, Aldrich, 97%) was dried with MgSO₄ (Daejung, 99%), distilled under reduced pressure, and degassed by freeze-pump-thaw. The following reagents were distilled from the indicated drying agents under argon or under reduced pressure: 1,4-cyclohexadiene (**H1**, Acros, 97%, MgSO₄), α -terpinene (**H3**, Alfa, 90+%, MgSO₄), Et₃SiH (Alfa, 98+%, 4 Å MS), and methyl isonicotinate (TCI, >99%, CaH₂). 9,10-Dihydroanthracene (**H2**, TCI, >98%) was recrystallized from EtOH. The following reagents were used without further purification: B₂pin₂ (**B1**, Alfa, 98+%), B₂neop₂ (**B2**, TCI, >98%), bis(hexyleneglycolato)diboron (**B3**, TCI, >98%), bis(2,4-dimethylpentane-2,4-glycolato)diboron (**B4**, Combi-Blocks, 98%), bis[(–)-pinanediolato]diboron (**B5**, Ambeed, 95%), and *p*-thiocresol (Alfa, 98%).

Solvents and reagents for recrystallization, work-up and chromatography were EtOH (Duksan, Extra Pure Grade), Et₂O (Samchun, Extra Pure Grade), CH₂Cl₂ (Duksan, Extra Pure Grade), EtOAc (Duksan, Extra Pure Grade), hexanes (Duksan, Extra Pure Grade), Na₂SO₄ (Duksan, 99.0%), MgSO₄ (Daejung, 99.0%), NaCl (Duksan, Extra Pure Grade), NH₄Cl (Daejung, Extra Pure Grade), and NaHCO₃ (Daejung, Extra Pure Grade). 4 Å molecular sieves (Alfa) was activated by flame-dry under reduced pressure before use. Filtration and column chromatography were performed using Merck 230–400-mesh silica gel 60 Å (0.040–0.063 mm). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a JEOL ECS400 spectrometer (400 MHz, ¹H; 100 MHz, ¹³C; 376 MHz, ¹⁹F). Chemical shifts are referenced to residual acetonitrile (1.94 ppm, ¹H), chloroform (7.26 ppm, ¹H; 77.23 ppm, ¹³C), and hexafluorobenzene (–164.90 ppm, ¹⁹F). Chemical shifts are reported in ppm, and multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Coupling constants, *J*, are reported in Hertz. Analytical thin-layer chromatography was conducted on Merck silica gel 60 F₂₅₄ TLC plates and visualized with UV (254 nm) as well as *p*-anisaldehyde and potassium permanganate (KMnO₄) staining solutions. ESI-HRMS was performed on a Bruker Impact II quadrupole-time-of-flight (Q-TOF) spectrometer at GIST Central Research Facilities (GCRF).

2. Experimental procedures

2.1. Preparation of substrates

2.1.1. Preparation of 2-cinnmaylbenzaldehyes

 $1a^{1}$ and $1b-1m^{2}$ were prepared following reported procedures and fully characterized in the literature except 1d and 1e.

1d

Column chromatographed (SiO₂, $\phi = 3.5$ cm, l = 18 cm, EtOAc:hexanes = 1:20 \rightarrow 1:7) to afford **1d** ($R_f = 0.41$ in EtOAc:hexanes = 1:5, off-white solid, 726 mg, 57%).

Data for 1d:

 $\frac{^{1}\text{H NMR}}{(m, 2\text{H}), 7.36-7.34 (m, 1\text{H}), 6.55 (dt, J = 15.9, 6.4, 1\text{H}), 7.59-7.54 (m, 3\text{H}), 7.48-7.45 (m, 1\text{H}), 7.40-7.38 (m, 2\text{H}), 7.36-7.34 (m, 1\text{H}), 6.55 (dt, J = 15.9, 6.4, 1\text{H}), 6.39 (d, J = 15.9, 1\text{H}), 4.02 (d, J = 6.4, 1\text{H}).$ $^{13}\text{C}\{^{1}\text{H}\}$ NMR: (100 MHz, CDCl₃) δ 192.8, 141.9, 141.4, 134.2, 133.9, 133.5, 133.1, 132.4, 131.4, 130.0, 127.4, 126.7,

119.1, 110.5, 36.2.

HRMS (ESI): [M+Na]⁺ calcd for C₁₇H₁₃NNaO: 270.0889; found: 270.0892.

Column chromatographed (SiO₂, $\phi = 4.5$ cm, l = 16 cm, EtOAc:hexanes = 1:20) to afford **1e** (R_f = 0.19 in EtOAc:hexanes = 1:20, off-white solid, 2.15 g, 61%).

Data for 1e:

1e

 $\frac{1 \text{H NMR}}{(400 \text{ MHz, CDCl}_3) \delta 10.26 \text{ (s, 1H)}, 7.87-7.86 \text{ (m, 1H)}, 7.59-7.51 \text{ (m, 3H)}, 7.47-7.43 \text{ (m, 1H)}, 7.42-7.40 \text{ (m, 2H)}, 7.37-7.35 \text{ (m, 1H)}, 6.51 \text{ (dt, } J = 15.9, 6.4, 1H), 6.41 \text{ (d, } J = 15.9, 1H), 4.02 \text{ (d, } J = 6.4, 2H).}$ $\frac{1^3\text{C}\{^1\text{H}\} \text{ NMR}}{(100 \text{ MHz, CDCl}_3) \delta 192.6, 141.8, 140.9, 134.1, 133.9, 133.0, 131.7, 131.3, 130.2, 129.0 \text{ (q, } J = 32.4), 127.3, 126.4, 125.5 \text{ (q, } J = 3.9), 124.4 \text{ (q, } J = 271.7), 36.1.}$

<u>¹⁹F NMR</u>: (376 MHz, CDCl₃) δ –65.7.

<u>HRMS (ESI)</u>: $[M+H]^+$ calcd for $C_{17}H_{14}F_3O$: 291.0991; found: 291.0968.

Column chromatographed (SiO₂, $\phi = 3.5$ cm, l = 16 cm, EtOAc:hexanes = 1:10 \rightarrow 1:3) to afford **1i** ($R_f = 0.19$ in EtOAc:hexanes = 1:10, off-white solid, 3.56 g, 57%).

Data for 1i:

- <u>¹H NMR</u>: (400 MHz, CDCl₃) δ 10.30 (s, 1H), 7.97–7.95 (m, 1H), 7.89–7.87 (m, 1H), 7.78–7.76 (m, 2H), 7.71–7.69 (m, 1H), 7.63–7.59 (m, 2H), 7.48–7.43 (m, 2H), 7.37–7.32 (m, 1H), 7.30–7.25 (m, 3H), 6.56–6.48 (m, 2H), 4.01 (d, J = 5.8, 2H), 2.31 (s, 3H).
- ¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 192.6, 145.0, 142.2, 135.5, 135.1, 134.2, 133.9, 132.6, 131.2, 130.3, 129.9, 129.1, 127.1, 126.8, 124.9, 123.5, 123.4, 122.1, 120.6, 120.5, 113.8, 36.4, 21.6.

HRMS (ESI): [M+Na]⁺ calcd for C₂₅H₂₁NNaO₃S: 438.1134; found: 438.1131.

2.1.2. Preparation of other 2-allylic benzaldehydes

 $1n^{3,4}$ and $1o^{5,6}$ were prepared following reported procedures and fully characterized in the literature.

2.2. Pyridine catalyst survey

2.3. Pyridine-boryl radical-promoted cyclization of 2-allylic benzaldehydes

To a solution of aldehyde (1, 1.00 mmol), **B4** (282 mg, 1.00 mmol), and **H4** (0.80 mL, 5.0 mmol) in PhCF₃ (2 mL) was added methyl isonicotinate (24 μ L, 0.20 mmol) at room temperature under argon, and the mixture was refluxed for 12 hours. The reaction mixture was cooled to room temperature, transferred to a round-bottomed flask with CH₂Cl₂, and stirred in the presence of 2 M aq. Na₂CO₃ (2 mL) under air for 5 minutes. The mixture was poured into water (20 mL) and extracted with CH₂Cl₂ (20 mL) four times. The combined organic layers were dried over Na₂SO₄ (6 g), filtered, and concentrated under reduced pressure. The crude material was adsorbed to silica gel and purified by column chromatography to afford the 2-alkyl-1-indanol (2). The diastereomeric ratio was measured by ¹H NMR analysis of 2 on the basis of the integral value of the proton at the hydroxyl-bearing carbon. The copies of ¹H NMR spectra are attached at the end of the ESI.

Column chromatographed (1st: SiO₂, $\phi = 3$ cm, l = 16 cm, EtOAc:hexanes = 1:6, 2nd: $\phi = 3$ cm, l = 14 cm, acetone:hexanes = 1:10) to afford **2a** ($R_f = 0.28$ in EtOAc:hexanes = 1:6, white solid, 120 mg, 54%, >20/1 *dr*).

Data for 2a:7

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$: (400 MHz, CD₃CN) δ 7.32–7.15 (m, 9H), 4.83–4.80 (m, 1H), 3.40–3.36 (m, 1H), 3.11 (dd, *J* = 13.4, 5.2, 1H), 2.86 (dd, *J* = 15.3, 7.6, 1H), 2.69 (dd, *J* = 13.3, 9.6, 1H), 2.55–2.40 (m, 2H).

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 16 cm, EtOAc:hexanes = 1:4, 2nd: $\phi = 2.5$ cm, l = 16 cm, Et₂O:hexanes = 1:5 \rightarrow 1:10) to afford **2b** ($R_f = 0.34$ in EtOAc:hexanes = 1:3, white solid, 146 mg, 54%, 15.7/1 *dr*).

Data for 2b:

 $\frac{^{1}\text{H NMR}}{(d, J = 6.7, 1\text{H}), 3.81 (s, 3\text{H}), 3.04-2.98 (m, 2\text{H}), 2.75 (dd, J = 13.7, 8.5, 1\text{H}), 2.60-2.45 (m, 2\text{H}), 4.94 (m, 2\text{H}), 2.75 (dd, J = 13.7, 8.5, 1\text{H}), 2.60-2.45 (m, 2\text{H}).}$

¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 158.2, 144.7, 141.8, 132.8, 130.0, 128.3, 126.9, 125.0, 124.1, 114.2, 81.0, 55.5, 52.6, 38.5, 35.9.

<u>HRMS (ESI)</u>: $[M+H]^+$ calcd for C₁₇H₁₉O₂: 255.1380; found: 255.1369.

Column chromatographed (1st: SiO₂, $\phi = 3$ cm, l = 14 cm, EtOAc:hexanes = 1:5, 2nd: acetone:hexanes = 1:10) to afford **2c** ($R_f = 0.25$ in EtOAc:hexanes = 1:5, white solid, 136 mg, 56%, >20/1 *dr*).

Data for 2c:

- $\frac{^{1}\text{H NMR}}{(\text{dd}, J = 6.4, 4.3, 1\text{H}), 3.09 (\text{dd}, J = 13.7, 5.2, 1\text{H}), 2.86 (\text{dd}, J = 15.6, 7.6, 1\text{H}), 2.69 (\text{dd}, J = 13.6, 9.6, 1\text{H}), 2.50 (\text{dd}, J = 15.4, 8.7, 1\text{H}), 2.44-2.39 (\text{m}, 1\text{H}).$
- $\frac{{}^{13}C{}^{1}H}{124.9, 124.1, 115.3 (d, J = 20.8), 80.6, 52.1, 38.4, 35.6.}$

¹⁹F NMR: (376 MHz, CDCl₃) δ –120.3.

<u>HRMS (ESI)</u>: [M+Na]⁺ calcd for C₁₆H₁₅FNaO: 265.0999; found: 265.0991.

Column chromatographed (1st: SiO₂, $\phi = 2.5$ cm, l = 16 cm, EtOAc:hexanes = 1:4 \rightarrow 1:2, 2nd: SiO₂, $\phi = 2.5$ cm, l = 14 cm, CH₂Cl₂) to afford **2d** ($R_f = 0.11$ in EtOAc:hexanes = 1:5, off-white solid, 153 mg, 61%, >20/1 dr).

Data for 2d:

он

2d

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$: (400 MHz, CD₃CN) δ 7.68–7.65 (m, 2H), 7.46–7.44 (m, 2H), 7.31–7.30 (m, 1H), 7.22–7.15 (m, 3H), 4.81–4.80 (m, 1H), 3.49 (brs, 1H), 3.18 (dd, *J* = 13.4, 5.2, 1H), 2.88–2.77 (m, 2H), 2.54–2.40 (m, 2H). $\frac{^{13}\text{C}{}^{1}\text{H}}{^{13}\text{C}{}^{1}\text{H}}$ NMR: (100 MHz, CDCl₃) δ 146.6, 144.4, 141.1, 132.4, 129.8, 128.5, 127.1, 124.9, 124.1, 119.1, 110.0, 80.7,

51.7, 39.4, 35.6.

HRMS (ESI): [M+Na]⁺ calcd for C₁₇H₁₅NNaO: 272.1046; found: 272.1048.

2e CF₃

Column chromatographed (SiO₂, $\phi = 3$ cm, l = 14 cm, EtOAc:hexanes = 1:5) to afford **2e** ($R_f = 0.19$ in EtOAc:hexanes = 1:5, white solid, 182 mg, 62%, >20/1 *dr*).

Data for 2e:

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$: (400 MHz, CD₃CN) δ 7.64–7.62 (m, 2H), 7.48–7.46 (m, 2H), 7.33–7.31 (m, 1H), 7.23–7.19 (m, 2H), 7.18–7.15 (m, 1H), 4.84–4.81 (m, 1H), 3.43 (d, *J* = 6.7, 1H), 3.19 (dd, *J* = 13.4, 5.2, 1H), 2.89–2.78 (m, 2H), 2.52 (dd, *J* = 15.3, 8.9, 1H), 2.48–2.42 (m, 1H).

 $\frac{{}^{13}C{}^{1}H}{125.1, 124.6 (q, J = 271.8), 124.2, 81.0, 52.0, 39.3, 35.8.}$

<u>¹⁹F NMR</u>: (376 MHz, CDCl₃) δ –65.5.

<u>HRMS (ESI)</u>: $[M+Na]^+$ calcd for $C_{17}H_{15}F_3NaO$: 315.0967; found: 315.0947.

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 20 cm, EtOAc:hexanes = 1:5, 2nd: $\phi = 2.5$ cm, l = 12 cm, Et₂O:hexanes = 1:5 \rightarrow 1:2) to afford **2g** ($R_f = 0.15$ in EtOAc:hexanes = 1:5, white solid, 135 mg, 57%, >20/1 *dr*).

Data for 2g:

- $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}}$: (400 MHz, CDCl₃) δ 7.39–7.37 (m, 1H), 7.25–7.22 (m, 3H), 7.19–7.14 (m, 4H), 4.97 (d, J = 6.7, 1H), 3.09 (dd, J = 13.7, 6.4, 1H), 3.03 (dd, J = 15.4, 7.3, 1H), 2.81 (dd, J = 13.7, 8.5, 1H), 2.63–2.51 (m, 2H), 2.36 (s, 3H).
- ¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 144.7, 141.8, 139.0, 136.4, 130.7, 129.6, 128.3, 127.0, 126.5, 126.2, 124.9, 124.1, 81.2, 51.1, 36.7, 36.1, 19.7.

<u>HRMS (ESI)</u>: $[M+H]^+$ calcd for $C_{17}H_{19}O$: 239.1430; found: 239.1432.

Column chromatographed (1st: SiO₂, $\phi = 2.5$ cm, l = 16 cm, EtOAc:hexanes = 1:6, 2nd: $\phi = 2.5$ cm, l = 13 cm, Et₂O:hexanes = 1:4 \rightarrow 1:3) to afford **2h** ($R_f = 0.28$ in EtOAc:hexanes = 1:6, white solid, 142 mg, 52%, 5.3/1 *dr*).

Data for 2h:

 $\frac{1 \text{H NMR}}{1.00 \text{ MHz}, \text{CDCl}_3} \delta 8.21 - 8.17 \text{ (m, 1H)}, 7.92 - 7.90 \text{ (m, 1H)}, 7.81 - 7.77 \text{ (m, 1H)}, 7.58 - 7.49 \text{ (m, 2H)}, 7.47 - 7.45 \text{ (m, 2H)}, 7.38 - 7.33 \text{ (m, 1H)}, 7.23 - 7.12 \text{ (m, 3H)}, 4.95 - 4.92 \text{ (m, 1H)}, 3.64 \text{ (dd, } J = 13.9, 4.7, 1\text{ H)}, 3.46 \text{ (d, } J = 6.7, 1\text{H)}, 3.12 \text{ (dd, } J = 13.4, 8.9, 1\text{H)}, 2.84 - 2.76 \text{ (m, 1H)}, 2.67 - 2.56 \text{ (m, 1H)}.$

¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 144.7, 141.6, 136.9, 134.1, 132.1, 129.0, 128.3, 127.2, 126.9, 126.7, 126.1, 125.8, 125.6, 124.9, 124.1, 124.0, 81.2, 51.5, 36.4, 36.1.

<u>HRMS (ESI)</u>: $[M+H]^+$ calcd for C₂₀H₁₉O: 275.1430; found: 275.1422.

Column chromatographed (1st: SiO₂, $\phi = 2.5$ cm, l = 16 cm, EtOAc:hexanes = 1:4, 2nd: $\phi = 2.5$ cm, l = 8 cm, CH₂Cl₂) to afford **2i** ($R_f = 0.19$ in EtOAc:hexanes = 1:4, off-white solid, 160 mg, 38%, 7.4/1 *dr*).

Data for 2i:

2i

<u>¹H NMR</u>: (400 MHz, CD₃CN) δ 7.98–7.95 (m, 1H), 7.80–7.74 (m, 2H), 7.60–7.56 (m, 1H), 7.53–7.52 (m, 1H), 7.38–7.15 (m, 8H), 4.84–4.79 (m, 1H), 3.43 (d, *J* = 6.7, 1H), 3.12–3.05 (m, 1H), 2.91–2.79 (m, 2H), 2.55–2.45 (m, 2H), 2.31 (s, 3H).

¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 145.0, 144.5, 141.5, 135.5, 135.3, 131.3, 130.0, 128.4, 127.0, 126.9, 125.0, 124.9, 124.1, 123.6, 123.3, 121.9, 119.7, 114.0, 81.1, 50.2, 36.1, 28.2, 21.7.

HRMS (ESI): [M+Na]⁺ calcd for C₂₅H₂₃NNaO₃S: 440.1291; found: 440.1295.

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 16 cm, EtOAc:hexanes = 1:8, 2nd: $\phi = 2.5$ cm, l = 13 cm, Et₂O:hexanes = 1:4 \rightarrow 1:3) to afford **2j** ($R_f = 0.25$ in EtOAc:hexanes = 1:8, white solid, 116 mg, 45%, >20/1 dr).

Data for 2j:

 $\frac{^{1}\text{H NMR}}{(\text{dd}, J = 6.1, 1.8, 1\text{H}), 3.05 (\text{dd}, J = 17.6, 8.7, 1\text{H}), 2.93 (\text{dd}, J = 12.7, 4.7, 1\text{H}), 2.64-2.53 (\text{m}, 3\text{H}), 2.30 (\text{s}, 3\text{H}).}$

 $\frac{{}^{13}C{}^{1}H}{15.0}, 129.5, 126.4, 126.1, 120.9 (d, J = 3.5), 113.6 (d, J = 5.8), 138.6, 136.4, 130.54, 130.47, 130.3 (d, J = 15.0), 129.5, 126.4, 126.1, 120.9 (d, J = 3.5), 113.6 (d, J = 20.8), 78.4, 49.3, 36.4, 36.3, 19.6.$

¹⁹F NMR: (376 MHz, CDCl₃) δ –124.2.

<u>HRMS (ESI)</u>: $[M+H]^+$ calcd for $C_{17}H_{18}FO$: 257.1336; found: 257.1311.

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 16 cm, EtOAc:hexanes = 1:5, 2nd: $\phi = 2.5$ cm, l = 12 cm, Et₂O:hexanes = 1:4 \rightarrow 1:3 \rightarrow 1:2) to afford **2k** ($R_f = 0.22$ in EtOAc:hexanes = 1:5, white solid, 174 mg, 65%, 12.5/1 dr).

Data for 2k:

он

<u>¹H NMR</u>: (400 MHz, CDCl₃) δ 7.23–7.14 (m, 4H), 7.08–7.06 (m, 1H), 6.93–6.91 (m, 1H), 6.80–6.78 (m, 1H), 4.94– 4.92 (m, 1H), 3.80 (s, 3H), 3.08 (dd, *J* = 13.7, 5.8, 1H), 2.96 (dd, *J* = 18.2, 10.8, 1H), 2.82 (dd, *J* = 13.6, 8.1, 1H), 2.56–2.50 (m, 2H), 2.36 (s, 3H).

¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 159.3, 146.1, 139.0, 136.4, 133.5, 130.7, 129.6, 126.5, 126.2, 125.6, 114.9, 108.8, 81.3, 55.7, 51.7, 36.8, 35.3, 19.7.

<u>HRMS (ESI)</u>: $[M+Na]^+$ calcd for $C_{18}H_{20}NaO_2$: 291.1356; found: 291.1339.

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 16 cm, EtOAc:hexanes = 1:5, 2nd: $\phi = 3.5$ cm, l = 16 cm, Et₂O:hexanes = 1:6 \rightarrow 1:4) to afford **2l** ($R_f = 0.31$ in EtOAc:hexanes = 1:5, white solid, 155 mg, 57%, >20/1 *dr*).

Data for 21:

¹<u>H NMR</u>: (400 MHz, CDCl₃) δ 7.35–7.33 (m, 1H), 7.22–7.15 (m, 5H), 7.10–7.08 (m, 1H), 4.94–4.93 (m, 1H), 3.07 (dd, J = 13.9, 6.0, 1H), 2.98 (dd, J = 19.1, 10.8, 1H), 2.82 (dd, J = 13.9, 8.1, 1H), 2.59–2.51 (m, 2H), 2.36 (s, 3H), 1.64 (br, 1H).

¹³C{¹H} NMR: (100 MHz, CDCl₃) δ 146.6, 140.0, 138.7, 136.4, 132.7, 130.8, 129.5, 128.5, 126.7, 126.3, 126.1, 124.4, 80.8, 51.5, 36.6, 35.6, 19.7.

HRMS (ESI): [M+Na]⁺ calcd for C₁₇H₁₇³⁵ClNaO, C₁₇H₁₇³⁷ClNaO: 295.0860, 297.0836; found: 295.0843, 297.0814.

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 16 cm, EtOAc:hexanes = 1:7 \rightarrow 1:5, 2nd: $\phi = 2.5$ cm, l = 14 cm, acetone:hexanes = 1:10) to afford **2m** ($R_f = 0.25$ in EtOAc:hexanes = 1:7, white solid, 150 mg, 59%, 16.8/1 *dr*).

Data for 2m:

- $\frac{^{1}\text{H NMR}}{(\text{dd}, J = 6.4, 1.8, 1\text{H}), 3.11 (\text{dd}, J = 13.7, 5.2, 1\text{H}), 2.86 (\text{dd}, J = 15.7, 7.5, 1\text{H}), 2.68 (\text{dd}, J = 13.7, 9.5, 1\text{H}), 2.57-2.43 (\text{m}, 2\text{H}), 2.33 (\text{s}, 3\text{H}).}$
- $\frac{{}^{13}C{}^{1}H}{126.2, 125.4 (d, J = 8.1), 114.0 (d, J = 23.1), 114.1 (d, J = 8.1), 140.2, 138.7, 136.3, 130.7, 129.5, 126.6, 126.2, 125.4 (d, J = 8.1), 114.0 (d, J = 23.1), 111.9 (d, J = 22.0), 80.3, 51.3, 36.6, 36.0, 19.6.$

<u>¹⁹F NMR</u>: (376 MHz, CDCl₃) δ –117.8.

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₁₈FO: 257.1336; found: 257.1309.

Column chromatographed (1st: SiO₂, $\phi = 3.5$ cm, l = 17 cm, EtOAc:hexanes = 1:10, 2nd: $\phi = 2.5$ cm, l = 16 cm, acetone:hexanes = 1:15) to afford **2n** ($R_f = 0.19$ in EtOAc:hexanes = 1:8, white solid, 55 mg, 31%, 2.9/1 *dr*).

Data for 2n:

 $\frac{^{1}\text{H NMR}}{^{1}\text{R}}:^{8} (400 \text{ MHz, CD}_{3}\text{CN}) \delta 7.35-7.18 \text{ (m, 5H)}, 4.88-4.85 \text{ (m, 1H)}, 3.26 \text{ (d, } J = 7.3, 1\text{H}), 2.99 \text{ (dd, } J = 15.7, 8.4, 1\text{H}), 2.54 \text{ (dd, } J = 15.7, 9.0, 1\text{H}), 1.89-1.81 \text{ (m, 1H)}, 1.07 \text{ (d, } J = 6.7, 3\text{H}), 0.97 \text{ (d, } J = 6.7, 3\text{H}).$ $\frac{^{13}\text{C}\{^{1}\text{H}\} \text{ NMR}: (100 \text{ MHz, CDCl}_{3}) \delta 145.5, 141.8, 128.1, 126.8, 124.8, 124.1, 79.9, 57.7, 34.0, 31.5, 21.7, 20.8.}{\text{HRMS (ESI)}: [M+H]^{+} \text{ calcd for } C_{12}\text{H}_{17}\text{O}: 177.1274; \text{ found: } 177.1260.}$

Column chromatographed (1st: SiO₂, $\phi = 2.5$ cm, l = 18 cm, EtOAc:hexanes = 1:4, 2nd: SiO₂, $\phi = 2.5$ cm, l = 16 cm, acetone:hexanes = 1:10 \rightarrow 1:5, 3rd: SiO₂, $\phi = 2.5$ cm, l = 14 cm, EtOAc:hexanes = 1:3) to afford **20** ($R_f = 0.19$ in EtOAc:hexanes = 1:3, white solid, 90 mg, 44%, >20/1 dr).

Data for 20:5

```
\frac{^{1}\text{H NMR}}{^{2}\text{H NMR}}: (400 MHz, CD<sub>3</sub>CN) \delta 7.32–7.30 (m, 1H), 7.23–7.20 (m, 3H), 4.81–4.78 (m, 1H), 3.66 (s, 3H), 3.61 (d, J = 6.1, 1H), 3.12 (dd, J = 15.3, 7.3, 1H), 2.73 (dd, J = 15.3, 5.5, 1H), 2.56–2.41 (m, 3H).
```

3. DFT calculation

3.1. Method

The transition structures were obtained at the UM06- $2X^{9}/6-31++G(d,p)$ level of theory using the Gaussian 16 suite of programs.¹⁰ To account for the solvent effect, the polarizable continuum model (PCM) was employed with the default parameters for 1,2-DCE.^{11,12} For thermal energy correction, the calculations were conducted at 375.15 K. The optimized saddle points were validated by the presence of a single negative vibrational frequency and the intrinsic reaction coordinate (IRC) calculation at the same level of theory. The NCI plot analysis¹³ was performed using the Multiwfn software¹⁴ and visualized by VMD¹⁵.

3.2. Computational data (Figure 2)

3.2.1. 2-Allylbenzaldehyde

- computed data for 1[B]-H
- : total free energy = -912.239933 Hartree
- : relative free energy = 0.00 kcal/mol
- : no imaginary frequency
- : Cartesian coordinates

Atom	х	Y	Z
В	1.16902800	-0.60125200	0.03173900
0	-0.14843100	-1.03300200	0.04152800
с	-1.17151000	-0.17134400	-0.17126700
с	-2.98431600	2.47408300	0.59880500
С	-2.49617600	-0.65331800	-0.11268300
0	2.10324300	-1.54081200	0.34080000
0	1.44181900	0.69362000	-0.28144600
С	3.49012400	-1.19972500	0.13433900
С	4.29748300	-2.11788300	1.04314200
С	2.74324600	1.28760500	-0.07221800
С	2.52835800	2.45362100	0.88970700
С	-2.75661100	-2.02096500	0.17118700
С	-3.60377200	0.22171400	-0.34327600
С	-4.89208600	-0.29484500	-0.28027900
С	-5.13561900	-1.64405900	0.00289300
С	-4.05492500	-2.50255400	0.22817400
н	-4.22994800	-3.55157900	0.44741400
н	-1.91626300	-2.68486200	0.34319200
н	-5.73108600	0.37329800	-0.46013700
н	-6.15379200	-2.01671100	0.04355500
н	-0.90873000	0.85949400	-0.36488900
С	-3.39282300	1.69399500	-0.62730600
С	-1.91173200	3.26144800	0.67588100
Н	-2.64550100	1.83830200	-1.41740700
Н	-4.33672700	2.10443200	-1.00500800
н	1.86276700	3.19570100	0.43962600
Н	3.48412200	2.93349400	1.12108400
Н	2.08020600	2.09823300	1.82191600
Н	4.03195900	-1.95042100	2.09041600
Н	5.36778800	-1.93098800	0.91627800
н	4.09275300	-3.16227200	0.79216300
с	3.22805600	1.82313200	-1.41719900
С	3.82563600	-1.48427400	-1.33009000

Н	2.47994200	2.50845300	-1.82551400
Н	3.40101600	1.02868200	-2.14355600
Н	4.16331800	2.37339200	-1.27901900
Н	3.77078100	-2.56120900	-1.51191200
Н	4.83521800	-1.13910700	-1.57198600
Н	3.11745000	-0.99596900	-2.00356000
С	3.69818500	0.26051200	0.56242300
Н	4.73248100	0.55815600	0.36033600
н	3.56151300	0.29022200	1.65051800
Н	-3.63770200	2.36647400	1.46488100
н	-1.23758100	3.38239600	-0.17030500
н	-1.67128800	3.80735800	1.58275300

- computed data for *trans*-TS[B]-H

: total free energy = -912.209780 Hartree

: relative free energy = 18.92 kcal/mol

: a single imaginary frequency at -539.06 cm⁻¹

Atom	Х	Y	Z
В	-1.00868900	-0.46814000	-0.15884600
0	0.33631600	-0.75061200	-0.32593300
С	1.29311900	0.08549900	0.16891400
С	1.85839000	1.69064300	-1.16757200
С	2.65715100	-0.44373800	0.24112200
0	-1.87294700	-1.24379000	-0.87226600
0	-1.38529000	0.51644800	0.70209000
С	-3.27547900	-1.15453400	-0.54882600
С	-4.03232500	-1.63928400	-1.77896900
С	-2.73347300	1.03164800	0.75716300
С	-2.63776800	2.51734400	0.41875400
С	2.99868500	-1.78199200	0.45391400
С	3.65771200	0.52192400	0.03582600
С	4.99688200	0.15472400	0.10719200
С	5.34113800	-1.17759700	0.35829200
С	4.34522000	-2.14309000	0.51766200
н	4.61848400	-3.17948400	0.69064700
Н	2.21680300	-2.52505200	0.58071000
н	5.77330700	0.89601000	-0.06399100
н	6.38683100	-1.46560300	0.40359700
н	0.95700700	0.76727000	0.94798900
С	3.13074000	1.88265700	-0.35196300
С	0.86339700	2.62669800	-1.23516800
н	2.89810700	2.48939900	0.53489600
н	3.88020400	2.43571900	-0.92915500
н	-2.01191500	3.03118100	1.15430200
н	-3.63326700	2.97179100	0.42423000
Н	-2.19507900	2.65169300	-0.57210400
Н	-3.81314000	-1.00132400	-2.63945300

Н	-5.11001500	-1.62147500	-1.59217900
Н	-3.73574000	-2.66431300	-2.01793500
С	-3.23049600	0.87116000	2.19214500
С	-3.54219100	-2.08890400	0.63193500
Н	-2.53004200	1.36005800	2.87509200
Н	-3.32490400	-0.17474900	2.48525000
н	-4.20891300	1.34856100	2.29900800
Н	-3.39279100	-3.12494200	0.31531300
Н	-4.56921600	-1.97753800	0.99214900
Н	-2.85700600	-1.89068300	1.45951300
С	-3.61719300	0.31872900	-0.28241600
Н	-4.66723900	0.40407200	0.01688400
н	-3.51196700	0.84220600	-1.24092500
Н	1.95242200	0.99062400	-1.99998000
Н	0.78496100	3.42096000	-0.49690500
Н	0.07085100	2.54862400	-1.97187000

- computed data for *cis*-TS[B]-H

: total free energy = -912.209019 Hartree

: relative free energy = 19.40 kcal/mol

: a single imaginary frequency at -547.18 cm⁻¹

Atom	Х	Y	Z
В	0.89024700	0.13390000	-0.39843400
0	-0.47145000	0.08341000	-0.63771100
С	-1.34102300	0.63538000	0.26473500
С	-1.51906700	-0.95397600	1.76593200
С	-2.76529100	0.54938100	-0.12437700
0	1.66728100	-0.62945800	-1.21829700
0	1.37217100	0.95827400	0.57676900
С	3.05189100	-0.90515600	-0.92570400
С	3.16424100	-2.42197100	-0.78266400
С	2.79958000	1.11731100	0.69551700
С	3.06785400	1.50782300	2.14388700
С	-3.47024600	1.58324600	-0.74598900
С	-3.40796500	-0.65758300	0.18483800
С	-4.74812400	-0.83381900	-0.15451000
С	-5.44665600	0.19325900	-0.79217900
С	-4.81262800	1.40259500	-1.08165400
н	-5.36314300	2.20336400	-1.56537300
н	-2.96911000	2.52087400	-0.97072600
н	-5.25249000	-1.76405900	0.09403200
н	-6.49238200	0.05554500	-1.04963600
н	-0.97043900	1.51259100	0.79174400
С	-2.56441500	-1.66534300	0.92512200
С	-0.27854200	-1.48605800	1.98040000
н	-3.19816800	-2.29364300	1.56154400
Н	-2.05698500	-2.33458100	0.21797200

Н	-1.91159400	-0.24628100	2.49741400
Н	2.53650000	2.43285100	2.38451700
Н	4.13842400	1.66774000	2.30243500
Н	2.72473300	0.72037000	2.82083200
Н	2.49912000	-2.77609000	0.01041300
Н	4.19088200	-2.70541100	-0.53114500
н	2.88425500	-2.91024800	-1.72031000
С	3.22232200	2.25015100	-0.24033000
С	3.88341700	-0.44958300	-2.12307600
Н	2.81034400	3.19516900	0.12495700
Н	2.84463000	2.09072400	-1.25270000
Н	4.31230000	2.33607000	-0.28032100
Н	3.51159500	-0.93823300	-3.02806200
Н	4.92912200	-0.73679000	-1.97862200
Н	3.84078900	0.62939700	-2.27305000
С	3.46087300	-0.23559900	0.39868700
Н	3.17948200	-0.90601900	1.22135600
Н	4.55037500	-0.12784300	0.42903800
н	0.09379800	-2.30227400	1.36553200
н	0.39539500	-1.07086600	2.72240600

- computed data for *trans*-2[B]-H

: total free energy = -912.244490 Hartree

: relative free energy = -2.86 kcal/mol

: no imaginary frequency

Atom	Х	Y	Z
В	-0.97537100	-0.36765500	-0.28812400
0	0.35545700	-0.55471300	-0.56184700
С	1.33752900	0.30981700	-0.02461000
С	1.69461000	1.47159700	-0.98809500
С	2.66258600	-0.38284900	0.17445900
0	-1.85332800	-1.13337200	-1.00737100
0	-1.36499000	0.51491700	0.68022100
С	-3.22435100	-1.16144200	-0.56910600
С	-4.04791400	-1.64352700	-1.75679900
С	-2.72384000	0.97847000	0.81566200
С	-2.69874100	2.47776700	0.52588700
С	2.91409100	-1.68090600	0.60165200
С	3.70519300	0.49850500	-0.12223700
С	5.02813700	0.08823800	0.01225000
С	5.28985900	-1.21653700	0.44144100
С	4.24269500	-2.09529800	0.73173200
н	4.46408100	-3.10791900	1.05460000
Н	2.09425400	-2.36038800	0.81690200
н	5.84601700	0.76389200	-0.22316400
н	6.31703300	-1.55388200	0.54177100
н	0.98135700	0.72401000	0.92956900

С	3.14791000	1.83095800	-0.56898400
С	0.72865200	2.59915700	-0.96879000
Н	3.12836100	2.54063000	0.26919700
Н	3.71519200	2.29388300	-1.38073400
Н	-2.06026800	2.99162900	1.25073000
Н	-3.70925200	2.89347700	0.58879600
Н	-2.30425100	2.65966500	-0.47829400
Н	-3.94341700	-0.95428700	-2.59926500
Н	-5.10536000	-1.70951500	-1.48428200
н	-3.70490300	-2.63360500	-2.07003600
С	-3.14535700	0.74900500	2.26551400
С	-3.33119000	-2.16168000	0.58318800
н	-2.42305900	1.22663000	2.93368100
Н	-3.20128200	-0.31082800	2.51713200
Н	-4.12815600	1.19682500	2.43998300
Н	-3.12451400	-3.16853400	0.20935400
Н	-4.33473600	-2.14930400	1.01914400
Н	-2.60521400	-1.93988100	1.36932300
С	-3.63841100	0.26987000	-0.20109900
Н	-4.66787400	0.27323200	0.17301800
Н	-3.63261100	0.84580500	-1.13491300
Н	1.73500900	1.02487600	-1.98953400
Н	0.54980300	3.13650400	-0.04310400
н	0.24479500	2.95384900	-1.86966100

- computed data for *cis*-2[B]-H

: total free energy = -912.245073 Hartree

: relative free energy = -3.23 kcal/mol

: no imaginary frequency

Atom	Х	Y	Z
В	-0.87581900	-0.08815200	-0.28743600
0	0.47802500	0.02015300	-0.47827400
С	1.36233600	-0.18391000	0.62104000
С	1.59887300	1.15125400	1.40378700
С	2.73707700	-0.49202600	0.07926500
0	-1.66846300	0.30841300	-1.32949600
0	-1.36680500	-0.60372500	0.88319500
С	-3.07715900	0.56587200	-1.17571400
С	-3.27926900	2.04921800	-1.48170600
С	-2.77968400	-0.86545200	0.97374100
С	-3.12277600	-0.85981600	2.45847200
С	3.22391100	-1.70326700	-0.40115200
С	3.52781400	0.65976000	0.07048100
С	4.83024800	0.61058200	-0.41989900
С	5.32610300	-0.60461700	-0.89982200
С	4.53083300	-1.75430100	-0.89149300

Н	4.93400800	-2.69101900	-1.26363100
н	2.60101700	-2.59380100	-0.39196500
н	5.45519200	1.49946900	-0.42665100
Н	6.34216500	-0.65836700	-1.27903900
Н	0.96295700	-0.96730100	1.27154200
С	2.75844400	1.82991900	0.63423000
С	0.39298100	2.00063500	1.58570500
Н	3.36173000	2.47407400	1.27995800
н	2.36274000	2.45313700	-0.17826600
н	1.98179000	0.84409600	2.38558400
н	-2.53685300	-1.62255300	2.97909100
н	-4.18542100	-1.07495900	2.60450300
н	-2.89688000	0.11585800	2.89813800
Н	-2.67076700	2.65847400	-0.80657100
Н	-4.33015700	2.32571600	-1.35115900
Н	-2.98422700	2.26553100	-2.51238700
С	-3.04048500	-2.25024500	0.37987900
С	-3.82109100	-0.26887000	-2.21638400
Н	-2.57368100	-3.01015000	1.01311400
Н	-2.61188200	-2.33890100	-0.62103300
н	-4.11392300	-2.45434900	0.32250100
Н	-3.42143000	-0.04771100	-3.21012900
н	-4.88477800	-0.01319400	-2.20552500
Н	-3.72324600	-1.33990000	-2.03643400
С	-3.52264100	0.27743100	0.26971100
н	-3.34558800	1.17873000	0.87118100
Н	-4.60089700	0.08525600	0.28646200
Н	0.06136900	2.65724700	0.78828300
н	-0.21929100	1.92365000	2.47536800

3.2.2. 2-Crotylbenzaldehyde

- computed data for 1[B]-Me
- : total free energy = -951.515747 Hartree
- : relative free energy = 0.00 kcal/mol
- : no imaginary frequency
- : Cartesian coordinates

Atom	Х	Y	Z
В	-1.24198500	-0.70244700	0.07173100
0	0.04036300	-1.22984000	0.09388900
С	1.11180100	-0.43508500	0.33197200
С	2.97429500	2.18973400	-0.27071500
С	2.41013500	-0.96580200	0.18491800
0	-2.24911600	-1.60223400	-0.07244200
0	-1.40801200	0.64418800	0.19208100
С	-3.60943100	-1.20198900	-0.34565000
С	-4.00062100	-1.88408500	-1.65473600
с	-2.74778700	1.15528700	0.36167000

С	-2.72053500	2.59645300	-0.13148300
С	2.60142800	-2.31396700	-0.22045400
С	3.56109000	-0.15631000	0.44378200
С	4.82281600	-0.71624200	0.28661000
С	4.99860700	-2.04550000	-0.11722500
С	3.87539700	-2.83940600	-0.36927900
н	3.99785200	-3.87220500	-0.68160100
н	1.72781800	-2.92742600	-0.41320600
Н	5.69559100	-0.09912700	0.48714600
н	5.99805300	-2.45244400	-0.23024900
Н	0.90691600	0.58976700	0.60792200
С	3.42176200	1.29364500	0.85939300
С	1.91344000	2.99801000	-0.22878100
Н	2.72202900	1.39063600	1.69933100
Н	4.39838200	1.63568700	1.22187700
Н	-1.98297400	3.16976900	0.43757000
Н	-3.70238300	3.06015300	0.00091300
Н	-2.45214500	2.63420300	-1.19071400
Н	-3.31876800	-1.58611700	-2.45606800
Н	-5.01911200	-1.60197800	-1.93849500
Н	-3.95652700	-2.97076000	-1.54053200
С	-3.07116200	1.11790500	1.85531100
С	-4.48633200	-1.73855900	0.78369800
н	-2.43543200	1.83478100	2.38261600
Н	-2.88187600	0.12937000	2.27965900
н	-4.11779200	1.38202100	2.03289600
Н	-4.34958100	-2.82051400	0.86471300
Н	-5.53849200	-1.53760300	0.56188600
Н	-4.24616000	-1.28883500	1.74734800
С	-3.69327400	0.32585900	-0.51856300
Н	-4.72610100	0.65072400	-0.35439900
Н	-3.44247400	0.56600900	-1.55926000
Н	3.58065400	2.15060400	-1.17765100
Н	1.30883000	3.02115100	0.68091500
С	1.46447400	3.88635800	-1.35151100
н	2.12849700	3.79623300	-2.21531200
Н	1.44421700	4.93585000	-1.03925600
н	0.44840900	3.62754200	-1.66868500

- computed data for *trans*-TS[B]-Me

: total free energy = -951.484823 Hartree

- : relative free energy = 19.41 kcal/mol
- : a single imaginary frequency at -550.79 cm⁻¹

Atom	Х	Y	Z
В	-0.96324900	-0.56520000	-0.04621900
0	0.37327000	-0.83444900	-0.27565400
С	1.34281400	-0.07765800	0.32260400

С	1.82499300	1.74967900	-0.73797800
С	2.71556500	-0.57924600	0.24214400
0	-1.85190300	-1.29580200	-0.77396300
0	-1.31406900	0.37451000	0.87874500
С	-3.25147000	-0.95410300	-0.85666000
С	-3.53007400	-0.64706600	-2.32666200
С	-2.70322900	0.46081800	1.25849300
С	-2.90285200	1.85700000	1.83437000
С	3.08888100	-1.92561100	0.19825000
С	3.69155600	0.43102900	0.16622100
С	5.03810800	0.08740200	0.11528400
С	5.41493500	-1.25971200	0.11233400
С	4.44225100	-2.26098100	0.13949600
Н	4.73895700	-3.30510000	0.11402600
н	2.32559300	-2.69788900	0.22414100
Н	5.79420000	0.86531600	0.04374800
н	6.46606200	-1.52642800	0.06200500
н	1.03194200	0.44313100	1.22640700
С	3.13076700	1.82852700	0.04130400
С	0.80350200	2.64955500	-0.60447600
Н	2.93167100	2.26844300	1.02908200
Н	3.84997400	2.48517200	-0.46124400
Н	-2.23978500	2.00368100	2.69154900
Н	-3.93742800	1.98714300	2.16507000
Н	-2.67560800	2.61832600	1.08251800
Н	-2.88960900	0.17171000	-2.66832400
Н	-4.57555400	-0.35300200	-2.46125200
Н	-3.33096800	-1.52978300	-2.94079900
С	-2.95858100	-0.59427900	2.33516900
С	-4.05185700	-2.18399200	-0.43394100
Н	-2.39684800	-0.33592900	3.23723000
Н	-2.63044000	-1.58378200	2.00793200
Н	-4.02212100	-0.64316700	2.58708200
Н	-3.74780600	-3.04069900	-1.04182000
Н	-5.11880900	-2.00458400	-0.59540500
Н	-3.90094500	-2.43524200	0.61654900
С	-3.55718700	0.29335900	-0.00532400
Н	-4.61841300	0.29413900	0.26549400
н	-3.38431000	1.18416100	-0.62245500
Н	1.88792900	1.20166500	-1.68184600
Н	0.78465200	3.29801500	0.27199600
С	-0.38378400	2.69169100	-1.51620500
Н	-0.25459000	2.00794500	-2.36126600
Н	-0.55585200	3.69867500	-1.91433100
Н	-1.30005800	2.40154900	-0.98453800

- computed data for *cis*-TS[B]-Me

: total free energy = -951.483559 Hartree

: relative free energy = 20.20 kcal/mol

: a single imaginary frequency at -555.77 cm⁻¹

Atom	Х	Y	Z
В	-0.86465800	-0.43685200	-0.27030400
0	0.49696200	-0.52119800	-0.47953100
С	1.36676100	-0.32284000	0.56365600
С	1.62439400	1.85865800	0.50589000
С	2.78411000	-0.58250200	0.23533700
0	-1.64632900	-0.45834700	-1.38786900
0	-1.35772800	-0.39853600	1.00409100
С	-3.04475500	-0.10766800	-1.35966700
с	-3.18462400	1.16649800	-2.19036900
С	-2.77295100	-0.62100800	1.17337400
с	-3.13615900	-0.07329200	2.54747600
с	3.45472300	-1.76941400	0.54234000
с	3.46148100	0.46482900	-0.40572600
с	4.79874300	0.30640200	-0.76436800
С	5.46188400	-0.88805300	-0.47503300
с	4.79503800	-1.92176200	0.18451100
н	5.31820600	-2.84311100	0.42080300
н	2.92792400	-2.57155600	1.05227100
н	5.32952300	1.12052900	-1.25135000
Н	6.50566600	-1.00594100	-0.74981600
Н	0.97878300	-0.58538900	1.54619900
С	2.65711900	1.72627300	-0.59926000
С	0.40096400	2.43124600	0.29293600
н	3.32141400	2.59820900	-0.60908800
Н	2.14025300	1.70653300	-1.56774300
Н	2.02384400	1.87039200	1.52254600
Н	-2.54810900	-0.58146400	3.31691200
Н	-4.19788700	-0.23856000	2.75245800
Н	-2.93030100	0.99923600	2.60261100
Н	-2.55773900	1.95894800	-1.76960700
Н	-4.22445400	1.50775800	-2.19171000
Н	-2.87308400	0.98151600	-3.22224200
С	-3.01867600	-2.12982500	1.12892900
С	-3.81521400	-1.24224000	-2.03145200
Н	-2.54152500	-2.60106200	1.99290200
Н	-2.59457000	-2.57520500	0.22560400
н	-4.09005800	-2.34974800	1.15794000
н	-3.39976900	-1.42400500	-3.02663400
Н	-4.86731800	-0.96263900	-2.13956800
Н	-3.76328500	-2.17034900	-1.46035600
С	-3.51141400	0.16655300	0.08391200
Н	-3.35666100	1.23024500	0.30462000
н	-4.58797000	-0.02120000	0.15835400
н	0.06247000	2.56703800	-0.73498400
С	-0.54060100	2.83399700	1.38566400
н	-1.52201800	2.36235500	1.26066900

Н	-0.70615200	3.91851200	1.39191000
н	-0.15208200	2.54275100	2.36638400

- computed data for *trans*-2[B]-Me

: total free energy = -951.520328 Hartree

: relative free energy = -2.87 kcal/mol

: no imaginary frequency

Atom	х	Y	Z
В	-0.93722600	-0.41593500	-0.21541700
0	0.37970800	-0.51549000	-0.58532100
С	1.38279100	0.19588800	0.11518000
С	1.73596700	1.55199000	-0.56049300
С	2.70639100	-0.52770900	0.12173200
0	-1.83304200	-1.10484500	-0.98305400
0	-1.28876900	0.33663400	0.87229700
С	-3.25480500	-0.88483500	-0.90860900
С	-3.69213000	-0.42684400	-2.29900900
С	-2.65037400	0.28457700	1.33827600
С	-2.89107900	1.58803000	2.09046700
С	2.95791800	-1.89017200	0.22652100
С	3.74890300	0.39799400	0.02533600
С	5.07142800	-0.03433800	0.03901400
С	5.33333300	-1.40400400	0.14344300
С	4.28642400	-2.32526800	0.23356500
н	4.50768900	-3.38582400	0.30408800
н	2.13817400	-2.60045900	0.28790000
н	5.88899800	0.67684800	-0.04309700
н	6.36023200	-1.75676300	0.14511700
н	1.05026300	0.38003000	1.14652400
С	3.19031500	1.79806300	-0.09092400
С	0.77855700	2.65866100	-0.29246800
н	3.18556700	2.29268300	0.89035900
н	3.75165000	2.43637900	-0.77853300
н	-2.18676500	1.67235300	2.92285600
н	-3.90972100	1.61662600	2.48835600
н	-2.74805300	2.44361600	1.42372400
н	-3.15453400	0.48254200	-2.58377800
н	-4.76598600	-0.21611200	-2.30989800
н	-3.47941900	-1.20611500	-3.03627000
С	-2.77391700	-0.90431300	2.29180400
C	-3.91724000	-2.22364000	-0.58849200
Н	-2.17748100	-0.71373300	3.18856300
н	-2.40099600	-1.82224000	1.83176100
Н	-3.81514800	-1.05868900	2.59024100
н	-3.61416100	-2.96438300	-1.33387900
н	-5.00551200	-2.11810300	-0.62679300
Н	-3.64252100	-2.59681900	0.39858200

С	-3.57792400	0.21720900	0.11727300
Н	-4.61616800	0.10996700	0.44952500
н	-3.50296400	1.18915600	-0.38747300
н	1.75668200	1.33601500	-1.63903900
н	0.78618500	3.09898400	0.70287900
С	-0.38162200	2.93558400	-1.18748100
н	-0.12988200	2.73951900	-2.23528000
н	-0.72143400	3.97231700	-1.10034400
н	-1.24936000	2.30025400	-0.94121200

- computed data for *cis*-2[B]-Me

: total free energy = -951.519971 Hartree

: relative free energy = -2.65 kcal/mol

: no imaginary frequency

Atom	Х	Y	Z
В	0.83656100	-0.45784500	0.16178400
0	-0.51922700	-0.51911100	0.35836700
С	-1.38838500	0.15676300	-0.54790500
С	-1.57971500	1.64859500	-0.11575400
С	-2.77849500	-0.40958000	-0.38768600
0	1.62221600	-0.89135600	1.19539000
0	1.34271500	-0.02917500	-1.03814900
С	3.02277100	-0.56735900	1.28655400
С	3.17542000	0.34537000	2.50252000
С	2.75437900	-0.19712300	-1.26802900
С	3.13300000	0.77475700	-2.37850800
С	-3.30609000	-1.57506500	-0.93324900
С	-3.53614600	0.39685500	0.46614400
С	-4.84558400	0.04396000	0.78225500
С	-5.38229700	-1.12383200	0.23329000
С	-4.62048000	-1.92883000	-0.61847800
Н	-5.05519200	-2.82985000	-1.03998900
Н	-2.70891900	-2.19714400	-1.59472300
Н	-5.44520100	0.66640100	1.44090600
н	-6.40437400	-1.40689300	0.46645500
Н	-0.99487600	0.07344900	-1.56556100
С	-2.72645700	1.58772400	0.91989500
С	-0.34100400	2.33708600	0.34192500
н	-3.30405300	2.51580300	0.95434300
Н	-2.32167400	1.41223300	1.92521800
Н	-1.96391800	2.15944000	-1.01171200
Н	2.53050100	0.57383700	-3.26913900
н	4.18975800	0.66118900	-2.63790500
Н	2.95756300	1.80668000	-2.06216000
н	2.55192500	1.23696000	2.38149600
н	4.21759900	0.66016000	2.61550400
н	2.86549200	-0.17965200	3.41053400

2.98947500	-1.63624800	-1.72934000
3.78502900	-1.86829800	1.52958600
2.52141100	-1.78472700	-2.70678300
2.54800100	-2.35255300	-1.03230000
4.05949600	-1.84682100	-1.81867800
3.36719000	-2.37523600	2.40399300
4.83893700	-1.64957700	1.72555900
3.72756200	-2.54623900	0.67696400
3.48973800	0.18059300	0.02340700
3.31978400	1.25503000	0.17231000
4.56816700	0.03908200	-0.10660200
-0.09135100	2.31821300	1.39877400
0.50505600	3.10914800	-0.61266200
1.49476700	3.32305700	-0.19925700
0.04088800	4.07238800	-0.87562300
0.64080500	2.55403500	-1.54920700
	2.98947500 3.78502900 2.52141100 2.54800100 4.05949600 3.36719000 4.83893700 3.72756200 3.48973800 3.31978400 4.56816700 -0.09135100 0.50505600 1.49476700 0.04088800 0.64080500	2.98947500-1.636248003.78502900-1.868298002.52141100-1.784727002.54800100-2.352553004.05949600-1.846821003.36719000-2.375236004.83893700-1.649577003.72756200-2.546239003.489738000.180593003.319784001.255030004.568167000.03908200-0.091351002.318213000.505056003.109148001.494767003.323057000.040888004.072388000.640805002.55403500

3.2.3. 2-Cinnamylbenzaldehyde

- computed data for 1[B]-Ph
- : total free energy = -1143.143066 Hartree
- : relative free energy = 0.00 kcal/mol
- : no imaginary frequency

Atom	Х	Y	Z
В	-0.80181500	-1.88589100	0.03138400
0	0.56150500	-2.14173300	0.07144300
С	1.43048800	-1.16810800	0.43696000
С	2.39633000	1.85519700	0.51784100
С	2.79403500	-1.28990500	0.09739600
0	-1.60220000	-2.95198700	-0.24169500
0	-1.24438700	-0.62088200	0.26080800
с	-3.02388600	-2.77613200	-0.06369300
с	-3.69846800	-3.85063400	-0.90637700
С	-2.60034200	-0.20568800	-0.02467700
с	-2.50097800	0.89834300	-1.07486200
С	3.25773800	-2.40907500	-0.64512200
С	3.73759200	-0.28690800	0.48808300
С	5.06901500	-0.44104300	0.12270500
С	5.51280800	-1.54772700	-0.61153900
С	4.59419400	-2.53110200	-0.99146400
н	4.92554300	-3.39500100	-1.55979500
н	2.54200400	-3.16964100	-0.93828400
н	5.78349400	0.32228600	0.42153700
н	6.56024000	-1.63817800	-0.87963000
н	1.01586400	-0.32206800	0.96578200
с	3.30897300	0.93004400	1.28348600
С	1.22522300	2.29686900	0.99053500

н	0.92569100	1.98632200	1.99347200
С	0.25123500	3.15457300	0.29219300
Н	2.81299800	0.62504300	2.21428800
н	4.21432300	1.47750400	1.57185000
Н	2.74123100	2.14817400	-0.47374900
н	-1.95288300	1.75663100	-0.67513700
Н	-3.50296400	1.22748900	-1.36849800
н	-1.98015200	0.52985800	-1.96369400
Н	-3.44098600	-3.72716000	-1.96176200
н	-4.78527100	-3.78893300	-0.79885100
н	-3.37018100	-4.84084700	-0.57870400
С	-3.17976400	0.37486600	1.26262300
С	-3.33803100	-2.99476100	1.41662300
Н	-2.52343800	1.17344300	1.62216600
Н	-3.28107100	-0.37398400	2.04918500
Н	-4.16692600	0.80229500	1.06295400
Н	-3.13876200	-4.03720400	1.68032000
Н	-4.38894300	-2.77473400	1.62657700
Н	-2.71430500	-2.36310000	2.05378100
С	0.32769900	3.43209500	-1.08186700
С	-0.63718800	4.21963000	-1.70218700
С	-1.70378300	4.74275500	-0.96649600
С	-1.79412700	4.47188600	0.39796000
С	-0.82531300	3.68434500	1.01806600
н	1.13414200	3.01310000	-1.67598900
Н	-0.56441100	4.41731500	-2.76725600
н	-2.45834500	5.35060400	-1.45554300
н	-2.62016600	4.86879400	0.98012400
Н	-0.90348900	3.46979500	2.08109800
С	-3.40923100	-1.38724700	-0.59179900
н	-4.47568600	-1.21132100	-0.41522000
н	-3.26312700	-1.41384800	-1.67873200

- computed data for *trans*-TS[B]-Ph

: total free energy = -1143.122373 Hartree

: relative free energy = 12.99 kcal/mol

: a single imaginary frequency at -488.51 cm⁻¹

Atom	Х	Y	Z
В	-0.48680800	-1.21434300	-0.11463900
0	0.85132700	-1.05056100	-0.44160000
С	1.71948000	-0.38361900	0.36890800
С	1.93592900	1.81445400	-0.05864700
С	3.14215900	-0.61919800	0.10623300
0	-1.26387700	-1.74946800	-1.09748100
0	-0.92201500	-0.87378200	1.12662600
С	-2.59343200	-2.18346700	-0.74650100
С	-3.40506400	-2.16758400	-2.03578600

С	-2.32474500	-0.85240500	1.47877100
с	-2.62821100	0.56755400	1.94618700
С	3.66086900	-1.84422100	-0.32876000
С	3.99313800	0.48675200	0.27390700
С	5.36191400	0.34070100	0.06745200
С	5.88437200	-0.89345700	-0.32795500
С	5.03255400	-1.97963600	-0.53812800
Н	5.43756300	-2.93173700	-0.86686000
Н	2.99039600	-2.68377100	-0.48719500
Н	6.01946900	1.19849200	0.18381700
Н	6.95137700	-0.99945300	-0.49718900
Н	1.37477500	-0.20097400	1.38388400
с	3.30863000	1.79663200	0.58592600
С	0.89059100	2.51891800	0.47082900
Н	1.00385000	2.95019300	1.46540200
С	-0.42046000	2.67303200	-0.14874800
Н	3.19688600	1.93606600	1.67001500
Н	3.91788800	2.63146600	0.21969800
Н	1.91352300	1.55386400	-1.11800100
Н	-2.00217400	0.82409900	2.80648300
Н	-3.67976900	0.65069800	2.23883600
Н	-2.43004400	1.27872100	1.13995400
Н	-3.45189900	-1.15486100	-2.44556100
Н	-4.42395400	-2.51827600	-1.84701000
Н	-2.94015600	-2.82422500	-2.77636700
С	-2.52108700	-1.82575700	2.63883900
С	-2.48981300	-3.61252100	-0.21152200
Н	-1.86131100	-1.54315800	3.46417100
н	-2.30059200	-2.85658700	2.36019500
Н	-3.55575400	-1.77719500	2.99060400
н	-2.18610200	-4.28267900	-1.02068900
н	-3.45285800	-3.95189900	0.18146000
Н	-1.74206700	-3.68793300	0.58135900
С	-0.84822800	1.86210900	-1.21848200
С	-2.12411000	2.00464100	-1.75609800
С	-3.00783200	2.95790800	-1.24403000
С	-2.59702300	3.77180000	-0.18587900
С	-1.32350900	3.62731000	0.35604700
н	-0.18343200	1.10138200	-1.61956400
н	-2.43321300	1.36100500	-2.57481600
Н	-4.00391200	3.06213100	-1.66217800
Н	-3.27447900	4.51583300	0.22233200
Н	-1.01551100	4.25515500	1.18845900
С	-3.18718900	-1.17399000	0.24543600
Н	-4.17289100	-1.51926400	0.57543200
Н	-3.33863700	-0.24060700	-0.31183600

- computed data for *cis*-TS[B]-Ph

: total free energy = -1143.120289 Hartree

: relative free energy = 14.29 kcal/mol

: a single imaginary frequency at -527.57 cm⁻¹

Atom	х	Y	Z
В	-0.25027800	-1.37335500	0.08708000
0	1.12371600	-1.23192200	-0.02472200
С	1.77522800	-0.26106100	0.67962500
С	1.55362200	1.45057000	-0.77714400
С	3.24066800	-0.26197400	0.51660200
0	-0.83179200	-2.20968700	-0.81772100
0	-0.91048300	-0.73117000	1.08992000
С	-2.26185400	-2.27523400	-0.99346300
С	-2.52884500	-1.89903800	-2.44957100
С	-2.30422900	-1.03736900	1.29995100
С	-2.91832300	0.19188100	1.95674000
С	4.13201500	-0.73157900	1.48453900
С	3.72269100	0.26584200	-0.69166600
С	5.09304900	0.28476200	-0.93828000
С	5.98211300	-0.20814200	0.02013800
С	5.50480500	-0.70563600	1.23313300
н	6.19969000	-1.07233700	1.98204600
Н	3.75269800	-1.12435500	2.42394200
н	5.47050000	0.70457200	-1.86712900
Н	7.05023700	-0.18529700	-0.17283200
Н	1.31422900	0.03579900	1.61929400
С	2.67354400	0.85226400	-1.60469300
С	0.25634100	1.46652500	-1.20969100
Н	-0.00624400	0.85380300	-2.07331900
С	-0.83720500	2.22541000	-0.60992100
Н	3.12190200	1.62060700	-2.24542400
Н	2.25866700	0.08107900	-2.26633100
Н	1.87286200	2.17550400	-0.02805200
Н	-2.39969400	0.41061000	2.89506200
Н	-3.97645700	0.01594100	2.17396800
Н	-2.82769000	1.05912900	1.29669300
Н	-2.13027900	-0.90179100	-2.65912000
Н	-3.60454900	-1.89498200	-2.65074400
Н	-2.04791500	-2.61701600	-3.11983300
С	-2.37714100	-2.23656600	2.24550900
С	-2.69577800	-3.72056000	-0.75828200
Н	-2.00849000	-1.94325700	3.23267200
Н	-1.75766500	-3.06323800	1.89010700
Н	-3.40812800	-2.58831400	2.34802700
Н	-2.13214500	-4.38080300	-1.42354200
Н	-3.76090400	-3.82883300	-0.98330100
Н	-2.52708600	-4.04278500	0.26955300
С	-2.08189900	2.27579800	-1.26442100
С	-3.14229900	3.01627400	-0.74837000
С	-2.98766300	3.72598400	0.44350700

С	-1.76260800	3.67585900	1.11411400
С	-0.70425300	2.93398100	0.59997100
н	-2.20798000	1.73316700	-2.19873100
Н	-4.08992700	3.04047300	-1.27818900
Н	-3.81125900	4.30516400	0.84860100
Н	-1.63475900	4.21319100	2.04917200
н	0.23244000	2.89685800	1.14820000
C	-2.96056800	-1.26259000	-0.06905300
н	-2.96498100	-0.28622400	-0.57086600
н	-4.00566100	-1.56007100	0.06921400

- computed data for *trans*-2[B]-Ph

- : total free energy = -1143.162350 Hartree
- : relative free energy = -12.10 kcal/mol

: no imaginary frequency

Atom	Х	Y	Z
В	-0.42333200	-1.05475400	-0.23942000
0	0.83957000	-0.68856300	-0.63551600
С	1.71436100	0.03529400	0.20798400
С	1.80426300	1.54039000	-0.19506300
С	3.14117400	-0.43696200	0.06047300
0	-1.20851400	-1.61155500	-1.21210300
0	-0.81794700	-0.88357300	1.05589900
С	-2.44822900	-2.22447400	-0.81462800
С	-3.34172700	-2.22877500	-2.04910200
С	-2.19057700	-1.02306700	1.47987000
С	-2.60159000	0.32933400	2.05488000
С	3.60954200	-1.74192300	-0.04402200
С	4.01692400	0.64926400	0.05092000
С	5.38919000	0.44244000	-0.06080300
С	5.86797900	-0.86610400	-0.16640900
С	4.98591800	-1.95077800	-0.16001800
Н	5.37395600	-2.96050400	-0.25178600
Н	2.91673000	-2.57882700	-0.04867700
Н	6.07759200	1.28305900	-0.07652900
Н	6.93494900	-1.04256600	-0.26276600
н	1.38159800	-0.05565700	1.25055500
С	3.24947600	1.94318500	0.18048100
С	0.76135100	2.42055000	0.40440200
Н	1.02676800	2.95815000	1.31248200
С	-0.56107100	2.59328800	-0.08475000
Н	3.28247700	2.30168600	1.21811300
Н	3.63837600	2.74385400	-0.45455400
Н	1.72364700	1.54046100	-1.29145900
н	-1.95517200	0.59359700	2.89768400
Н	-3.63867300	0.29368500	2.40369900
н	-2.51463200	1.10358700	1.28762900

Н	-3.53033000	-1.20548100	-2.38618600
н	-4.29931500	-2.70780200	-1.82424100
н	-2.85557500	-2.78034000	-2.85871600
С	-2.22800900	-2.07875600	2.58291100
С	-2.14513700	-3.66055000	-0.38387300
Н	-1.54430500	-1.78814700	3.38578700
н	-1.93696500	-3.06637900	2.22375300
Н	-3.23866800	-2.14614200	2.99637000
н	-1.81471400	-4.23792600	-1.25207700
Н	-3.03498800	-4.13851900	0.03682100
Н	-1.34588700	-3.69103100	0.36040100
С	-1.07051200	1.88230400	-1.20400600
С	-2.38769400	2.04701600	-1.61233900
С	-3.23908600	2.93182700	-0.94247300
С	-2.74972100	3.66249100	0.14835500
С	-1.44104800	3.49645000	0.57190500
Н	-0.42786100	1.19139200	-1.74074600
Н	-2.75583000	1.48018500	-2.46278400
н	-4.26695300	3.05474900	-1.26765800
Н	-3.40045300	4.35696300	0.67114600
Н	-1.07188800	4.05548700	1.42790300
С	-3.09003000	-1.35712900	0.27669500
н	-4.01009500	-1.83315000	0.63299900
Н	-3.37648500	-0.41299000	-0.20464300

- computed data for *cis*-2[B]-Ph

: total free energy = -1143.160776 Hartree

: relative free energy = -11.11 kcal/mol

: no imaginary frequency

Atom	Х	Y	Z
В	-0.21992300	-1.32021400	0.00196000
0	1.11758100	-1.07328000	-0.18985600
С	1.72510400	0.04541900	0.45160600
С	1.57031200	1.32993300	-0.42559400
С	3.22037400	-0.16148300	0.45809800
0	-0.78907800	-2.23844500	-0.83700600
0	-0.89585200	-0.68508300	1.00661700
С	-2.21599100	-2.36872300	-0.98368100
С	-2.52757900	-2.03747300	-2.44243400
С	-2.25716000	-1.07175300	1.27202100
С	-2.92656700	0.13083300	1.92521400
С	3.98401700	-0.92277500	1.33630300
С	3.80810400	0.50897100	-0.61781600
С	5.18227700	0.42820900	-0.82636800
С	5.95535700	-0.33185500	0.05555000
С	5.36330100	-1.00276700	1.12938200
Н	5.98012600	-1.58426200	1.80744400

Н	3.51821000	-1.44214600	2.16952300
н	5.65000500	0.94993000	-1.65679900
н	7.02916000	-0.39799400	-0.09138600
н	1.29360400	0.17935000	1.44821500
С	2.75914200	1.24882000	-1.41316800
С	0.23857900	1.48024500	-1.07594600
н	0.08457800	0.95749100	-2.01826000
С	-0.85897400	2.22291800	-0.55851800
н	3.08582500	2.23688000	-1.74862100
н	2.47921200	0.67115900	-2.30344900
н	1.76394500	2.17363600	0.24765900
н	-2.38554800	0.40945400	2.83468700
н	-3.96059200	-0.10925000	2.19173600
н	-2.92231600	0.98550000	1.24239000
н	-2.17434500	-1.02936400	-2.68092400
н	-3.60625000	-2.08209100	-2.62233900
н	-2.03003700	-2.75001200	-3.10650600
С	-2.22683500	-2.25250600	2.24330600
С	-2.58445600	-3.82516500	-0.70761800
н	-1.84142000	-1.91653600	3.21038800
н	-1.57246000	-3.04869900	1.88077800
н	-3.23085400	-2.66189500	2.39082300
н	-1.99823200	-4.47676800	-1.36187500
н	-3.64590600	-3.98645300	-0.91833000
н	-2.39177500	-4.11263700	0.32644000
С	-2.07380800	2.28176300	-1.29222900
С	-3.16275600	3.00391300	-0.82817900
С	-3.08542300	3.69738100	0.38590600
С	-1.90224400	3.64693200	1.13010800
С	-0.80945000	2.92140900	0.67576200
н	-2.13850800	1.74978100	-2.23851300
н	-4.07796600	3.03171500	-1.41189400
н	-3.93654600	4.26483700	0.74775400
н	-1.83725500	4.17315800	2.07775400
н	0.09037000	2.88560500	1.28144200
С	-2.94305400	-1.36778200	-0.06831200
н	-3.01343100	-0.40676400	-0.59542900
н	-3.96682500	-1.71489400	0.10907500

3.3. NCI plot analysis

In each transition structures, broad green isosurface is shown between the C–H bond and the aromatic ring, indicating the presence of attractive van der Waals interaction.

4. References

- (a) A. R. Jagdale, J. H. Park and S. W. Youn, J. Org. Chem., 2011, 76, 7204–7215; (b) D. Janssen-Müller, M. Schedler, M. Fleige, C. G. Daniliuc and F. Glorius, Angew. Chem. Int. Ed., 2015, 54, 12492–12496.
- (a) A. Horton, K. Nash, E. Tackie-Yarboi, A. Kostrevski, A. Novak, A. Raghavan, J. Tulsulkar, Q. Alhadidi, N. Wamer and B. Langenderfer, *J. Med. Chem.*, 2018, **61**, 4593–4607; (b) D. Craig and N. K. Slavov, *Chem. Commun.*, 2008, 6054– 6056; (c) S. Ni and J. Franzén, *Chem. Commun.*, 2018, **54**, 12982–12985; (d) S. S. M. Spoehrle, T. H. West, J. E. Taylor, A. M. Z. Slawin and A. D. Smith, *J. Am. Chem. Soc.*, 2017, **139**, 11895–11902.
- 3. R. Wang, Y. Chen, M. Shu, W. Zhao, M. Tao, C. Du, X. Fu, A. Li and Z. Lin, Chem. Eur. J., 2020, 26, 1941–1946.
- 4. D. A. Kutateladze and E. N. Jacobsen, J. Am. Chem. Soc., 2021, 143, 48, 20077-20083.
- 5. J. A. P. Maitland, J. A. Leitch, K. Yamazaki, K. E. Christensen, D. J. Cassar, T. A. Hamlin and D. J. Dixon, *Angew. Chem. Int. Ed.*, 2021, **60**, 24116–24123.
- 6. E. E. Maciver, P. C. Knipe, A. P. Cridland, A. L. Thompson and M. D. Smith, Chem. Sci., 2012, 3, 537-540.
- 7. E. Fava, M. Nakajima, A. L. P. Nguyen and M. Rueping, J. Org. Chem., 2016, 81, 6959-6964.
- 8. J. Freedman, M. J. Vaal and E. W. Huber, J. Org. Chem., 1991, 56, 670-672.
- 9. (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241; (b) Y. Zhao and D. G. Truhlar, *Acc. Chem. Res.*, 2008, **41**, 157–167.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,; J. V. Ortiz,; A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- 11. (a) S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117-129; (b) J. L. Pascual-Ahuir, E. Silla and I. Tuñón,

J. Comput. Chem., 1994, 15, 1127–1138; (c) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001.

- 12. The predefined solvent parameters are unavailable for PhCF₃ ($\epsilon = 9.18$) in the Gaussian program. 1,2-DCE was employed instead because it has similar dielectric constant ($\epsilon = 10.13$) and solvent cavity size. See: L. Belding, S. R. Chemler and T. Dudding, *J. Org. Chem.*, 2013, **78**, 10288–10297.
- (a) E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498–6506; (b) J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem. Theory Comput. 2011, 7, 625–632.
- 14. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 15. W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14, 33-38.

