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Supplementary discussion (I): Dataset 
 
Data source. The data source for our study is an empirical force-field model (MOF-FF pa-
rameterised as described in Ref. 14). To justify the use of this particular model in our work, 
we show in Fig. S1 that the majority of our dataset lies well within the range tested by the 
MOF-FF model used. We acknowledge that a few structures fall outside this range; however, 
these are rare occurrences and their impact on the results is expected to be small.  
 
 

 
 
Fig. S1. Distribution of structural properties in our database compared to the range tested for the MOF-
FF model (light grey shading) in Ref. 14. (a) Distribution of bond lengths. (b) Distribution of bond angles. 
The blue plots show the distribution of bond lengths / angles for all atoms, whereas the purple plots 
contain only bond lengths involving Zn2+ / angles with Zn2+ as the central atom. 
 
 
Structure generation. The structures were generated by decorating (“back-mapping”) a set 
of AB2 networks taken from prior work; the details of the structure generation procedure are 
described at https://github.com/tcnicholas/hZIF-data. One central aspect of the dataset gen-
eration is the distortion (“rattling”) of structures, taking them slightly away from the (MOF-FF-
optimised) local-minimum configurations. This is in analogy to common practice in the fitting 
of ML potential models. 
 
The dataset contains structures with different degrees of those perturbations, labelled 
“small”, “medium”, and “large”. We use two different datasets to fit the GPR models: 
 

• A “main” dataset, containing only the “medium”-distorted configurations such that all 
structures are generated in a consistent way. We show fitting results for this dataset in 
the main text, and in Fig. S2a we additionally test models fitted to that dataset on 
structures with “small” and “large” distortions, respectively. 

• An “extended” dataset, containing all of the “small”-, “medium”-, and “large”-distorted 
configurations. We show in Figs. S2b and S3 that qualitatively similar conclusions can 
be drawn from fitting to this extended dataset.  

 
We note the appearance of some clusters of points away from the diagonal (Fig. S2); we 
speculate that those might be due to structures with too little “rattling” that are therefore lo-
cally too similar to one another. Further work is required, however, for a full assessment. 
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Fig. S2 (as a supplement to Fig. 2b in the main text). Scatter plots of local-environment energies as 
defined in the main text and the associated GPR ML predictions. From left to right, we characterise GPR 
models based on: a fully atomistic description; a cg description where the linker molecules are described 
by single “B” beads; and one where only A-site species are represented. (a) Tests for the GPR model 
described in the main text, fitted using 32,000 data points from the main (“medium”) dataset. We show 
tests for this model, from top to bottom: on structures with smaller distortions than in the training; on the 
same dataset (using 5-fold cross-validation), as shown in Fig. 2b; and on structures with larger distor-
tions than in the training. (b) As before, but now for training and 5-fold cross-validation for the extended 
dataset containing all relevant configurations. Whilst the absolute errors and the details in the appear-
ance of the scatter plots differ from case to case, the overall interpretation is similar: cg models based 
on an AB2 representation (middle) perform reasonably well compared to the fully atomistic ones; cg 
models based on an A-site only representation (right) perform less well.  
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Fig. S3 (as a supplement to Fig. 2c in the main text). Comparison of learning curves for the extended 
dataset (grey) and the main dataset (medium only, as shown in the main text; magenta). The learning 
curves are qualitatively similar and lead to essentially unchanged conclusions irrespective of which da-
taset is used for fitting, consistent with our interpretation of Fig. S2. All errors were obtained by 5-fold 
cross-validation. 
 
 
  



S5 
 

Supplementary discussion (II): Hyperparameters and numerical errors 
 
Our Communication shows cg-GPR models using the Smooth Overlap of Atomic Positions 
(SOAP) approach to construct the descriptors; see Ref. 20 in the main text.  
 
Angular basis functions. The SOAP parameters used in Fig. 2c are nmax = 16 and lmax = 8, 
where nmax and lmax control the number of radial and angular basis functions used, respec-
tively. Here, we perform an ablation test by gradually reducing lmax to 0, which is equivalent to 
removing angular information from the local-environment featurisation.  
 
Figure S4 shows the results of this test for all three classes of structures (atomistic, AB2 cg 
and A-only cg), evaluated for the extended dataset. As expected, comparison with lmax=8 
(pink) clearly shows that the model performs significantly worse when the descriptors neglect 
angular features. This is particularly acute in the case of the atomistic model. As the degree 
of coarse-graining increases, the difference between the models decreases: once we have 
reached an A-site only model, adding additional angular information provides little benefit 
given that there are much fewer degrees of freedom to consider in the first place.  
 
 

 
 
Fig. S4. Learning curves showing the model root mean square error (RMSE) depending on the number 
of training datapoints for lowering lmax. The results from lmax=8 (also shown in grey in Fig. S3) were added 
for direct comparison. The RMSE for the largest number of training points is indicated by a dashed grey 
line in each panel. From left to right, we characterise GPR models based on a fully atomistic description; 
a cg description where the linker molecules are described by single “B” beads; and a more aggressively 
coarse-grained model where only the A-site species are represented. 
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Cut-off and smoothness. In Fig. 3 of the main text, we scan the hyperparameter space de-
fined by the radial cut-off and the smoothness used in constructing the atomic neighbour 
density. We re-computed this scan using the extended dataset and compare both plots in 
Fig. S5. The optimised hyperparameters for all models are listed in Table S1. 
 
 

 
 
Fig. S5 (as a supplement to Fig. 3 in the main text). As Fig. 3, but now comparing results for the main 
and extended datasets (see above), and indicating the respective values of the optimised cut-off radii 
by dashed horizontal lines. 
 
 
Table S1. Optimised SOAP hyperparameters obtained via grid searches using N = 10,000 training 
datapoints (cf. Fig. S5 above). Note that the above surfaces are very shallow, especially in terms of 
the 𝜎𝜎at dependence, and therefore those “optimised” values are only given for completeness.  
 

  Main dataset Extended dataset 
 𝑟𝑟cut (Å) 𝜎𝜎at (Å) 𝑟𝑟cut (Å) 𝜎𝜎at (Å) 
Fully atomistic 6.75 0.30 6.75 0.50 
cg (AB2) 7.00 0.25 9.00 0.20 
cg (A only) 9.75 0.90 13.50 0.80 
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Hyperparameter transferability. Supporting the analysis discussed in the main text, we 
cross-checked how using the optimised hyperparameters for one representation affects the 
prediction error of another (Table S2). The effect of optimising the hyperparameters is nota-
ble for fully atomistic models, less strongly so for the cg ones. 
 
Table S2. RMSEs for different GPR models for local-environment energies in ZIFs. The columns show 
results for the three different representations. The rows correspond to hyperparameters, H, optimised 
for the respective representation (cf. Table S1). 
 

 Main dataset, RMSE for 𝜀𝜀local
(𝑖𝑖)  (eV) 

  Fully atomistic cg (AB2) cg (A only) 
H for atomistic 0.047 0.074 0.138 
H for cg (AB2) 0.047 0.071 0.135 
H for cg (A) 0.063 0.078 0.128 
 Extended dataset, RMSE for 𝜀𝜀local

(𝑖𝑖)  (eV) 
 Fully atomistic cg (AB2) cg (A only) 
H for atomistic 0.049 0.075 0.144 
H for cg (AB2) 0.054 0.066 0.157 
H for cg (A) 0.082 0.083 0.133 

 
 
Zn2+ versus local-environment energies. We also tested the errors for GPR models that 
regress only the MOF-FF energies of the Zn2+ environments themselves (Table S3). The 
magnitude of the errors is lower, but the trends observed are similar to those for the local-en-
vironment energies (as discussed in the main text). We also performed the same analysis on 
the extended dataset (see above), again leading to similar conclusions as for the main one. 
 
Table S3. RMSEs for GPR models of the local-environment energies (the “Main dataset” results are 
the same as the values shown in Fig. 2c of the main text), and for GPR models of the Zn2+ energies 
only – that is, not considering the atomic energies of the atoms in the linkers.  
 

 Main dataset, cross-validation RMSE (eV) 
  Fully atomistic cg (AB2) cg (A only) 
Local environment, 𝜀𝜀local

(𝑖𝑖)  0.047 0.071 0.128 
Zn2+ energies only 0.011 0.016 0.048 
 Extended dataset, cross-validation RMSE (eV) 
 Fully atomistic cg (AB2) cg (A only) 
Local environment, 𝜀𝜀local

(𝑖𝑖)  0.049 0.066 0.133 
Zn2+ energies only 0.013 0.018 0.053 

 
 


