# **Supporting Information**

# Long-term sciatic nerve block lead by supramolecular arrangement of self-delivery local anesthetic nano systems

Lei Tang,<sup>\*a,b</sup> Feng Qin,<sup>c</sup> Deying Gong,<sup>a,b</sup> Yu Dong,<sup>d</sup> LiLi Pan,<sup>c</sup> Changcui Zhou,<sup>a,b</sup> Qinqin Yin,<sup>a</sup> Xinghai Song,<sup>a,b</sup> Rui Ling,<sup>a,b</sup> Junlong Huang,<sup>a,b</sup> Qin Fan,<sup>c</sup> Wenhao Yi,<sup>c</sup> Fengbo Wu,<sup>c</sup> Xiaoai Wu,<sup>c</sup> Weiyi Zhang,<sup>a</sup> Jun Yang<sup>\*a,b</sup> and Ji-Yu Wang<sup>\*e</sup>

- a. Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
- c. West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
- d. College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P.R. China.
- e. Department of Chemistry, Xihua University, Chengdu, P.R. China.

# **Corresponding Author:**

Lei Tang: manstein\_1984@sina.com

Jun Yang: yang215jun@163.com

Ji-Yu Wang: jiyuwang@cioc.ac.cn

# Claim:

The animal experiments were performed in accordance with the guide for the care and use of medical laboratory animals (Ministry of Health, China). All animal procedures in this work were approved by the Institutional Animal Experimental Ethics Committee of Sichuan University (Chengdu, China, 13 Approval file No. 2015014A).

**Table of Contents** 

| SI.1 Synthesis and structure information                          | P2  |
|-------------------------------------------------------------------|-----|
| SI.2 TEM observation                                              | P9  |
| SI.3 2D-NMR analysis                                              | P11 |
| SI.4 Surface tension and CMC measurement                          | P33 |
| SI.5 Plasma decomposition measurement                             | P39 |
| SI.6 Rats' sensory block and neuropathological injury measurement | P41 |
| SI.7 Slow release on local tissue measurement                     | P45 |
| SI.8 in vitro diffusion determination on sciatic nerve            | P47 |
| SI.9 Data summary                                                 | P48 |
| Reference                                                         | P50 |

# SI.1 Synthesis and structure information

Small organic surfactant used in this work were shown in Scheme S1 :



Scheme S1 Chemical structure of surfactant

# Specific operation and results



# General method on synthesis of product 1

To the mixture of 5 (6.0g, 16.7 mmol), triphosgene (2.47 g, 8.34 mmol) and 1,2-dichloroethane

(60 mL), pyridine (1.4 g, 17.6 mmol) in 1,2-dichloroethane (20 mL) were added dropwise at room temperature for 20min. After addition, this mixture was allowed to stirring at 50°C for 2h. Then the fatty alcohol (16.7 mmol) in 1,2-dichloroethane (30 mL) was added. This solution was stirred for another 16h at  $50^{\circ}$ C, and cooled to room temperature.

Saturated brine (30 mL) was poured into the reaction flask. The organic layer was washed with saturated brine (20 mL x 7). The organic solvent was removed in vacuo. The residue was further purified by chromatography with CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>OH to give product (1) as white powder.

#### Characterization data of compounds 1<sup>S1</sup>

as white powder, yield: 36%. Melting Point: 136.7~138.6°C.<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)δ: 10.34 (s, 1H), 7.  $00 \sim 7.08$  (m, 3H), 5.00 (m, 2H), 4.64 (br, 2H), 4.16 (t, J = 6.8 Hz, 2H), 4.04 (m, 2H),  $3.66 \sim 3.76$  (m, 4H), 2.24 (s, 6H),  $1.60 \sim 1.63$  (m, 2H),  $1.54 \sim 1.56$  (m, 8H), 0.86 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)δ: 8.33, 14.06, 14.19, 18.82, 21.06, 22.54, 25.53, 26.89, 28.48, 28.81, 31.64, 56.40, 57.56, 57.82, 60.39, 60.59, 69.33, 76.79, 127.42, 128.12, 133.11, 135.04, 154.31, 161.77. HRMS: [C<sub>24</sub>H<sub>41</sub>N<sub>2</sub>O<sub>4</sub>]<sup>+</sup>: 421.3107, found: 421.3070. Content of Cl<sup>-</sup> by IC: 99.0%.

2-(2,6-dimethylphenylamino)-N-(2-(ethoxycarbonyloxy)ethyl )-N,N-diethyl-2-oxoethanaminium chloride (1b) Obtained as white powder, yield: 43%. Melting Point: 157.7~158.5°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)δ: 10.48 (s,

1H), 7.04~7.11 (m, 3H), 5.05 (br, 2H), 4.68 (br, 2H), 4.22 (t, J = 7.1 Hz, 2H), 4.06 (br, 2H), 3.74 (br, 2H), 2.27(br, 6H), 1.52(br, 6H), 1.30 (t, J = 7.1 Hz, 3H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ : 8.52, 14.16, 18.90, 56.59, 57.88, 60.64, 65.08, 127.57, 128.17, 132.88, 135.12, 154.15, 161.79. HRMS:  $[C_{19}H_{31}N_2O_4]^+$ : 351.2778, found: 351.2650. Content of Cl<sup>-</sup>: 98.9%.



2-(2,6-dimethylphenylamino)-N,N-diethyl-N-(2-(methoxycarbonyl oxy)ethyl)-2-oxoethanaminium chloride (1c) Obtained as white powder, yield: 22%. Melting Point: 136.2~137.6°C. <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>)δ: 10.65 (s, 1H), 7.00~7.04 (m, 3H), 4.96 (s, 2H), 4.61 (s, 2H), 4.02 (s, 2H), 3.75 (s, 3H), 3.68 (m, 4H), 2.22 (s, 6H), 1.45 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)δ: 8.23, 18.81, 55.46, 56.41, 57.61, 57.73, 60.86, 127.49, 128.12, 132.90, 135.05, 154.69, 161.75. HRMS:  $[C_{18}H_{29}N_2O_4]^+$ : 337.2122, found: 337.2118. Content of Cl<sup>-</sup>: 99.0%.



Figure S1 <sup>1</sup>H NMR, <sup>13</sup>C NMR of compound 1b



Figure S2<sup>1</sup>H NMR, <sup>13</sup>C NMR of compound 1c



# Method on synthesis of product 1d~1f

Compound **1a** (20.0g) was dissolved in  $CH_2Cl_2$  (300mL). Saturated solution of NaX (X =  $CH_3SO_3^-$ ,  $1/2SO_4^{2-}$  or  $HSO_4^-$ ) 10mL was added. The organic layer was washed with saturated

solution of NaX (10 mL x 10). The organic solvent was removed in vacuo. The residue was further purified by chromatography with CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>OH as eluent to give product (1d~1f).



2-(2,6-dimethylphenylamino)-N,N-diethyl-N-(2-(hept yloxycarbonyloxy)ethyl)-2-oxoethanaminium

methane sulfonate (1d) Obtained as colorless syrups,

yield: 48%. <sup>1</sup>H NMR (300 MHz, d<sub>6</sub>-DMSO) δ: 10.05 (s, 1H), 7. 08~7.12 (m, 3H), 4. 56~4.58 (m, 2H), 4.42 (s, 2H), 4. 07~4.10 (m, 2H), 3.97~3.99 (m, 2H), 3.61~3.67 (m, 2H), 2.31 (s, 3H), 2.17 (s, 6H), 1.56~1.58 (m, 2H), 1.33~1.24 (m, 14H), 0.86 (t, J = 7.2 Hz, 3H).



2-(2,6-dimethylphenylamino)-N,N-diethyl-N-(2-(hepty loxycarbonyloxy)ethyl)-2-oxoethanaminium sulfate (1e) Obtained as slight yellow syrups, yield: 9%. Content

of SO<sub>4</sub><sup>2-</sup> in whole compound: 11.6% (Content of counter ion in calculated amount: 10.23% for  $SO_4^{2-}$  and 18.55% for HSO<sub>4</sub><sup>-</sup>. Actual ratio of  $SO_4^{2-}$ : HSO<sub>4</sub><sup>-</sup> was 2.8 : 1).



2-(2,6-dimethylphenylamino)-N,N-diethyl-N-(2-(heptyl oxycarbonyloxy)ethyl)-2-oxoethanaminium

hydrogensulfate (1f) Obtained as slight yellow syrups, yield: 7%. Content of HSO<sub>4</sub>: 92.4%.

$$\begin{array}{c|c} & H \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Lidocaine 10 g and bromoethane 30 mL were added in a flask, sealed and heated at 100  $\degree$ C for 10 hours. The reaction residual was cooled to room temperature, added with ethyl acetate 30mL and filtered. After washed with ethyl acetate (20mL x 2), the solid residue as white powder was dissolved in CH<sub>2</sub>Cl<sub>2</sub> 200mL. The organic layer was washed with water solution of NaOH (40%, 10 mL x 5) and evaporated under vacuo to give product as light yellow powder.

This light yellow powder was dissolved in  $CH_2Cl_2$  200mL, and mixed with HCl at 0°C with vigorous stirring. The organic solvent was removed. The residue was purified by chromatography with CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>OH as eluent to give product 2 as white solid, yield: 13%. Melting Point:  $165.4 \sim 166.3$  °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) $\delta$ : 6.97 ~7.04 (m, 3H), 4.72 (br, 2H), 3.57 (q, J = 7.0 Hz, 6H), 2.20 (s, 6H), 1.37 (t, J = 7.1 Hz, 9H). <sup>13</sup>C NMR (100 MHz, CDCl3) & 8.08, 18.72, 54.62, 56.38, 127.35, 128.06, 133.16, 135.06, 161.86.





Compound 6 (5 g, 25.1 mmol), 2-(diethylamino)ethanol (2.9 g, 25 mmol) and ethanol (20 mL)

were added in a flask, sealed and heated to 100 °C for 20 hours. After cooled to room temperature, ethanol was removed. The residue was dried under vacuo to afford light brown syrups-like solid (7.5 g). The light brown syrups-like solid (6.0 g, 19.0 mmol), triphosgene (2.47 g, 8.34 mmol) and 1,2-dichloroethane (60 mL), pyridine (1.7 g, 21.4 mmol) in 1,2-dichloroethane (20 mL) were added dropwise at room temperature for 20min. After addition, this mixture was allowed to stirring at 60°C for 3h. Then the pentan-1-ol (19.0 mmol) in 1,2-dichloroethane (30 mL) was added. This solution was stirred for another 24h at 60°C, and cooled to room temperature.

Saturated brine (30 mL) was poured into the reaction flask. The organic layer was washed with saturated brine (20 mL x 6). The organic solvent was removed in vacuo. The residue was further purified by chromatography with CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>OH as eluent to give product (**3**) as white solid, yield: 21%. Melting Point: 122.3~124.3 °C. <sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) $\delta$ : 7.31~7.59 (m, 5H), 4.07~4.26 (m, 2H), 3.94 (dt, *J* = 21.8 Hz, *J* = 7.3 Hz, 1H), 3.85 (H<sub>a</sub>, *J* = 13.6 Hz, 1H), 3.59~3.74 (m, 2H), 3.46 (m, 1H), 3.25 (m, 1H), 3.13 (H<sub>b</sub>, *J* = 13.6 Hz, 1H), 2.89 (dt, *J* = 9.4 Hz, *J* = 6.6 Hz, 1H), 1.48 (dt, *J* = 13.5 Hz, *J* = 6.8 Hz, 1H), 0.89~1.39 (m, 12H), 0.82 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$ : 7.59, 8.45, 13.93, 22.31, 28.36, 29.09, 52.25, 55.37, 56.33, 60.11, 60.92, 62.88, 126.16, 128.84, 129.54, 136.91, 140.88, 146.16. HRMS: [C<sub>20</sub>H<sub>31</sub>NO<sub>4</sub>]<sup>+</sup>: 350.2326, found: 350.2328. Content of Cl<sup>-</sup>: 99.0%.





Figure S4<sup>1</sup>H NMR, <sup>13</sup>C NMR of compound 3

#### Method on the prapration of (s)-bupivcaine hydrochloride.

HCl in gas form was slightly bubled into ehanol (500 mL) with ice bath for 30 min. These ethanol solution of HCl was saperately added into (s)-bupivacaine 5.0 g in 10 mL ethanol at -5 °C until pH < 2.0. The solvent was evapored. Ehyl actate 30 mL was added, stired and filtered. The residue was washed by ehyl actate 10 mL for 3 times and dried under vano to get white solid.

#### **SI.2 TEM observation**

#### General method on liquid sample preparation

The compound was dissolved in pure water (2 mL) with vigorous magnetic stirring (1000 rpm) at 30 °C for 12 hours. Some compounds could not dissolve to be a clear solution. All the compound-water mixtures were filtered by needle filter (0.22  $\mu$ m) to get the solution-like liquid samples.

#### **General method on TEM observation**

The liquid sample for TEM observation were prepared by depositing a drop of solution (100  $\mu$ L) mentioned above onto a 400 mesh copper grid covered with thin amorphous carbon. A drop of phosphotungstic acid (2%, 100  $\mu$ L) was added for negative staining, which lasted for 10 min. Then the sample would be observed by a Hitachi H-600 TEM (120 KV) instrument. Each sample was observed for at least twice.



Figure S5 a) Structure and TEM images for 1a~1c. b) Intermolecular <sup>1</sup>H-<sup>1</sup>H NOESY Spectrum

To ensure whether  $\pi$ - $\pi$  stacking is directly related to gourd-shaped JPs self-assembled by 1 in water, TEM and intermolecular <sup>1</sup>H-<sup>1</sup>H NOESY study similar in our previous work<sup>3</sup> were carried out. As shown in Figure S2a and S2b, correlation signal of  $H_{\alpha}$ -H<sub>b</sub> representing parallel-displaced  $\pi$ - $\pi$  stacking<sup>11</sup> can be found in JPs systems self-assembled by **1a** or **1b**, but cannot be found in SMs (spherical micelles) system consisted of 1c with extremely similar structure of 1b at the same concentration.



21mmol/L

28mmol/L

Figure S6 TEM images for 1a at different concentrations in water



Figure S7 TEM images for 1a in NS



Figure S8 TEM images for 1a in water at 7 mmo/L with CO2



20mmol/L in Water

Figure S9 TEM images for 3 and 4 in water



10 mmol/L in Water

10 mmol/L in Water



Figure S10 TEM images for 1d~1f in water

# SI.3 2D-NMR analysis

Supramolecular analysis in this part was based on the regulation of gourd-shaped JPs self-assembling of compound 1~3, which was similar as arrange manner of JPs self-assembled by lidocaine salts. SMs were considered to be arranged in normal way without  $\pi$ - $\pi$  stacking interaction, and SMs-like particles suggested that they were arranged in similar way of particles formed by  $1a + CO_2$  based on PD  $\pi$ - $\pi$  stacking.

# General method for sample preparation

The testing compound was dissolved in  $D_2O~0.5$  mL at approximate concentration as TEM observation. The solution was filtered by needle filter (0.22 $\mu$ m) to get the solution-like liquid samples, and tested by 600MHz NMR.

# <sup>1</sup>H-<sup>1</sup>H NOESY spectrum for 1c:



As shown in Figure S11, we cannot find any correlation between  $H_{\alpha}$  and  $H_{\beta}$ . Considering to the result that  $H_{\alpha}$  was connected with  $H_{\beta}$  at same concentration (100 mmol/L) in D<sub>2</sub>O and JPs were observed by TEM images in sample of **1b**, we thought  $\pi$ - $\pi$  stacking was not exist in this nano particle system.



Figure S11 NOESY spectrum for 1c (100 mmol/L in D<sub>2</sub>O)

# **NOESY spectrum for 1b:**



As shown in Figure S12 and Figure S13a, we found  $H_{\alpha}$  was correlated with  $H_{\beta}$ . Thus, PD  $\pi$ - $\pi$  stacking was considered to exist. Atypical asymmetric gemini surfactant was indicated by the signal peak of  $H_{\epsilon}$ - $H_{\iota}$  shown in Figure S13b.



Figure S12 NOESY spectrum for 1b (100 mmol/L in D<sub>2</sub>O)



Figure S13 NOESY spectrum for 1b (100 mmol/L in D<sub>2</sub>O)

Supramolecular arrangement of JPs self-assembled by 1b was considered to be in similar





Figure S14 Supramolecular structure of JPs self-assembled by 1b

### Analysis of nano particles self-assembled by 1a

Suppramolecular arrangement of nano particles self-assembled by **1a** was determined by <sup>1</sup>H-<sup>1</sup>H NOESY on 600MHz NMR, in which signal peaks were matched with hydrogen atoms through analysis of chemical shift, cleavage of signals and correlation signals in HMBC.

# HMBC spectrum for 1a:

According to the HMBC spectrum for 1a in Figure S15, two signal peak of  $H_\epsilon$  and  $H_\iota$  could be located:



Figure S15 HMBC spectrum for 1a

1) Signal peak of  $H_{\epsilon}$  was located due to it was the only hydrogen atom correlated to C atom on carbonyl group.

2) Signal peak of  $H_1$  was determined because it was the only hydrogen atom related to C atom on alkyl chain, whose chemical shift on <sup>13</sup>C NMR was on the range between 20 to 40 ppm.

Determination of these two hydrogen atoms would be of vital importance to the further study of supperamolecular structure of nano system self-assembled by **1a**.

#### NOESY spectrum for 1a:



In Figure S16, the only two observed signal peaks on cannot provide us more information on supperamoleculr structure. No correlation between  $H_{\alpha}$  and  $H_{\beta}$  could be detected on this concentration. This sample would be redetermination after added NaCl 45 mg as the next sample.



#### Figure S16 NOESY spectrum for 1a (3.5 mmol/L in D<sub>2</sub>O)



NaCl 45mg was added into the last sample (1a, 3.5 mmol/L in  $D_2O$ ). The tube was shaken several times. This new sample was determined by NOESY in the same condition.

As shown by the NOESY spectrum (Figure S17), the number of signal peaks increased a lot compared to the spectrum in Figure S16. Correlation between H<sub> $\alpha$ </sub> and H<sub> $\beta$ </sub> was observed for  $\pi$ - $\pi$ stacking. Correlations among H<sub>1</sub>, H<sub> $\epsilon$ </sub>, H<sub> $\phi$ </sub> and H<sub> $\gamma$ </sub> also indicated that T-shaped  $\pi$ - $\pi$  stacking was not widely existed in this sample.



Figure S17 NOESY spectrum for 1a (3.5 mmol/L in D<sub>2</sub>O + 0.9% NaCl)



Although gourd shaped Janus particles were observed in this condition,  $\pi$ - $\pi$  stacking was not observed in Figure S18. We don't think JPs formation was surely irrelevant with  $\pi$ - $\pi$  stacking. No signal peak H<sub>a</sub>-H<sub>b</sub> may also be caused by limited participation of JPs and amount of **1a**. In our opinion, after the concentration increased, this signal peak would be observed.

In this condition, signal peak correlated by  $H_i$  and  $H_{\epsilon}$  was clearly observed in Figure S17. In one possible supramolecular arrangement (Figure S19a), the signal peaks lead by relations among  $H_i$ ,  $H_{\epsilon}$ ,  $H_{\phi}$  and  $H_{\gamma}$  cannot be explained. Besides, correlations among  $H_i$ ,  $H_{\epsilon}$ ,  $H_{\phi}$  and  $H_{\gamma}$  also indicated that T-shaped  $\pi$ - $\pi$  stacking at least didn't widely exist, otherwise some of these signals would not be detected. However, all the signal peaks in Figure S17 was in accordance with our atypical asymmetric gemini surfactant hypothesis: with the concentration increase, the carbonyl group would move away from hydrophobic region, and the traditional surfactant turned into atypical asymmetric gemini surfactant, and arranged into form **A** caused by paralle-displaced  $\pi$ - $\pi$  stacking (Figure S19b).



Figure S18 NOESY spectrum for 1a (10 mmol/L in D<sub>2</sub>O)



Figure S19 (a) Form C was not consistent with NOESY results in Figure S18. (b) Form A was in accordance with

NOESY results in Figure S18.



NaCl 45 mg was added into the last sample (1a, 10 mmol/L in  $D_2O$ ). The tube was shaken several times. This new sample was determined by NOESY in the same condition.

In Figure S20, the NOESY spectrum was absolutely different from spectrum in Figure S17 (1a 10 mmol/L in  $D_2O$ ). Due to this spectrum was also different from that in Figure S18, SMs observed in this sample were considered to be different in supperamolecular arrangement from SMs self-assembled by 1e at the concentration of 3.5mmol/L in water.



Figure S20 NOESY spectrum for 1a (10 mmol/L in D<sub>2</sub>O+ 0.9% NaCl)

As mentioned above, signal peak caused by  $H_1$  and  $H_{\epsilon}$  was clearly observed in Figure S18 (1a, 10 mmol/L in D<sub>2</sub>O), which was in accordance with our atypical asymmetric gemini surfactant hypothesis. However, in Figure S20 (1a, 10 mmol/L in D<sub>2</sub>O+ 0.9% NaCl), this signal peak could not be observed (Figure S21c), which indicated that  $H_1$  and  $H_{\epsilon}$  were no longer close to each other, and carbonyl groups were no longer on the surface of the micelles. Besides, correlation signals among  $H_1$ ,  $H_{\epsilon}$ ,  $H_{\phi}$  and  $H_{\gamma}$  also indicated that paralle-displaced  $\pi$ - $\pi$  stacking would be the dominate manner of  $\pi$ - $\pi$  stacking, because signals such as  $H_{\epsilon}$ - $H_{\phi}$  and  $H_{\epsilon}$ - $H_{\gamma}$  would not be detected in theory when different molecules of 1a were mainly arranged by T-shaped  $\pi$ - $\pi$  stacking.

To analyze more informations, we magnified NOESY spectrum in Figure S23, and divided it into 4 parts (Figure 21).

In Figure S21a, two signals could be detected. First, as mentioned above, signal peak  $(H_{\alpha}-H_{\beta})$ indicated  $\pi$ - $\pi$  stacking. Second,  $H_{\rho}$ ,  $H_{\kappa}$  and  $H_{\lambda}$  were related to  $H_{\beta}$  and  $H_{\psi}$ , which implicated that the aliphatic chain was closed enough to  $H_{\beta}$  and  $H_{\psi}$  on benzene rings.

In Figure S21b, there were 2 groups of key signals. First,  $H_{\chi}$  on methyl group was related to all the hydrogen atoms with chemical shift from 3.4ppm to 4.6ppm except  $H_{\iota}$ , which further illustrated that  $H_{\iota}$  was no longer close to  $H_{\epsilon}$ . Second,  $H_{\rho}$ ,  $H_{\kappa}$  and  $H_{\lambda}$  were related to  $H_{\iota}$ , which implicated the manner model iii arranged into model B (Figure S22).



Figure S21 Magnified NOESY spectrum for 1a (10 mmol/L in D<sub>2</sub>O+ 0.9% NaCl)

Figure S21d, there were 3 groups of key signals. First,  $H_{\chi}$  was related to  $H_{\mu}$ , which implicated that methyl group on the aliphatic chain was close enough to methyl group on N-ethyl group. Second,  $H_{\chi}$  was related to  $H_{\phi}$ . Third,  $H_{\phi}$  were correlated to  $H_{\rho}$ ,  $H_{\kappa}$  and  $H_{\lambda}$ . The second and third groups of signals indicated how model iii arranged into model **B** (Figure S22).



Figure S22 Proposed mechanism on supperamolecular structure for 1a (10 mmol/L in D<sub>2</sub>O+ 0.9% NaCl)

According to all the analysis on NOESY mentioned above, model **B** was the only possible supperamolecular arrangement manner which could match all the NOESY signal peaks for these two samples (**1a**, 3.5 mmol/L in D<sub>2</sub>O+0.9% NaCl and **1a**, 10 mmol/L in D<sub>2</sub>O+ 0.9% NaCl). Therefore, it was considered by us that SMs-like particles self-assembled by **1a** at concentration of 3.5 mmol/L and 10 mmol/L in NS were consisted by model **B** (Figure S22).



Just as we expected, when the concentration increased from 10 mmol/L to 28 mmol/L, signal peak of  $H_{\alpha}$ - $H_{\beta}$  was observed (Figure S23). It indicated the existence of  $\pi$ - $\pi$  stacking. Different from the NOESY result for **1a** (10 mmol/L in D<sub>2</sub>O+ 0.9% NaCl) in Figure S21, no signals caused by hydrogen atom on aliphatic chain and hydrogen atom on aromatic ring was detected, which mean that aliphatic chain was far away from aromatic ring.



Figure S23 NOESY spectrum for 1a (28 mmol/L in D<sub>2</sub>O)

To analyze the NOESY results for details, we magnified it into 4 parts (Figure S28).

In Figure S24a, as mentioned above, paralle-displaced  $\pi$ - $\pi$  stacking existed.

In Figure S24b, there were 3 key signals. First, signal of  $H_{\epsilon}$ - $H_{\nu}$  was detected, which was in accordance with our hypothesis: carbonate group was on the surface of the particle. Second,  $H_{\mu}$ 

was related to  $H_{\delta}$ . Third,  $H_{\delta}$  were related to  $H_{\rho}$ ,  $H_{\kappa}$  and  $H_{\lambda}$ . These two results indicated that hydrophobic tail was not only close to the N-ethyl group, but might be curved.

In Figure S24c, there was only one key signal. Due to  $H_{\gamma}$  and  $H_{\iota}$  coincided, the relationship among  $H_{\epsilon}$ ,  $H_{\gamma}$  and  $H_{\iota}$  was not clear. Considering to the result above that  $H_{\epsilon}$  was related to  $H_{\iota}$  at the concentration of 10 mmol/L in D<sub>2</sub>O in Figure S20, and  $H_{\epsilon}$  was related to  $H_{\nu}$  in Figure S24b, we thought the carbonyl group was still on the surface of this particle. Correlation signals among  $H_{\iota}$ ,  $H_{\epsilon}$ ,  $H_{\phi}$  and  $H_{\gamma}$  also indicated that paralle-displaced  $\pi$ - $\pi$  stacking would be the dominate manner of  $\pi$ - $\pi$  stacking.



Figure S24 Magnified NOESY spectrum for 1a (28 mmol/L in D<sub>2</sub>O)

In Figure S24d, there were 3 groups of key signals. First,  $H_{\mu}$  was related to  $H_{\chi}$ . This result confirmed that the bottom of hydrophobic tail was close enough to the N-ethyl group, and the hydrophobic tail was curved. Second, signals of  $H_{\mu}$ - $H_{\nu}$  and  $H_{\chi}$ - $(H_{\rho}, H_{\kappa} \text{ and } H_{\lambda})$  were observed, which further proved that the hydrophobic tail was curved. Third, signals of  $H_{\chi}$ - $H_{\nu}$  and  $H_{\chi}$ - $H_{\phi}$  also proved that hydrophobic tail was close enough to the N-ethyl group.

According to all the analysis on NOESY mentioned above, model **A** was the only possible manner of supperamolecular arrangement which could match all the NOESY signal peaks for the result of these two samples (**1a**, 10 mmol/L in D<sub>2</sub>O and **1a**, 10 mmol/L in D<sub>2</sub>O). Therefore, it was

considered by us that the balck sphere of JPs self-assembled by 1a ere consisted by model A (Figure S25). Considering to the result of Figure S16 (NOESY for 1a, 3.5 mmol/L in D<sub>2</sub>O), we thought both the spherical micelles and the white sphere of JPs were consisted by model i as traditional surfactants (Figure S26).



Figure S25 Proposed mechanism on supperamolecular structure for 1a in D2O



Figure S26 Proposed self-assemble mechanism for 1a in D<sub>2</sub>O (10mmol/L and 28 mmol/L)

Just as we mentioned in previous paper, the color of black sphere was caused by the coordination between tungsten trioxide from the stain and carbonyl group from **1a**. New evidence from NOESY spectrum further proved our previous hypothesis.

#### **NOESY spectrum for 2**:



Compound 2 without auxiliary hydrophilic head and hydrophobic tail can also self-assemble into gourd-shaped JPs at 120 mmol/L in water (Figure S9).  $^{1}$ H- $^{1}$ H NOESY was carried out at same concentration after water was replaced by D<sub>2</sub>O. The spectrum was shown in Figure S27, and magnified in Figure S28.

In Figure S28a, correlation signals of  $H_{\alpha}$ - $H_{\beta}$  was observed, which indicated parallel-displaced

 $\pi$ - $\pi$  stacking.

In Figure S28b,  $H_{\epsilon}$  was correlated to  $H_{\delta}$ , which was in accordance with parallel-displaced  $\pi$ - $\pi$  stacking.



Figure S27 NOESY spectrum for 2 in D<sub>2</sub>O



Figure S28 Magnified NOESY spectrum for 2 in D2O

Based on the data above, model of gourd-shaped JPs similar as those self-assembled by lidocaine hydrochloride or **1a** was established in Figure S29.



Figure S29 Proposed supramolecular structure of JPs self-assembled by 2



Due to **3** didn't have methyl group attached to benzene ring, we could not determine the existence of  $\pi$ - $\pi$  stacking from the signals caused hydrogen atom on methyl group and hydrogen atom on benzene ring. Fortunately, in Figure S30, signal peak H<sub>a</sub>-(H<sub>β</sub>, H<sub>∞</sub>) was observed by NOESY spectrum. Considering only the rig benzene ring on different molecules were close enough in space to each other in a certain manner, H<sub>a</sub> on methyl group would be correlated to H<sub>β</sub> or H<sub>∞</sub>. Thus, this result confirmed that parallel-displaced  $\pi$ - $\pi$  stacking existed.

Because the signal peaks with the chemical shift from 2.75 ppm to 5.00 ppm in NOESY spectrum for **3** (Figure S30), we cannot make sure whether self-assembling behavior of **3** was in accordance with our atypical gemini surfactant hypothesis. Therefore, we have to locate these hydrogen atom signals by HMBC and  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY analysis first.



Figure S30 <sup>1</sup>H-<sup>1</sup>H NOESY spectrum for 3

Limited by the poor solubility of **3** in  $D_2O$ , we cannot find <sup>13</sup>C signal peak of carbonyl group even by 200 MHz <sup>13</sup>C NMR scope (Figure S31).



Figure S31 HMBC spectrum for 3 (16 mmol/L in D<sub>2</sub>O)

In the magnified HMBC spectrum (Figure S32a), we can first locate the signal peak of  $H_{\alpha}$  by its chemical shift and double-cleavage peak in <sup>1</sup>H NMR.  $C_{\psi}$  was determined by the correlation signal of  $H_{\alpha}$ - $C_{\psi}$ .  $C_{\theta}$  can be also located due to correlation signals to  $H_{\beta}$  and  $H_{\omega}$ .

In Figure S32b,  $H_{\epsilon}$  was located for their double-cleavage peak shapes and signals corresponded with  $C_{\psi}$ .

In Figure S32c, two signal peaks of  $C_{\chi}$  in <sup>13</sup>C NMR were determined, because these two peaks were on lower chemical shift than other signal peaks. Signal peaks with corresponding signals to  $C_{\chi}$  were contributed to  $H_{\delta}$ .

In Figure S32d, signal peaks of  $H_{\chi}$  in <sup>1</sup>H NMR existed in two parts, both of which were correlated to signal peaks of  $C_{\chi}$ . That was estimated that one group of  $H_{\chi}$  was correlated to  $C_{\chi}$  not directly connected based on magnetic anisotropy.

In Figure S32e, two signal peaks of  $C_{\delta}$  in <sup>13</sup>C NMR was located due to the relative strong correlation signals of  $C_{\delta}$ -H<sub> $\chi$ </sub>.

In Figure S32f,  $H_{\phi}$  was considered to be irrelevant to  $C_{\delta}$  due to they were too close to each other. Therefore,  $H_{\gamma}$  and  $H_{\phi}$  were located separately.



Figure S32 Magnified HMBC spectrum for 3 (16 mmol/L in D<sub>2</sub>O)

<sup>1</sup>H-<sup>1</sup>H COSY spectrum was used for further location (Figure S33).



Figure S33 <sup>1</sup>H-<sup>1</sup>H COSY spectrum for 3 (16 mmol/L in D<sub>2</sub>O)

As shown on Figure S34a, one signal of  $H_{\phi}$  was re-determined for its correlation to  $H_{\gamma}$ .

On Figure S34b, all signal peaks of  $H_{\phi}$ ,  $H_{\gamma}$ ,  $H_{\delta}$ ,  $H_{\epsilon}$  and  $H_{\iota}$  were located by us. Location of  $H_{\epsilon}$  and  $H_{\iota}$  would be of critical importance on the following analysis of NOESY spectrum for **3**.



Figure S34 Magnified <sup>1</sup>H-<sup>1</sup>H COSY spectrum for 3 (16 mmol/L in D<sub>2</sub>O)

Based on the analysis results of HMBC and <sup>1</sup>H-<sup>1</sup>H COSY above,  $H_t$  and  $H_{\epsilon}$  were located. From the magnified NOESY spectrum for **3** (Figure S35b), the signal peaks of  $H_t$ - $H_{\epsilon}$  was observed, which suggested that self-assembling behavior of **3** in water was in accordance with our atypical gemini surfactant hypothesis.



Figure S35 HMBC spectrum for 3 (16 mmol/L in D<sub>2</sub>O)

Besides, correlation signals among  $H_{\alpha}$ ,  $H_{\beta}$  and  $H_{\chi}$  further suggested that **3** was not arranged by T-shaped  $\pi$ - $\pi$  stacking, but mainly by parallel-displaced  $\pi$ - $\pi$  stacking (Figure S36). If different molecules of **3** were arranged by T-shaped  $\pi$ - $\pi$  stacking,  $H_{\beta}$  would be far away from  $H_{\alpha}$  and  $H_{\omega}$  on another molecule and correlation signals would not be detected.



Figure S36 Parallel-displaced  $\pi$ - $\pi$  stacking for 3 (16 mmol/L in D<sub>2</sub>O) was favored.

Supramolecular model self-assembled by **3** in water was proposed in Figure S37, which was similar to model in Figure S29.



Figure S37 Proposed model of JPs self-assembled by 3.



As shown in Figure S10 above, **1d** can self-assemble into nano particles with similar shape of SMs. It was suggested by the correlation signal of  $H_{\alpha}$ -  $H_{\beta}$  in Figure S38 and Figure S39a that  $\pi$ - $\pi$  stacking existed in this nano system. The area of  $H_{\alpha}$ - $H_{\beta}$  was 57.06 approximate to this value for **1a** at 10 mmol/L in water (61.99). In that condition, 1a self-assembled into SMs and gourd-shaped JPs with  $\pi$ - $\pi$  stacking interaction. Thus, this nano system was suspected to be consisted of two types of particles: SMs and SMs-like nano particles with  $\pi$ - $\pi$  stacking interaction.



Figure S38 NOESY spectrum for 1d 10 mmol/L in D<sub>2</sub>O.



Figure S39 Magnified NOESY spectrum for 1d 10 mmol/L in D2O.

In Figure S39b, signal of  $H_{\nu}$ - $H_{\mu}$  indicated that these two hydrogen atom were in short distance affected by the curved fatty tail. The connection manner of two different molecules of 1d was reflected by the signal of  $H_{\nu}$ - $H_{\chi}$ .

In Figure S39c,  $H_{\delta}$  was observed to be correlated to  $H_{\theta}$ , which indicated the relative location of  $CH_3SO_3^{-}$ .

In Figure S39d, no signal of  $H_{\epsilon}$ - $H_{\tau}$  was detected, so that **1d** was irrelevant to the supramolecular structure of atypical gemini surfactant in this nano system. Other signals were in accordance with supramolecular arrangement based on  $\pi$ - $\pi$  stacking.

Based on the data from NOESY above, supramolecular model of SMs-like particles was proposed in Figure S40, which was similar to the model in Figure S26. SMs in this system were considered to be arranged in normal manner (Figure S41).



Figure S40 Proposed model of SMs-like particles self-assembled by 1d.



Figure S41 Proposed model of SMs self-assembled by 1d.



As described in SI.1, counter ions of **1e** were not pure  $SO_4^{2-}$ , but a mixture of  $SO_4^{2-}$  and  $HSO_4^{-}$ . The actual ratio of  $SO_4^{2-}$ :  $HSO_4^{-}$  was 2.8 : 1. NOESY spectrum of this sample was shown in Figure S42.



Figure S42 NOESY spectrum for 1e at 10 mmol/L in D<sub>2</sub>O.

Chemical structure of **1e** and its simplified diagram were shown in Figure S43a, and intermolecular <sup>1</sup>H-<sup>1</sup>H NOESY spectrum in Figure 42 were partly magnified in Figure S43b~S43d.

In Figure S43b,  $\pi$ - $\pi$  stacking was proved by the signal of H<sub>a</sub>- H<sub>b</sub>. In Figure S43c and Figure S43d, all correlation signals were in accordance with our proposed supramolecular model based on  $\pi$ - $\pi$  stacking in Figure S42.



Figure S43 Chemical structure and NOESY spectrum for 1e at 10 mmol/L in D<sub>2</sub>O.

It was suspected by us that with  $HSO_4^-$  as counter ions this surfactant (1f) would arrange in the manner of SMs, and with  $SO_4^{2-}$  1e would self-assemble into SMs and Vesicles. The reasons were:

1)  $SO_4^{2-}$  was more suitable to form dimmer of **1e** based on  $\pi$ - $\pi$  stacking. Two ions of HSO<sub>4</sub><sup>-</sup> or CH<sub>3</sub>SO<sub>3</sub><sup>-</sup> would probably lead these two molecules too crowd to compactly bind together.

At same concentration of 10mmol/L, 1f cannot self-assemble into vesicles (Figure S10).
Vesicles in this system were considered to be formed by 1e.

3) No correlation signal was detected in the area of fatty tail in this system (Figure S43 and S44), while many signals indicated curve of fatty tail in this area were observed in the system of **1d** relevant to  $\pi$ - $\pi$  stacking at the same concentration. If  $\pi$ - $\pi$  stacking was caused by SMs-like particles self-assembled by **1e**, signals in the area of fatty tail (0.5~2.0 ppm) should be detected. **1e** was considered not arranging into SMs-like particles based on  $\pi$ - $\pi$  stacking due to no correlation signal (Figure S45), which indicated that fatty tails was not curved similar as tail of **1d**.



Figure S44 NOESY spectrum and TEM for 1e at 28 mmol/L in D<sub>2</sub>O.



Figure S45 Proposed supramolecular model for 1e at 10 mmol/L in D<sub>2</sub>O.

According to the results above, supramolecular arrangement of **1e** in water was proposed in Figure S46. **1f** with counter ions of  $HSO_4^-$  was suspected to be arranged in normal way of SMs, and vesicles were considered to be self-assembled by **1e** with counter ions of  $SO_4^{2-}$  based on intermolecular  $\pi$ - $\pi$  stacking interaction. The hydrophobic tail in this nano systems mainly existed in a relax state.



Figure S46 Proposed supramolecular model for 1e at 10 mmol/L in D<sub>2</sub>O.

In conclusion, gourd-shaped Janus particles self-assembled by  $1\sim3$  was proved to be relevant to intermolecular  $\pi$ - $\pi$  stacking, which was also influenced on the formation of SMs-like nano particles or vesicles.

# SI.4 Surface tension and cmc measurement S3

Temprature: 24°C

| - | <b>C</b> <sub>1</sub> ( <b>1</b> ) |       | s     | urface Ten | sion (mN/n | n)    |       |  |  |  |  |  |  |
|---|------------------------------------|-------|-------|------------|------------|-------|-------|--|--|--|--|--|--|
| _ | Conc. (mmol/L)                     | Run 1 | Run 2 | Run 3      | Run 4      | Run 5 | Mean  |  |  |  |  |  |  |
|   | 56                                 | 33.8  | 33.8  | 33.8       | 33.8       | 33.9  | 33.82 |  |  |  |  |  |  |
|   | 28                                 | 34.7  | 34.6  | 34.6       | 34.6       | 34.7  | 34.64 |  |  |  |  |  |  |
|   | 14                                 | 35.5  | 35.6  | 35.6       | 35.6       | 35.6  | 35.58 |  |  |  |  |  |  |
|   | 7                                  | 41.8  | 41.6  | 41.8       | 41.9       | 41.8  | 41.78 |  |  |  |  |  |  |
|   | 3.5                                | 47.6  | 47.7  | 47.7       | 47.6       | 47.5  | 47.62 |  |  |  |  |  |  |
|   | 1.75                               | 54.1  | 54.2  | 54         | 54.1       | 54.3  | 54.14 |  |  |  |  |  |  |
|   | 0.88                               | 60.8  | 60.5  | 60.4       | 60.7       | 60.4  | 60.56 |  |  |  |  |  |  |
|   | 0.44                               | 63.4  | 63.7  | 63.6       | 63.8       | 63.6  | 63.62 |  |  |  |  |  |  |

Table S1 Surface tension determination of 1a in pure water



Surface Tension for Pure Water: 73.6 mN/m

**CMC** = 16.17 mmol/L

Scheme S2 CMC of 1a in water calculated by surface tension

CMC value of 1a in this work was significant different from that we reported before <sup>S2</sup> due to the purity of water: The surface tension value of water used in previous work was 67.8 mN/m, and that value in this work was 73.6 mN/m. The impact of water purity on CMC determination was far beyond our expectation.

Table S2 Surface tension determination of 1a in NS (0.9%NaCl in water)

| Conc. (mmol/L) |       | S     | urface Ten | sion (mN/n | 1)    |      |
|----------------|-------|-------|------------|------------|-------|------|
|                | Run 1 | Run 2 | Run 3      | Run 4      | Run 5 | Mean |
| 56             | 32.6  | 32.6  | 32.6       | 32.6       | 32.6  | 32.6 |

| 28   | 32.7 | 32.7 | 32.7 | 32.8 | 32.8 | 32.74 |
|------|------|------|------|------|------|-------|
| 14   | 32.6 | 32.6 | 32.6 | 32.7 | 32.7 | 32.64 |
| 7    | 32.9 | 32.7 | 32.8 | 32.8 | 32.8 | 32.8  |
| 3.5  | 32.8 | 32.8 | 32.8 | 32.8 | 32.8 | 32.8  |
| 1.75 | 36.2 | 36.2 | 36   | 36   | 36.1 | 36.1  |
| 0.88 | 40.3 | 40.5 | 40.5 | 40.2 | 40.1 | 40.32 |
| 0.44 | 44.7 | 44.8 | 44.5 | 45   | 44.6 | 44.72 |









Scheme S4 CMC determine of 1a in different concentration of NaCl solution

In conclusion, with the concentration of NaCl increase, the cmc value of **1a** solution decreased significantly. The surface tension of solution at cmc was almost invariant, as shown in Table S3.

Table S3 Surface tension and cmc value of 1a in NaCl solution

| NaCl%             | 0.01  | 0.03  | 0.05  | 0.08  | 0.1   | 0.3   | 0.5   | 0.7   | 0.9   | 1.2   | 1.5   |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| СМС               | 12.45 | 15 77 | 12.02 | 11.70 | 7.63  | 9.40  | 2 5 1 | 186   | 2.82  | 2 25  | 2.06  |
| (mmol/L)          | 12.45 | 15.77 | 12.92 | 11.70 | 7.05  | 9.40  | 3.34  | 4.80  | 2.85  | 2.23  | 2.00  |
| <b>В1 (</b> усмс) | 22.55 | 22.62 | 24.40 | 24.21 | 34 50 | 22.20 | 22 70 | 32.60 | 22.82 | 22 77 | 22 75 |
| (mN/m)            | 33.55 | 55.05 | 54.40 | 54.21 | 54.50 | 33.20 | 35.70 | 52.00 | 52.85 | 52.11 | 52.15 |

The CMC values of **1a** in water with different amounts of NaCl additives were presented visually in Figure S47. The CMC value of **1a** in NS (0.9%NaCl in water) was 2.83 mmo/L, which

was much lower than 16.17 mmol/L as the value of 1a in pure water. The surface tension values of these nano systems at CMC were almost identical, which were in the range of 32.60 to 34.40 mN/m.



Figure S47 a) Concentration scope of NaCl contains in water on CMC determination of 1a. b) Concentration scope of NaCl contains in water on surface tension determination of 1a at CMC.

| <b>C</b> <sub>1</sub> (1) |       | S     | urface Ten | sion (mN/n | n)    |       |  |  |  |  |  |
|---------------------------|-------|-------|------------|------------|-------|-------|--|--|--|--|--|
| Conc. (mmol/L)            | Run 1 | Run 2 | Run 3      | Run 4      | Run 5 | Mear  |  |  |  |  |  |
| 56                        | 35    | 35.1  | 35         | 35         | 35    | 35.02 |  |  |  |  |  |
| 28                        | 35.2  | 35.3  | 35.3       | 35.3       | 35.3  | 35.28 |  |  |  |  |  |
| 14                        | 35.1  | 35.1  | 35.1       | 35.1       | 35.1  | 35.1  |  |  |  |  |  |
| 7                         | 42.3  | 42.2  | 42.3       | 42.2       | 42.3  | 42.26 |  |  |  |  |  |
| 3.5                       | 49.8  | 49.7  | 49.7       | 49.6       | 49.5  | 49.66 |  |  |  |  |  |
| 1.75                      | 58.3  | 58.5  | 58.4       | 58.3       | 58.2  | 58.34 |  |  |  |  |  |
| 0.88                      | 65.2  | 65.3  | 65         | 65.2       | 65.1  | 65.16 |  |  |  |  |  |
| 0.44                      | 68.8  | 69    | 69         | 68.9       | 69    | 68.94 |  |  |  |  |  |

Table S4 Surface tension determination of 1a in water bubbled with  $\mathrm{CO}_2$ 



CMC = 15.33 mmol/L

Scheme S5 CMC of 1a in water bubbled with CO2 calculated by surface tension

Table S5 Surface tension determination of 1d in pure water

| <b>Femprature:</b> | 24℃ |
|--------------------|-----|
|--------------------|-----|

Surface Tension for Pure Water: 73.6 mN/m

| Cone (mar 1/L) |       | S     | Surface Tension (mN/m) |       |       |       |  |  |  |  |
|----------------|-------|-------|------------------------|-------|-------|-------|--|--|--|--|
| Conc. (mmol/L) | Run 1 | Run 2 | Run 3                  | Run 4 | Run 5 | Mean  |  |  |  |  |
| 56             | 32.4  | 32.5  | 32.3                   | 32.2  | 32.3  | 32.34 |  |  |  |  |
| 28             | 32.2  | 32.3  | 32.1                   | 32.3  | 32    | 32.18 |  |  |  |  |
| 14             | 31.3  | 31.5  | 31.5                   | 31.5  | 31.4  | 31.44 |  |  |  |  |
| 7              | 36.5  | 36.6  | 36.6                   | 36.6  | 36.5  | 36.56 |  |  |  |  |
| 3.5            | 41.7  | 41.9  | 41.8                   | 41.6  | 41.6  | 41.72 |  |  |  |  |
| 1.75           | 48.9  | 48.1  | 48.3                   | 48    | 48.4  | 48.34 |  |  |  |  |
| 0.88           | 55.2  | 55    | 54.9                   | 54.8  | 54.9  | 54.96 |  |  |  |  |
| 0.44           | 61.6  | 61.3  | 61.1                   | 60.7  | 60.9  | 61.12 |  |  |  |  |



**CMC** = 11.70 mmol/L

Scheme S6 CMC of 1d in water calculated by surface tension

| <b>Temprature:</b> 24℃  |       | Surface | <b>Tension</b> f | for <b>Pure V</b> | Vater: 73 | .6 mN/m |
|-------------------------|-------|---------|------------------|-------------------|-----------|---------|
| <b>C</b> orrer (m. 1/1) |       | S       | urface Ten       | sion (mN/n        | 1)        |         |
|                         | Run 1 | Run 2   | Run 3            | Run 4             | Run 5     | Mean    |
| 28                      | 31.4  | 31.7    | 31.6             | 31.8              | 31.7      | 31.64   |
| 14                      | 32.4  | 32.4    | 32.6             | 32.5              | 32.6      | 32.5    |
| 7                       | 33.4  | 33.5    | 33.5             | 33.4              | 33.1      | 33.38   |
| 3.5                     | 39.3  | 39.4    | 39.2             | 39.3              | 39.4      | 39.32   |
| 1.75                    | 45.1  | 45      | 45               | 45                | 45.1      | 45.04   |
| 0.88                    | 51.3  | 51.5    | 51.3             | 51.3              | 51.3      | 51.34   |
| 0.44                    | 56.2  | 56.3    | 56.2             | 56.4              | 56.4      | 56.3    |

Table S6 Surface tension determination of 1e in pure water



Scheme S7 CMC of 1e in water calculated by surface tension

In conclusion, CMC value of **1a**, **1d** and **1e** that would be applied in efficacy test were listed in Table S7 separately.

Table S7 CMC value of samples applied for animal test

| <u>Comple</u> |              | <b>1a</b> at 10 mmol/L |                   | <b>1d</b> at 10 mmol/L | <b>1e</b> at 10 mmol/L |  |
|---------------|--------------|------------------------|-------------------|------------------------|------------------------|--|
| Sample        | in water     | in NS                  | in water $+ CO_2$ | in water               | in water               |  |
| CMC           | 16.17 mmol/L | 2.83 mmol/L            | 15.33 mmol/L      | 11.70 mmol/L           | 7.11 mmol/L            |  |

#### SI.5 Plasma decomposition measurement

#### General method on blood trigger test for Figure S48

This operation was aimed to exhibit the safety of **1a**. The experiment condition in this section was selected by us to simulate a clinical procedure in which a local anesthetic was injected to a blood vessel by mistacke.

To 5 mL rat plasma in triplicate which were preheated to 37 °C, solution of compound **1a** in water (20  $\mu$ L, 10 mmol/L) was added and stirred at 1200 rpm/min. The plasma sample (10  $\mu$ L) was collected at different time points, and added into 40 $\mu$ L acetonitrile-methanol (1:1, v/v) containing 1  $\mu$ L IS (QX-314, 1  $\mu$ g/mL). The mixture was vortexed and centrifuged at 2000 rpm for 15 min. The supernatant sample (3  $\mu$ L) was injected into the LC–MS–MS system. The relevant contents were calculated by the standard curve method, and were then converted into the remaining percentages by dividing the original does. <sup>S3</sup>

The organic compounds with gemini surfactant structure are always considered to be toxic, and may be in doubt whether they are safe enough for application *in vivo*. To modify the mistackenly

injection into the vessel, nano particle system self-assembled by **1a** in water was added to excessive rat's plasma. It can decompose into compounds with relative lower systemic toxicity in 5 min (Figure S48). With similar gemini-surfactant-like chemical structure, local anesthetics designed for fast-decompose to decrease toxicity were more difficult to decompose in plasma, which needed at least more than 2h to decompose completely (Figure S49).<sup>S4</sup> The capability of self-assembling was also declined a lot due to the significant decrease of hydrophobic tail.

 $LD_{50}$  (the dose at which 50% of animals die) were measured by intravenous injection on rats' femoral vein according to up and down method<sup>S3</sup> for six crossovers. The dosage began from 16mmol, and rised 1.25 times for the next test point.<sup>S5</sup> As control group, (s)-bupivacaine hydrochloride was determined as 5.6 mg/kg on  $LD_{50}$  measurement.



Figure S48 Blood trigger test and LD50 determination of 1a and 1e



at least 2h to decompose

Figure S49 Slow-decompose series-type gemini surfactant with same carbonate group as blood trigger

# General method on in vitro decomposition test

Exam in this section was aimed to test the stability of **1a** in local tissue after unexcepted contact with small amount of blood during the rats' surgery operation.

To 2 mL rat plasma in triplicate which were preheated to 37 °C, solution of compound **1a** in water (200  $\mu$ L, 10 mmol/L) was added, vortexed for 1min, and kept without stirring. The plasma sample (100  $\mu$ L) was collected after the mixture was vortexed for 30 s at different time points, and added into 400  $\mu$ L acetonitrile-methanol (1:1, v/v) containing 10  $\mu$ L IS (QX-314, 1  $\mu$ g/mL). The

mixture was vortexed and centrifuged at 2000 rpm for 15 min. The supernatant sample (3  $\mu$ L) was injected into the LC–MS–MS system. The relevant contents were calculated by the standard curve method, and were then converted into the remaining percentages by dividing the original does.<sup>S6</sup>

#### LC-MS-MS condition

The LC–MS–MS system consisted of an Agilent 1260 liquid chromatograph and a 6460 triple quadrupole mass spectrometer with an electrospray ionization source. Data were analyzed by MassHunter software (Agilent Corporation, MA, USA). Separation was on an Ultimate XB-C4 column (3.0 mm×100 mm i.d., 3  $\mu$ m, 300 Å, Welch Materials, Inc., Maryland, USA) by isocratic elution with 0.1% formic acid/acetonitrile (45:55, v/v), at a flow rate of 0.3 mL/min, and the total run time was 10 min for each injection.

Mass spectrometry conditions were set as follows: sheath gas flow 11.0 L/min; sheath gas heater temperature 300 °C, nebulizer pressure 45 psi, capillary voltage 3500 V. Quantification was performed by multiple reactions monitoring (MRM) mode of the transitions at m/z 421  $\rightarrow$  89.1 for compound **1a**.

#### <u>Results</u>



Figure S50 Plasma decompose of 1a (10 mmol/L in water)

In Figure S50, **1a** was unstable in plasma, especially at relative higher concentration. To keep further test data accurately, we have to try our best to keep our sample away from blood in room temperature, such as washing tissues with water and quick surgery operation at 0 °C.

# SI.6 Rats' sensory block and neuropathological injury measurement

#### Rats' sensory block

Sprague Dowley rats (male, Dossy Experimental Animal Company, Chengdu, China) weighted

 $180\sim200$  g were housed at room temperature and moiety of  $40\%\sim60\%$ , in 12h light/12h dark cycle with free access to food and water. Animals were acclimated to experimental environments before tests. During acclimation, baseline of sensory was measured every day for three consecutive days, averaged, and recorded. Those with normal baselines were used, and randomized into groups (n = 8 for each group).

Rats received sciatic nerve block under sedation with inhaled 1.5%~2.0% isoflurane (v/v %) mixing with oxygen. 0.2 ml of test solution was injected through a 27-Gauge syringe that was inserted at the mid-point between trochanter and ischial tuberosity.<sup>S7</sup> 100% successful rate was obtained with this method using common local anesthetics, and no signs of nerve injury was observed when saline was used in preliminary tests.

Sensation of the injected limb was evaluated after sciatic nerve block by revised hot plate test at 10min, every 2 hours from 2 to 10 hours, and every 8 hours until the sensory block offset for the concentration scope of **1a** in water. For the further study on **1a** in water **1a** in water with CO<sub>2</sub>, **1a** in NS and **1d** in water, hot plate test was began at 10min after injection, and hourly from 2 to 5 hours, hourly from 9 hours until the sensory block offset. For the study on **1e** in water, hot plate test began at 10min after inject, and hourly from 36 hours until offset.

The paw withdrawal latency (PWL) induced by heat stimulation represents the degree of sensation block. The baseline of PWL lasted no longer than 3s, and the cutoff time of PWL was set at 12 s to avoid tissue injury. PWL > 6 s was considered effective nociceptive blockade. The time for PWL to exceed 6 s was the onset time of sensory block; the time for PWL to return below 6 s was the offset of sensory block: the interval between onset and offset time was the duration of sensory blockade. Systemic adverse effect was observed during the injection and observation period, and every day within 7 days after injection.



**Rats before Injection** 



Rats 10min after Injection

Figure S51 Typical image of tested rats before and after injection

# <u>Results</u>

Concentration scope for **1a** in water was carried out in Figure S52. Considering to the results of sensory block duration, neuropathological injury as well as species of nano particles confirmed by 2D NMR above (SMs and JPs, 4 h duration with no nerve injury at 7 mmol/L; SMs, 18h duration with moderate nerve injury at 14 mmol/L), we chose 10 mmol/L as the concentration of **1a** for further study.



Figure S52 Concentration scope for 1a in water on rats' sciatic nerve block.

Nerve function of tested rats would be completely recovered after efficacy if these rats were injected by sample of (s)-bupivacaine (0.75%), **1a** in water, **1a** in water with CO<sub>2</sub>, **1d** and **1e** in water, as shown in Figure S53a. 50% of tested rats cannot recover after injected by **1a** in NS, which was reflected by curl toes, abnormal gait, and muscle paralysis (Figure S53b). Similar situation occurred after injected by **1f** at 10mmol/L in water. 25% of tested rats cannot recover into normal state.



Figure S53 Typical image of tested rats after injection

As shown in Table S8, the duration of sensory block for **1a** self-assemble in pure water was of significant difference from the duration of **1a** in NS. Due to the duration data might be slightly different determined by different operators, all the operation were completed by the same researcher. The rats' behaviors were also observed after sensory block offset as mentioned in manuscript. Nerve function of 4 rats injected by **1a** in NS was impaired, as reflected by curl toes, abnormal gait, and muscle paralysis, while rats injected by **1a** in pure water recovered normally.

3 rats cannot resume into normal after 8 rats were injected by the sample of **1f** were injected, which reflected more serious than performance of rat in Figure S53b. This result was considered to be caused by  $H^+$  released by  $HSO_4^-$  with pKa = 3.0. Therefore, sensory block duration cannot be measured accurately, so that this data were not exhibited in Table S8.

| Comula                               | Sensory Block Duration (hours) |       |       |       |       |       |       |       |      |  |
|--------------------------------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|------|--|
| Sample                               | Run 1                          | Run 2 | Run 3 | Run 4 | Run 5 | Run 6 | Run 7 | Run 8 | Mean |  |
| <b>1a</b> in Water + CO <sub>2</sub> | 12                             | 12    | 13    | 12    | 13    | 12    | 11    | 12    | 12.2 |  |
| 1a in Water                          | 12                             | 11    | 12    | 12    | 12    | 12    | 11    | 11    | 11.6 |  |
| 1a in NS                             | 3                              | 4     | 3     | 4     | 3     | 4     | 3     | 4     | 3.4  |  |
| 2 in Water                           | 0                              | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    |  |
| (s)-Bupivcaine                       | 4                              | 3     | 4     | 4     | 4     | 3     | 4     | 4     | 3.8  |  |
| 1d in water                          | 4                              | 5     | 6     | 5     | 5     | 4     | 5     | 6     | 5.0  |  |
| 1e in water                          | 46                             | 42    | 44    | 44    | 40    | 48    | 40    | 42    | 43.2 |  |

Table S8 Sensory block duration

As control group, (s)-Bupivacaine (0.75%, 0.2 mL) can only lead 3.8 h sensory block, which was significantly shorter than data reported by us before (6.0 h).<sup>S8</sup> This was caused by different standards in these two works on the judgment of sensory block offset. If the standard was changed to that in this work, duration in S8 would be measured to be about 60% compared to reported data.

#### Neuropathological injury measurement

Rats injected by different sample mentioned in Table S8 were killed 7 days after injection. The sciatic nerve was collected and prepared as histopathologic section with HE stain. The neuropathic injury were scored with the same principle of lidocaine salts.<sup>S9</sup>

The neuropathological injury difference between 1a in water and in NS was slightly less than our expection (Table S9). The neuropathological injury scoring of 8 rats injected by 1f were significantly higher than other groups. These terrible images might be caused by the counter ions of 1f that were easy to further release  $H^+$ .

| In: antion                             | Neuropathological Injury Scoring |       |       |       |       |       |       |       |       |  |
|----------------------------------------|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Injection                              | Run 1                            | Run 2 | Run 3 | Run 4 | Run 5 | Run 6 | Run 7 | Run 8 | Mean  |  |
| <b>1a</b> in water $+$ CO <sub>2</sub> | 1                                | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 0.875 |  |
| 1a in water                            | 1                                | 0     | 2     | 1     | 2     | 1     | 1     | 2     | 1.25  |  |
| 1a in NS                               | 2                                | 2     | 1     | 2     | 1     | 3     | 2     | 1     | 1.75  |  |
| (s)-Bupivcaine                         | 0                                | 1     | 0     | 0     | 1     | 0     | 1     | 0     | 0.38  |  |
| 1d in water                            | 1                                | 1     | 0     | 0     | 1     | 1     | 2     | 1     | 1.00  |  |
| 1e in water                            | 1                                | 1     | 1     | 2     | 1     | 2     | 1     | 1     | 1.25  |  |
| 1f in water                            | 2                                | 3     | 1     | 3     | 3     | 2     | 3     | 2     | 2.38  |  |

Table S9 Neuropathological injury scoring

The results of rats' sciatic nerve block and neuropathological injury measurement for **1a** in NaCl solution at different concentration were shown in Figure S54.



Figure S54 Concentration of NaCl scope on rats' sciatic nerve block.

## SI.7 Slow release on local tissue measurement

#### General method on in vivo remaining test for 1a on sciatic nerve and muscular tissue:

After intraperitoneal pentobarbital, rats received sciatic nerve block with compound **1a** at 10 mmol/L in water or in NS and bupivacaine at 23 mmol/L. Then each rat was injected with 0.2 ml solution. Tissues of sciatic nerve at injection site with adjacent 1.6 g muscles and connective tissues were harvested. These tissues were washed with pure water to remove the blood residue, crashed, grinded with ice water 0.5 mL and QX-314 as internal standard (0.01  $\mu$ g) separately in 1min. Each tissue homogenates was added with cool water (25°C water : ice water = 2:1) to make them at the same weight of 4.5 g. The homogenates were centrifuged at 5 °C for 4000 rpm/min during 15 min, and 1.6 g of the supernatant for each group was separately as tested samples. The sample for 0 h was similar with the operation above, and the only difference was that 0.2 ml

solution without injection was added directly into the mixture of crashed tissues and ice water.

The tested samples (3  $\mu$ L) were analyzed by LC-MS-MS system by the condition in SI.6. To prevent decomposition, all procedures were conducted at 0°C. Because tested solutions were not completely absorbed in tissues until 0.5 hour after injection, tissue samples were collected at least 0.5 hour after injection to avoid loses of solution. For each test point (0.5, 1, 4, 8, 12, 16 hours after sciatic nerve blockade), n = 6. We defined the average concentration of tissue samples detected by LC-MS at this moment as 100% remaining. The average contents in different time points were then converted into relative percentage of the initial concentration. The *in vivo* release curves of compound **1a** and bupivacaine were thus obtained.

#### <u>Results</u>

The absolute value of this experiment data cannot be repeated completely by different operators, because the injection sites and muscular tissue samples were difficult to be located accurately, and **1a** was easy to be partly decomposed if the environment temperature increased during the completely operation. Moreover, the primary influence was that the injection at the early time still existed in liquid forms, which was possibly lost during the preparation of muscular samples.

Although the absolute value of this experiment data was not so accurate, we can also make certain that the comparison between **1a** in water and in NS was credible, because all the operations was performed by the same operators at the same time. Thus, it was indicated by the results (Table S10~S13) that **1a** in these different solvents have almost the same slow release behavior in local muscular tissues. That means the duration difference of sensory block was not affected by different slow release manners in local muscular tissues.

| Time Doint  |         |         |         |         |         |         |            |
|-------------|---------|---------|---------|---------|---------|---------|------------|
| 1 ime Point | Run 1   | Run 2   | Run 3   | Run 4   | Run 5   | Run 6   | Remain (%) |
| 0           | 4405.27 | 4225.13 | 3990.18 | 4303.52 | 4044.42 | 4483.62 | 100        |
| 0.5h        | 2938.27 | 3073.25 | 302.15  | 3035.36 | 2922.45 | 3185.43 | 71.42      |
| 1h          | 1528.67 | 1436.25 | 1508.54 | 1403.68 | 1569.25 | 1397.36 | 34.75      |
| 2h          | 477.36  | 621.98  | 511.63  | 533.87  | 582.15  | 646.27  | 13.25      |
| 4h          | 154.32  | 123.25  | 161.23  | 222.21  | 216.73  | 184.23  | 4.17       |
| 6h          | 77.35   | 47.78   | 58.51   | 60.32   | 82.13   | 69.61   | 1.55       |
| 8h          | 46.15   | 40.22   | 35.43   | 28.14   | 34.28   | 36.22   | 0.87       |
| 16h         | 17.25   | 10.47   | 30.22   | 9.23    | 22.54   | 12.97   | 0.40       |

Table S10 Local Tissue Remain of 1a (10 mmol/L) in water + CO2 after injection

| Time Deint |         |         | Local   | Issue Rema | ain (ng/mL) |         | _          |
|------------|---------|---------|---------|------------|-------------|---------|------------|
| Time Point | Run 1   | Run 2   | Run 3   | Run 4      | Run 5       | Run 6   | Remain (%) |
| 0          | 4205.36 | 4025.89 | 4215.32 | 3993.65    | 3942.18     | 3983.44 | 100        |
| 0.5h       | 2579.41 | 2926.57 | 2945.72 | 2508.58    | 2966.67     | 2655.34 | 68.06      |
| 1h         | 1417.47 | 1370.99 | 1303.97 | 1295.28    | 1158.08     | 1298.43 | 32.19      |
| 2h         | 542.86  | 528.20  | 399.42  | 462.61     | 533.77      | 495.94  | 12.16      |
| 4h         | 165.72  | 131.10  | 100.70  | 154.99     | 102.43      | 148.55  | 3.30       |
| 6h         | 48.66   | 70.78   | 68.51   | 60.32      | 50.13       | 46.61   | 1.42       |
| 8h         | 23.42   | 26.36   | 37.11   | 28.96      | 23.57       | 29.95   | 0.70       |
| 16h        | 27.05   | 12.28   | 7.64    | 14.56      | 9.93        | 12.24   | 0.34       |

Table S11 Local Tissue Remain of 1a (10 mmol/L) in water after injection

Table S12 Local Tissue Remain of 1a (10 mmol/L) in NS after injection

| Time Doint |         |         |         |         |         |         |            |
|------------|---------|---------|---------|---------|---------|---------|------------|
| Time Point | Run 1   | Run 2   | Run 3   | Run 4   | Run 5   | Run 6   | Remain (%) |
| 0          | 4124.68 | 4127.52 | 4133.64 | 4036.25 | 4068.3  | 4110.82 | 100        |
| 0.5h       | 2420.90 | 2590.64 | 2881.90 | 2383.30 | 2924.91 | 3018.23 | 65.93      |
| 1h         | 1126.76 | 1060.48 | 1151.21 | 1193.22 | 1095.79 | 1084.44 | 27.28      |
| 2h         | 369.74  | 434.28  | 400.72  | 368.94  | 355.94  | 420.34  | 9.55       |
| 4h         | 167.88  | 100.74  | 67.95   | 69.08   | 131.72  | 100.74  | 2.59       |
| 6h         | 75.02   | 45.68   | 65.67   | 58.73   | 68.92   | 45.68   | 1.46       |
| 8h         | 43.92   | 50.80   | 47.04   | 41.18   | 66.64   | 43.61   | 1.19       |
| 16h        | 12.56   | 36.53   | 25.60   | 15.55   | 6.38    | 13.84   | 0.45       |

Table S12 Local Tissue Remain of (s)-Bupivacaine Hydrochloride (23 mmol/L) in water after injection

| Time Daint |         | Local Issue Remain (ng/mL) |         |         |        |         |            |  |  |
|------------|---------|----------------------------|---------|---------|--------|---------|------------|--|--|
| Time Point | Run 1   | Run 2                      | Run 3   | Run 4   | Run 5  | Run 6   | Remain (%) |  |  |
| 0          | 1332.11 | 1368.07                    | 1283.26 | 1422.47 | 1333.5 | 1391.01 | 100        |  |  |
| 0.5h       | 502.35  | 500.21                     | 487.69  | 532.44  | 496.33 | 524.02  | 37.43      |  |  |
| 1 h        | 128.21  | 102.43                     | 140.75  | 111.29  | 133.25 | 101.64  | 8.83       |  |  |
| 2h         | 43.65   | 38.24                      | 56.75   | 31.54   | 25.27  | 47.23   | 2.98       |  |  |
| 4h         | 1.22    | 4.07                       | 3.29    | 4.41    | 2.78   | 3.42    | 0.24       |  |  |

# SI.8 in vitro diffusion determination on sciatic nerve

18 Sprague Dowley rats (Dossy Experimental Animal Company, Chengdu, China) weighted 200~300g were killed after sedation with inhaled 1.5%~2.0% isoflurane (v/v %) mixing with oxygen. For each rat, two sciatic nerves weighted 1.1g were intercepted rapidly (Figure S55) and stored them in crashed ice separately. 36 sciatic nerves were obtained, and 30 of them with approximate thickness were selected for the next step. Sciatic nerves bifurcated was abandoned.

All of these 30 sicatic nerves were washed with pure water to remove the blood residue, dried by filter paper and cut into 1.10 g intact standard samples. These standard samples were put into 30 glass bottles individually with **1a** solution (10mmol/L) at 40 °C approximate to the internal temperature of rats for 0.5 hour. Then these 30 samples was removed from the **1a** solution, washed with pure water, dried by filter paper, crashed, grinded with ice water 0.5 mL and added with QX-314 as internal standard (0.01µg) separately in 1min. Each tissue homogenates was added with cool water (25°C water : ice water = 2:1) to make them at the same weight of 2.0 g. The homogenates were centrifuged at 5°C for 4000 rpm/min during 15 min, and 1.6 g of the supernatant for each group was separately as tested samples.



Figure S55 a) Images of rat's sciatic nerve b) Images of rat's sciatic nerve 0.5 h after diffusing into solution

# <u>Results</u>

The results were shown in Table S13. Values of Average (%) were compared to **1a**, **1d** and **1e** with different molecular weight separately.

| <u>G</u> arana la           |        |        |        |        |        |        |             |
|-----------------------------|--------|--------|--------|--------|--------|--------|-------------|
| Sample                      | Run 1  | Run 2  | Run 3  | Run 4  | Run 5  | Run 6  | Average (%) |
| <b>1a</b> in water $+ CO_2$ | 345.23 | 337.36 | 351.39 | 341.08 | 390.21 | 406.11 | 39.59       |
| 1a in water                 | 399.25 | 412.32 | 365.23 | 391.25 | 387.86 | 433.41 | 43.56       |
| 1a in NS                    | 732.60 | 668.14 | 725.33 | 692.69 | 780.36 | 757.38 | 79.43       |
| 1d in water                 | 322.54 | 408.71 | 353.05 | 352.02 | 433.83 | 377.06 | 36.24       |
| 1e in water                 | 349.34 | 385.76 | 345.42 | 286.13 | 395.15 | 280.82 | 36.25       |

Table S13 Local tissue contain in sciatic nerve in vitro

#### **SI.9 Data summary**

pKa of HX is used to describe the acid strength of X in inorganic chemistry. Smaller pKa of HX for compounds with same cationic structure and different counter ions of X represent tighter ion pairs, which leads the whole compound more difficult to achieve ion-exchange for other anions in liquid environment.

1a, 1d and 1e have same organic structure on cationic part of molecules. Nano systems self-assembled by these molecules were proved to be arranged in similar manners based on parallel-displaced  $\pi$ - $\pi$  stacking by the correlation signal of H<sub>a</sub>-H<sub>β</sub> mentioned above. It was difficult for these molecules change their arranged manner into T-shaped or parallel-sandwich structure. T-shaped structure was absolutely different from parallel-displaced  $\pi$ - $\pi$  stacking, so that molecules were considered to be difficult to coexist in these two manners. These molecules were suspected to be difficult to exist in parallel-sandwich  $\pi$ - $\pi$  stacking due to ion interference between cationic head and carbonyl group in different molecules, as shown in Scheme S8. Amide group rigidly connected between cationic head and aromatic ring would enhance the intermolecular ion interference. Parallel-displaced  $\pi$ - $\pi$  stacking was confirmed to be favored model than the other two models. Peak areas of H<sub>a</sub>-H<sub>β</sub> for nano systems self-assembled by these three compounds, are thus used to represent proportion of $\pi$ - $\pi$  stacking in intermolecular <sup>1</sup>H-<sup>1</sup>H NOESY test in same condition. Larger peak areas of H<sub>a</sub>-H<sub>β</sub> indicated higher proportion of  $\pi$ - $\pi$  stacking



Scheme S8 Parallel-displaced  $\pi$ - $\pi$  stacking is favored on supramolecular arrangement of 1a, 1b, 1d and 1e.

|                      |                 | J              | 5            | ,                | ÿ1                            | 8                                   |
|----------------------|-----------------|----------------|--------------|------------------|-------------------------------|-------------------------------------|
| Sample               | CMC<br>(mmol/L) | Particle       | pKa of<br>HX | Area of<br>Hα-Hβ | Sensory Block<br>Duration (h) | Neuropathological<br>Injury Scoring |
| 1a + CO <sub>2</sub> | 15.33           | SMs            | -8.0         | 6.90             | 12.1                          | 0.875                               |
| 1a                   | 16.16           | JPs + SMs      | -8.0         | 61.99            | 11.6                          | 1.25                                |
| 1a in NS             | 2.83            | SMs-like       | -8.0         | 811.17           | 3.4                           | 1.75                                |
| 1d                   | 11.70           | SMs + SMs-like | -1.9         | 57.06            | 5.0                           | 1.00                                |

Table S14 Summary of sensory block duration, CMC, pKa and  $\pi$ - $\pi$  stacking

Data of rats' sensory block duration, CMC of nano systems, pKa of HX and peak area of  $H_{\alpha}$ - $H_{\beta}$  are summarized in Table S14. CMC seems to be irrelevant to block duration. pKa and  $\pi$ - $\pi$  stacking

175.08

43.2

1.25

-3.0, 1.99

1e

7.10

Vesicles + SMs

are considered to be of importance on the stability of nano particles, which were related to their behaviors of self-delivery and self-release *in vivo* to affect efficacy of sensory block (Scheme 4).

# References

- [S1] Tang, L.; Yang, J.; Yin, Q. et al. Chem. Commun. 2017, 53, 8675–8678.
- [S2] Feng, D.; Zhang, Y.; Chen, Q.; Wang, J.; Li; B. Feng, Y. J. Surfact. Deterg. 2012, 15, 657– 661.
- [S3] Dixon, W. J. Neurosci. Biobehav. Rev. 1991, 15, 47-50.
- [S4] L. Tang, F. Qin, D. Gong et al. Chem. Commun. 2023, 59, 1653–1656.
- [S5] Liu, J.; Ke, B.; Zhang, W. and Yang, J. CN112574098A.
- [S6] Liu, J.M.; Lv, X. Int. J. Mol. Sci. 2014, 15, 17469–17477.
- [S7] Binshtok, A.M.; Gerner P.; Bae, S. Anesthesiology 2009, 111, 127–137.
- [S8] Liu, J.; Tang, L.; Zhang, W. et al. CN 110092731A.
- [S9] Thahammer, J.R.; Vladimirova, M.; Bershadsky, B.; Strchartz, G.R. Anesthesiology 1995, 82, 1013–1025.