## **Supplementary Information**

# Dinuclear gold-catalyzed cyclization of 1,7-enynes with

## unactivated alkyl bromides

Jiajun Li,<sup>‡a</sup> Xinyi Zhai,<sup>‡a</sup> Cheng-Long Ji,<sup>a</sup> Weipeng Li,<sup>a</sup> and Jin Xie\*<sup>ab</sup>

<sup>a.</sup> State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

<sup>b.</sup> State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China

### Table of Contents

| General Information                                             | 2                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optimization of the Reaction Conditions                         | 3                                                                                                                                                                                                                                                 |
| General Procedure for gold catalyzed radical tandem cyclization | 4                                                                                                                                                                                                                                                 |
| Characterization of Products                                    | 5                                                                                                                                                                                                                                                 |
| X-ray Crystal Data                                              | . 19                                                                                                                                                                                                                                              |
| Radical inhibition experiment                                   | 21                                                                                                                                                                                                                                                |
| Copies of NMR Spectra                                           | 22                                                                                                                                                                                                                                                |
|                                                                 | General Information<br>Optimization of the Reaction Conditions<br>General Procedure for gold catalyzed radical tandem cyclization<br>Characterization of Products<br>X-ray Crystal Data<br>Radical inhibition experiment<br>Copies of NMR Spectra |

#### 1. General Information

All reactions are conducted in oven- or flame-dried glassware under an atmosphere of nitrogen unless otherwise noted. Unless otherwise noted, all reagents are used as received and handled under air atmosphere. Chloroform-*d*1 is purchased from J & K Scientific Ltd.

NMR spectra are recorded on a Bruker Ultra-shield 400 and 500 MHz spectrometer. <sup>1</sup>H NMR and <sup>13</sup>C NMR are recorded on an NMR spectrometer with CDCl<sub>3</sub> as solvent. Chemical shifts of <sup>1</sup>H and <sup>13</sup>C spectra are reported in parts per million (ppm). The <sup>13</sup>C NMR spectra is {1H} decoupled. The residual solvent signals are used as standard, and the chemical shifts are converted to the corresponding scale (CDCl<sub>3</sub>:  $\delta$  H = 7.26 ppm,  $\delta$  C = 77.00 ppm). All coupling constants (*J* values) are reported in hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quint (quintet), and multiplet (m). Gas chromatographic (GC) analyses are performed on a GC equipped with a flameionization detector and an Rtx @-65 (30 m × 0.32 mm ID × 0.25 µm df) column. GC-MS analyses are performed on a GC-MS with an EI mode. HRMS (ESI) is determined on the Micromass Q-TOF instrument. The IR spectra is recorded on a Brucker Alpha FT/IR instrument. The blue LEDs (45 W,  $\lambda$  = 380- 550 nm,  $\lambda_{max}$  = 466 nm) is purchased from Kessil. Schlenk tubes (10 mL and 100 mL) are purchased from synthware. Toppette is purchased from DLAB Scientific Co., Ltd. The compound names are generated by the computer program ChemDraw according to the guidelines specified by the International Union of Pure and Applied Chemistry (IUPAC).

All reagents are purchased from commercial suppliers, Aladdin, Adamas-beta®,TCI (Shanghai) Development Co., Ltd, Energy Chemical, J & K scientific Ltd., Bide Pharmatech Ltd, Alfa-Aesar and Sigma-Aldrich unless otherwise noted.

### 2. Optimization of the Reaction Conditions

|                   | Ph                                                       |                                  |                     | Ph Me               | Иe                       |
|-------------------|----------------------------------------------------------|----------------------------------|---------------------|---------------------|--------------------------|
|                   | Br                                                       | catalyst (2                      | mol%)               | $\langle D \rangle$ |                          |
|                   |                                                          | base(2.0 eq)                     | ),[H] (2.0 eq)      | Í 🍸 🏹 M             | le                       |
|                   |                                                          | solvent (0.1 M),                 | blue LEDs, 22 h     | ∽ <sub>N</sub> ∼o   |                          |
|                   | 1a 2a                                                    |                                  |                     | Ме<br><b>За</b>     |                          |
| entry             | catalyst                                                 | base                             | [H]                 | solvent             | yield <sup>[b]</sup> (%) |
| 1                 | [Au(dcpm)Cl] <sub>2</sub>                                | -                                | -                   | MeCN                | nr                       |
| 2                 | [Au(dcpm)Cl] <sub>2</sub>                                | Na <sub>2</sub> CO <sub>3</sub>  | -                   | MeCN                | trace                    |
| 3                 | [Au(dcpm)Cl] <sub>2</sub>                                | BTMG                             | -                   | MeCN                | trace                    |
| 4                 | [Au(dcpm)Cl] <sub>2</sub>                                | -                                | HCO <sub>2</sub> H  | MeCN                | 12                       |
| 5                 | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | -                   | MeCN                | 7                        |
| 6                 | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | MeCN                | 72 <sup>[c]</sup>        |
| 7                 | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCOONH <sub>4</sub> | MeCN                | 53 <sup>[c]</sup>        |
| 8                 | [Au(dcpm)Cl] <sub>2</sub>                                | Pyrrolidine                      | HCO <sub>2</sub> H  | MeCN                | 66 <sup>[c]</sup>        |
| 9                 | [Au(dcpm)Cl] <sub>2</sub>                                | NEt3                             | HCO <sub>2</sub> H  | MeCN                | 8                        |
| 10                | [Au(dcpm)Cl] <sub>2</sub>                                | <sup>i</sup> Pr <sub>2</sub> NEt | HCO <sub>2</sub> H  | MeCN                | 35                       |
| 11                | [Au(dppbz)Cl] <sub>2</sub>                               | DIPA                             | HCO <sub>2</sub> H  | MeCN                | nr                       |
| 12                | [Au <sub>3</sub> (tppm) <sub>2</sub> ](OTf) <sub>3</sub> | DIPA                             | HCO <sub>2</sub> H  | MeCN                | trace                    |
| 13                | Ru(bpy) <sub>3</sub> Cl <sub>2</sub>                     | DIPA                             | HCO <sub>2</sub> H  | MeCN                | nr                       |
| 14                | $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$                          | DIPA                             | HCO <sub>2</sub> H  | MeCN                | nd                       |
| 15                | [Ir(ppy)2(dtbbpy)]PF6                                    | DIPA                             | HCO <sub>2</sub> H  | MeCN                | 6                        |
| 16                | <i>fac</i> -Ir(ppy) <sub>3</sub>                         | DIPA                             | HCO <sub>2</sub> H  | MeCN                | 17                       |
| 17                | 4CzIPN                                                   | DIPA                             | HCO <sub>2</sub> H  | MeCN                | nd                       |
| 18                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | THF                 | 41                       |
| 19                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | AcOMe               | 61                       |
| 20                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | СНЗОН               | 42                       |
| 21                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | DCE                 | 37                       |
| 22                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | DMF                 | 73                       |
| 23                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | THF                 | 41                       |
| 24                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | AcOMe               | 61                       |
| 25                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | CH3OH               | 42                       |
| 26                | -                                                        | DIPA                             | HCO <sub>2</sub> H  | MeCN                | nr                       |
| 27 <sup>[d]</sup> | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | HCO <sub>2</sub> H  | MeCN                | nr                       |
| 28                | [Au(dcpm)Cl] <sub>2</sub>                                | DIPA                             | AcOH                | MeCN                | 71                       |

[a] Standard reaction conditions:  $[Au(dcpm)Cl]_2$  (2 mol%), **1a** (0.1 mmol), **2a** (0.3 mmol), HCO<sub>2</sub>H (0.2 mmol), DIPA (0.2 mmol), MeCN (1 mL), blue LEDs, ambient temperature, 22 h. DIPA = Diisopropylamine. n.d. = not detected. n.r. = no reaction. [b] GC yield using biphenyl as internal standard. [c] Isolated yield. [d] Standard reaction conditions without light irradiation.

#### 3. General Procedure for gold catalyzed radical tandem cyclization



To an over-dried tube, 1,7-enyne (0.2 mmol),  $[Au(dcpm)Cl]_2$  (2 mol%),  $HCO_2H$  (0.4 mmol), DIPA (0.4 mmol), alkyl bromides (0.6 mmol) and MeCN (1 mL) were added sequentially under N<sub>2</sub> atmosphere. The resulting mixture was stirred at ambient temperature (fan is used to keep the reaction temperature around ambient temperature) under the irradiation of blue LEDs for 22-36 h. After the reaction finished, the mixture was concentrated under reduced pressure. Then the resulting residue was purified by flash column chromatography (1:10, EtOAc/hexane) to afford the product.

#### 4 mmol scale for synthesis of 3a

To an over-dried 100mL tube, 1,7-enyne **1a** (1.1 g, 4 mmol), [Au(dcpm)Cl]<sub>2</sub> (2 mol%), HCO<sub>2</sub>H (320  $\mu$ L, 8 mmol), DIPA (1120  $\mu$ L, 8 mmol), isopropyl bromide (1120  $\mu$ L, 8 mmol) and MeCN (20 mL) were added sequentially under N<sub>2</sub> atmosphere. The resulting mixture was stirred at ambient temperature (fan is used to keep the reaction temperature around ambient temperature) under the irradiation of blue LEDs for 60 h. After the reaction finished, the mixture was concentrated under reduced pressure. Then the resulting residue was purified by flash column chromatography (1:10, EtOAc/hexane) to afford the product **3a** (627 mg, 50 yield%).

#### 4. Characterization of Products

2,2,3a,5-Tetramethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3a)



According to the general procedure in 0.2 mmol scale, **3a** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 22.7 mg, 72% yield, white solid, m.p. =162-164 °C.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.38 – 7.27 (m, 3H), 7.21 – 7.07 (m, 3H), 6.98 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.77 – 6.67 (m, 2H), 3.40 (s, 3H), 2.58 (d, *J* = 13.6 Hz, 1H), 2.07 (d, *J* = 13.6 Hz, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 0.97 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.8, 148.2, 139.9, 136.7, 132.8, 129.0, 128.3, 127.9, 127.5, 127.1, 122.2, 121.7, 114.7, 51.8, 49.5, 47.8, 29.9, 29.6, 29.2, 26.3.

**IR (ATR)**: v = 2960, 2868, 1676, 1599, 1348, 1462, 1127, 752, 718, 701 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{22}H_{24}NO (M + H)^+$ : 318.1852; found: 318.1847.

2,2-Diethyl-3a,5-dimethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3b)



According to the general procedure in 0.2 mmol scale, **3b** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 40.7 mg, 59% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**  $\delta$  7.32 – 7.26 (m, 3H), 7.17 – 7.14 (m, 1H), 7.12 – 7.07 (m, 2H), 6.99 (dd, J = 8.0, 1.0 Hz, 1H), 6.70 (td, J = 7.5, 1.0 Hz, 1H), 6.67 (dd, J = 7.0, 2.0 Hz, 1H), 3.42 (s, 3H), 2.74 (d, J = 14.5 Hz, 1H), 1.87 (d, J = 14.5 Hz, 1H), 1.67 – 1.63 (m, 2H), 1.34 – 1.29 (m, 1H), 1.27 (s, 3H), 1.22 – 1.17 (m, 1H), 1.09 (t, J = 7.5 Hz, 3H), 0.74 (t, J = 7.5 Hz, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.7, 145.2, 139.7, 136.5, 135.5, 129.3, 128.2, 127.8, 127.6, 127.0, 122.3, 122.1, 114.5, 56.7, 52.0, 39.9, 31.4, 31.4, 30.1, 26.4, 10.2, 8.7.

**IR (ATR)**: v = 2964, 2361, 1674, 1599, 1460, 1275, 1099, 751, 711, 700 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{24}H_{28}NO (M + H)^+$ : 346.2165; found: 346.2160.

2-Ethyl-2,3a,5-trimethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3c)



According to the general procedure in 0.2 mmol scale, 3c was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 53.1 mg, 80% yield, dr = 1.5:1, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.36 – 7.27 (m, 3H), 7.18 – 7.06 (m, 3H), 7.01 – 6.96 (m, 1H), 6.74 – 6.66 (m, 2H), 3.41 (s, 3H), 2.68 (d, *J* = 14.0 Hz, 0.4H), 2.45 (d, *J* = 14.0 Hz, 0.6H), 2.18 (d, *J* = 14.0 Hz, 0.6H), 1.88 (d, *J* = 14.0 Hz, 0.4H), 1.67 – 1.61 (m, 1.2H), 1.40 (s, 1.2H), 1.33 (s, 1.2H), 1.30 (s, 1.8H), 1.23 – 1.21 (m, 0.8H), 1.02 (t, *J* = 7.2 Hz, 1.8H), 0.94 (s, 1.8H), 0.79 (t, *J* = 7.2 Hz, 1.2H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.9, 175.8, 148.2, 147.6, 139.9, 139.8, 136.9, 136.6, 133.4, 133.4, 129.4, 129.0, 128.3, 128.1, 127.9, 127.8, 127.6, 127.5, 127.1, 127.0, 122.2, 122.1, 121.9, 121.8, 114.7, 114.6, 51.8, 51.8, 51.7, 51.5, 45.7, 44.0, 33.4, 32.5, 30.0, 29.9, 27.3, 26.8, 26.5, 26.3, 9.8, 8.6. **IR (ATR)**: v = 2963, 2361, 1676, 1560, 1461, 1369, 1100, 752, 714, 702 cm<sup>-1</sup>. **HRMS m/z (ESI)** calcd for C<sub>23</sub>H<sub>26</sub>NO (M + H)<sup>+</sup>: 332.2009; found: 332.2004.

2,3a,5-Trimethyl-1-phenyl-2-propyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3d)



According to the general procedure in 0.2 mmol scale, **3d** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 29.2 mg, 42% yield, dr = 1.5:1, thick oil.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.27 (m, 3H), 7.17 – 7.07 (m, 3H), 7.00 – 6.97 (m, 1H), 6.73 – 6.66 (m, 2H), 3.40 (s, 3H), 2.68 (d, *J* = 14.0 Hz, 0.4H), 2.46 (d, *J* = 14.0 Hz, 0.6H), 2.19 (d, *J* = 14.0 Hz, 0.6H), 1.91 (d, *J* = 14.0 Hz, 0.4H), 1.62 – 1.42 (m, 2.4H), 1.40 (s, 1.2H), 1.32 (s, 1.2H), 1.30 (s, 1.8H), 1.23 – 1.06 (m, 1.6H), 0.99 (t, *J* = 7.2 Hz, 1.8H), 0.95 (s, 1.8H), 0.76 (t, *J* = 7.2 Hz, 1.2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.9, 175.8, 148.4, 147.9, 139.9, 139.8, 136.9, 136.6, 133.2, 133.2, 129.4, 129.0, 128.3, 128.2, 127.9, 127.8, 127.6, 127.5, 127.1, 127.0, 122.2, 122.1, 122.0, 121.8, 114.7, 114.6, 51.9, 51.8, 51.6, 51.3, 46.5, 44.7, 43.4, 42.7, 30.0, 29.9, 27.7, 27.4, 26.5, 26.3, 18.8, 17.6, 14.9, 14.6.

IR (ATR): v = 2958, 1671, 1599, 1460, 1347, 1100, 909, 751, 729, 701 cm<sup>-1</sup>. HRMS m/z (ESI) calcd for C<sub>24</sub>H<sub>28</sub>NO (M + H)<sup>+</sup>: 346.2165; found: 346.2159. 2,3a,5-Trimethyl-2-phenethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3e)



According to the general procedure in 0.2 mmol scale, **3e** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 33.7 mg, 41% yield, dr = 1:1, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.35 – 7.29 (m, 4H), 7.24 – 7.09 (m, 6H), 7.02 – 6.98 (m, 2H), 6.75 – 6.68 (m, 2H), 3.42 (s, 3H), 2.84 (d, *J* = 13.6 Hz, 0.5H), 2.79 – 2.67 (m, 1H), 2.58 – 2.52 (m, 1.5H), 2.36 (d, *J* = 13.6 Hz, 0.5H), 2.03 (d, *J* = 13.6 Hz, 0.5H), 1.98 – 1.89 (m, 1H), 1.54 – 1.49 (m, 2.5H), 1.37 – 1.36 (m, 3H), 1.06 (s, 1.5H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.7, 175.7, 147.9, 147.2, 142.7, 142.6, 139.9, 139.8, 136.6, 136.4, 133.8, 133.7, 129.4, 129.1, 128.5, 128.4, 128.3, 128.3, 128.2, 128.2, 128.0, 128.0, 127.7, 127.5, 127.3, 127.2, 125.8, 125.5, 122.2, 122.2, 121.8, 121.6, 114.7, 114.7, 51.9, 51.8, 51.6, 51.2, 46.5, 44.8, 43.4, 42.6, 32.2, 31.0, 30.0, 30.0, 28.0, 27.1, 26.4, 26.4.

**IR (ATR)**:  $v = 3026, 2960, 1671, 1699, 1460, 1099, 908, 751, 729, 699 \text{ cm}^{-1}$ .

HRMS m/z (ESI) calcd for  $C_{29}H_{30}NO (M + H)^+$ : 408.2322; found: 408.2312.

3a',5'-Dimethyl-1'-phenyl-3',3a'-dihydrospiro[cyclobutane-1,2'-cyclopenta[c]quinolin]-4'(5'H)-one (3f)



According to the general procedure in 0.2 mmol scale, **3f** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 29.0 mg, 44% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)** δ 7.44 – 7.32 (m, 3H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.15 (ddd, *J* = 8.5, 7.5, 1.5 Hz, 1H), 6.97 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.70 (td, *J* = 7.5, 1.0 Hz, 1H), 3.39 (s, 3H), 2.59 (d, *J* = 13.0 Hz, 1H), 2.54 (d, *J* = 13.0 Hz, 1H), 2.53 – 2.46 (m, 1H), 2.22 – 2.20 (m, 1H), 2.08 – 2.04 (m, 1H), 1.95 – 1.86 (m, 1H), 1.81 – 1.76 (m, 1H), 1.58 – 1.51 (m, 1H), 1.28 (s, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.5, 145.5, 139.9, 137.1, 134.0, 129.0, 128.5, 128.1, 127.4, 127.2, 122.2, 121.3, 114.8, 54.1, 51.9, 50.2, 35.0, 31.9, 29.8, 25.7, 16.7.

**IR (ATR)**: v = 2926, 1671, 1598, 1461, 1369, 1350, 1284, 1120, 751, 711 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{23}H_{24}NO (M + H)^+$ : 330.1852; found: 330.1849.

3a',5'-Dimethyl-1'-phenyl-3',3a'-dihydrospiro[cyclopentane-1,2'-cyclopenta[c]quinolin]-4'(5'H)-one (3g)



According to the general procedure in 0.2 mmol scale, 3g was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 51.4 mg, 75% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.38 – 7.28 (m, 3H), 7.17 – 7.12 (m, 3H), 6.98 (dd, *J* = 8.4, 1.0 Hz, 1H), 6.76 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.70 (td, *J* = 7.6, 1.0 Hz, 1H), 3.40 (s, 3H), 2.44 (d, *J* = 13.6 Hz, 1H), 2.15 (d, *J* = 13.6 Hz, 1H), 1.96 – 1.87 (m, 1H), 1.82 – 1.70 (m, 2H), 1.68 – 1.58 (m, 2H), 1.52 – 1.45 (m, 1H), 1.45 – 1.38 (m, 1H), 1.37 – 1.32 (m, 4H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.8, 146.0, 139.7, 136.8, 133.9, 129.4, 128.2, 127.9, 127.4, 127.1, 122.2, 121.6, 114.7, 58.7, 52.0, 48.8, 38.9, 38.4, 29.9, 26.5, 24.2, 23.9.

**IR (ATR)**: v = 2952, 2866, 1671, 1598, 1460, 1349, 1240, 1102, 751, 707 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{24}H_{26}NO (M + H)^+$ : 344.2009; found: 344.2003.

3a',5'-Dimethyl-1'-phenyl-3',3a'-dihydrospiro[cyclohexane-1,2'-cyclopenta[c]quinolin]-4'(5'H)-one (3h)



According to the general procedure in 0.2 mmol scale, **3h** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 53.8 mg, 75% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**  $\delta$  7.38 – 7.29 (m, 3H), 7.17 – 7.05 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.71 – 6.65 (m, 2H), 3.40 (s, 3H), 2.46 (d, *J* = 14.0 Hz, 1H), 2.29 (d, *J* = 14.0 Hz, 1H), 1.73 – 1.65 (m, 3H), 1.62 – 1.48 (m, 3H), 1.45 – 1.37 (m, 1H), 1.32 – 1.30 (s, 4H), 1.13 (td, *J* = 13.0, 4.0 Hz, 1H), 1.01 – 0.92 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.9, 148.7, 139.7, 136.8, 133.2, 129.5, 128.1, 127.8, 127.5, 127.0, 122.2, 121.8, 114.6, 52.2, 51.9, 43.5, 37.6, 35.9, 29.9, 27.3, 25.4, 23.5, 22.4.

**IR (ATR)**: v = 2925, 2852, 1673, 1598, 1461, 1329, 1103, 1048, 751, 710 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{25}H_{28}NO (M + H)^+$ : 358.2165; found: 358.2159.

3a',5'-Dimethyl-1'-phenyl-3',3a'-dihydrospiro[cycloheptane-1,2'-cyclopenta[c]quinolin]-4'(5'H)-one (3i)



According to the general procedure in 0.2 mmol scale, 3i was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 51.8 mg, 70% yield, thick oil.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.29 (m, 3H), 7.17 – 7.09 (m, 3H), 6.97 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 4.0 Hz, 2H), 3.39 (s, 3H), 2.47 (dd, J = 13.6, 0.9 Hz, 1H), 2.24 (d, J = 13.6 Hz, 1H), 2.02 – 1.89 (m, 2H), 1.66 – 1.58 (m, 3H), 1.50 – 1.35 (m, 6H), 1.32 (s, 3H), 1.29 – 1.25 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.9, 149.5, 139.8, 137.2, 132.0, 129.3, 128.2, 127.8, 127.5, 127.0, 122.1, 121.7, 114.6, 54.6, 51.7, 45.7, 40.8, 40.2, 29.9, 28.9, 28.6, 26.3, 24.3, 23.7. IR (ATR): v = 2923, 1674, 1599, 1461, 1369, 1348, 1274, 1102, 752, 706 cm<sup>-1</sup>. HRMS m/z (ESI) calcd for C<sub>26</sub>H<sub>30</sub>NO (M + H)<sup>+</sup>: 372.2322; found: 372.2317.

3a,5-Dimethyl-1-phenyl-3,3a-dihydrospiro[cyclopenta[c]quinoline-2,3'-oxetan]-4(5H)-one (3j)



According to the general procedure in 0.2 mmol scale, 3j was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 32.1 mg, 48% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**  $\delta$  7.43 – 7.35 (m, 5H), 7.21 (ddd, *J* = 8.5, 7.5, 1.5 Hz, 1H), 7.01 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.93 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.76 (td, *J* = 7.5, 1.0 Hz, 1H), 5.11 (d, *J* = 6.0 Hz, 1H), 4.91 (d, *J* = 6.0 Hz, 1H), 4.60 (d, *J* = 6.5 Hz, 1H), 4.57 (d, *J* = 6.5 Hz, 1H), 3.39 (s, 3H), 2.71 (s, 2H), 1.21 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 174.6, 140.1, 140.1, 136.7, 135.3, 128.9, 128.8, 128.8, 128.0, 127.8, 122.4, 120.5, 115.0, 83.3, 79.4, 53.8, 51.7, 48.1, 29.8, 25.4.

**IR (ATR)**: v = 2958, 2865, 2361, 1670, 1598, 1462, 1352, 753, 732, 704 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{22}H_{22}NO_2$  (M + H)<sup>+</sup>: 332.1645; found: 332.1644.

3a,5-Dimethyl-1-phenyl-2',3,3a,3',5',6'-hexahydrospiro[cyclopenta[c]quinoline-2,4'-pyran]-4(5H)-one (3k)



According to the general procedure in 0.2 mmol scale,  $3\mathbf{k}$  was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 60.3 mg, 84% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**  $\delta$  7.37 – 7.31 (m, 3H), 7.16 (ddd, J = 8.5, 7.0, 2.0 Hz, 1H), 7.09 (d, J = 6.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 1H), 6.75 – 6.68 (m, 2H), 3.95 (dd, J = 11.5, 3.5 Hz, 1H), 3.80 – 3.75 (m, 1H), 3.69 (td, J = 12.0, 2.0 Hz, 1H), 3.59 – 3.53 (m, 1H), 3.41 (s, 3H), 2.59 (d, J = 14.0 Hz, 1H), 2.39 (d, J = 14.0 Hz, 1H), 2.15 – 2.09 (m, 1H), 1.61 (td, J = 13.0, 5.0 Hz, 1H), 1.51 (dd, J = 13.0, 2.5 Hz, 1H), 1.34 (s, 3H), 1.15 (dd, J = 13.5, 2.5 Hz, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.4, 146.7, 139.7, 135.9, 134.4, 129.5, 128.4, 128.2, 127.5, 127.4, 122.3, 121.4, 114.7, 65.1, 64.5, 52.1, 49.7, 43.3, 37.2, 35.9, 30.0, 27.5.

**IR (ATR)**: v = 2928, 2848, 1736, 1672, 1598, 1238, 1102, 751, 710, 669 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{24}H_{26}NO_2$  (M + H)<sup>+</sup>: 360.1958; found: 360.1956.

3a',5'-Dimethyl-1'-phenyl-3',3a'-dihydrospiro[bicyclo[2.2.1]heptane-2,2'cyclopenta[c]quinolin]-4'(5'H)-one (3l)



According to the general procedure in 0.2 mmol scale, **31** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 21.7 mg, 29% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl**<sub>3</sub>) δ 7.42 (s, 2H), 7.32 – 7.29 (m, 1H), 7.24 – 7.23 (m, 1H), 7.13 (ddd, J = 8.0, 7.0, 2.0 Hz, 1H), 6.96 (dd, J = 8.5, 1.0 Hz, 1H), 6.81 – 6.74 (m, 1H), 6.67 (td, J = 7.5, 1.0 Hz, 1H), 6.63 (dd, J = 8.0, 2.0 Hz, 1H), 3.38 (s, 3H), 2.61 (d, J =13.5 Hz, 1H), 2.45 (d, J = 13.5 Hz, 1H), 2.39 – 2.35 (m, 1H), 1.97 – 1.95 (m, 1H), 1.94 – 1.88 (m, 2H), 1.53 – 1.47 (m, 1H), 1.48 – 1.42 (m, 1H), 1.26 (s, 3H), 1.23 – 1.19 (m, 1H), 1.14 (dd, J = 12.5, 3.0 Hz, 1H), 1.07 – 1.03 (m, 1H), 1.01 – 0.95 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.5, 148.0, 139.8, 138.0, 133.3, 130.4, 129.7, 128.5, 127.7, 127.2,

127.0, 122.1, 114.6, 56.6, 51.1, 47.5, 46.2, 45.4, 39.1, 36.9, 30.0, 28.1, 27.3, 25.3.

**IR (ATR)**: v = 2942, 2868, 1672, 1599, 1460, 1349, 1277, 751, 731, 707 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{26}H_{28}NO (M + H)^+$ : 370.2165; found: 370.2161.

2,2,3a,5-Tetramethyl-1-(p-tolyl)-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3m)



According to the general procedure in 0.2 mmol scale, **3m** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 50.1 mg, 76% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.18 – 7.11 (m, 3H), 7.04 – 6.95 (m, 3H), 6.79 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.72 (td, *J* = 7.6, 1.2 Hz, 1H), 3.40 (s, 3H), 2.57 (d, *J* = 13.6 Hz, 1H), 2.37 (s, 3H), 2.06 (d, *J* = 13.6 Hz, 1H), 1.38 (s, 3H), 1.33 (s, 3H), 0.97 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.9, 148.2, 139.8, 136.6, 133.6, 132.6, 129.0, 128.9, 127.8, 127.5, 122.2, 121.8, 114.6, 51.7, 49.5, 47.7, 29.9, 29.6, 29.2, 26.3, 21.2.

**IR (ATR)**: v = 2959, 2866, 1673, 1598, 1511, 1369, 1099, 814, 751, 734 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{23}H_{26}NO (M + H)^+$ : 332.2009; found: 332.2007.

1-(4-(Tert-butyl)phenyl)-2,2,3a,5-tetramethyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3n)



According to the general procedure in 0.2 mmol scale, **3n** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 47.6 mg, 64% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.15 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.97 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.76 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.71 (td, *J* = 7.6, 1.2 Hz, 1H), 3.40 (s, 3H), 2.57 (d, *J* = 13.6 Hz, 1H), 2.06 (d, *J* = 13.6 Hz, 1H), 1.39 (s, 3H), 1.33 (s, 12H), 0.97 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.9, 149.9, 148.3, 139.8, 133.5, 132.5, 128.6, 127.8, 127.5, 125.1, 122.2, 121.9, 114.6, 51.7, 49.5, 47.8, 34.5, 31.4, 29.9, 29.6, 29.2, 26.3.

**IR (ATR)**: v = 2960, 2867, 1673, 1599, 1460, 1348, 1099, 828, 751, 731 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{26}H_{32}NO (M + H)^+$ : 374.2478; found: 374.2470.

1-(4-Methoxyphenyl)-2,2,3a,5-tetramethyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4one (3o)



According to the general procedure in 0.2 mmol scale, **30** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 53.6 mg, 77% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.16 (ddd, *J* = 8.8, 7.6, 1.6 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 2H), 6.98 (dd, *J* = 8.8, 1.2 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.79 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.73 (td, *J* = 7.6, 1.2 Hz, 1H), 3.82 (s, 3H), 3.40 (s, 3H), 2.56 (d, *J* = 13.6 Hz, 1H), 2.06 (d, *J* = 13.6 Hz, 1H), 1.38 (s, 3H), 1.32 (s, 3H), 0.97 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.9, 158.7, 147.9, 139.9, 132.7, 130.1, 128.8, 127.8, 127.5, 122.2, 121.9, 114.7, 113.8, 55.1, 51.6, 49.5, 47.7, 29.9, 29.6, 29.2, 26.3.

**IR (ATR)**: v = 2959, 2867, 2360, 1672, 1598, 1510, 1461, 1244, 828, 752 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{23}H_{26}NO_2 (M + H)^+$ : 348.1958; found: 348.1951.

Methyl 4-(2,2,3a,5-tetramethyl-4-oxo-3,3a,4,5-tetrahydro-2H-cyclopenta[c]quinolin-1yl)benzoate (3p)



According to the general procedure in 0.2 mmol scale, **3p** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 32.3 mg, 43% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  8.01 (d, J = 8.6 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 7.19 – 7.14 (m, 1H), 7.03 – 6.96 (m, 1H), 6.74 – 6.64 (m, 2H), 3.92 (s, 3H), 3.40 (s, 3H), 2.59 (d, J = 13.6 Hz, 1H), 2.09 (d, J = 13.6 Hz, 1H), 1.41 (s, 3H), 1.35 (s, 3H), 0.96 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.6, 167.0, 146.9, 142.1, 139.9, 134.0, 129.6, 129.2, 129.0, 128.3, 127.5, 122.3, 121.2, 114.9, 52.1, 52.0, 49.7, 48.0, 30.0, 29.7, 29.2, 26.3.

**IR (ATR)**: v = 2958, 1721, 1673, 1599, 1461, 1273, 1099, 1047, 752, 727 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{24}H_{26}NO_3 (M + H)^+$ : 376.1907; found: 376.1902.

1-(2-Methoxyphenyl)-2,2,3a,5-tetramethyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4one (3q)



According to the general procedure in 0.2 mmol scale, 3q was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 35.1 mg, 51% yield, dr = 1:1, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.32 – 7.27 (m, 1H), 7.22 – 7.24 (m, 0.5H), 7.16 – 7.11 (m, 1H), 7.04 – 6.95 (m, 2H), 6.87 – 6.78 (m, 2.5H), 6.76 – 6.67 (m, 1H), 3.86 (s, 1.5H), 3.40 (s, 1.5H), 3.39 (s, 3H), 2.64 – 2.55 (m, 1H), 2.04 – 2.08 (m, 1H), 1.37 (s, 1.5H), 1.35 – 1.34 (m, 3H), 1.24 (s, 1.5H), 1.01 (s, 1.5H), 0.97 (s, 1.5H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 176.2, 176.0, 158.1, 157.0, 144.8, 143.7, 139.7, 139.3, 133.5, 133.2, 130.9, 130.7, 128.6, 128.6, 127.7, 127.6, 126.8, 126.2, 125.6, 125.3, 122.7, 122.5, 122.1, 122.0, 120.4, 120.1, 114.5, 114.4, 111.8, 110.3, 55.3, 55.2, 52.0, 51.9, 49.3, 49.3, 48.5, 48.2, 29.9, 29.8, 29.5, 28.1, 26.6, 26.6.

**IR (ATR)**: v = 2960, 2866, 1670, 1596, 1460, 1369, 1237, 1099, 749, 729 cm<sup>-1</sup>. **HRMS m/z (ESI)** calcd for C<sub>23</sub>H<sub>26</sub>NO<sub>2</sub> (M + H)<sup>+</sup>: 348.1958; found: 348.1950.

1-(3-Methoxyphenyl)-2,2,3a,5-tetramethyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4one (3r)



According to the general procedure in 0.2 mmol scale,  $3\mathbf{r}$  was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 33.7 mg, 49% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**  $\delta$  7.25 (t, *J* = 7.6 Hz, 1H), 7.16 (ddd, *J* = 8.8, 7.2, 1.6 Hz, 1H), 6.98 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.85 (ddd, *J* = 8.8, 2.4, 1.2 Hz, 1H), 6.80 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.75 – 6.69 (m, 2H), 6.67 – 6.66 (m, 1H), 3.77 (s, 3H), 3.40 (s, 3H), 2.57 (d, *J* = 13.6 Hz, 1H), 2.07 (d, *J* = 13.6 Hz, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 0.98 (s, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.8, 159.4, 147.8, 139.8, 138.1, 132.8, 129.3, 128.0, 127.5, 122.3, 121.6, 121.6, 114.7, 114.7, 112.4, 55.2, 51.7, 49.5, 47.8, 29.9, 29.6, 29.2, 26.3.

**IR (ATR)**: v = 2959, 2867, 1671, 1598, 1461, 1279, 1047, 751, 726, 695 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{23}H_{26}NO_2 (M + H)^+$ : 348.1958; found: 348.1952.

2,2,3a,5-Tetramethyl-1-(thiophen-3-yl)-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3s)



According to the general procedure in 0.2 mmol scale, 3s was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 26.1 mg, 40% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.31 (dd, J = 5.2, 2.8 Hz, 1H), 7.17 – 7.21 (m, 1H), 7.04 (dd, J = 3.2, 1.2 Hz, 1H), 6.99 (dd, J = 8.4, 1.2 Hz, 1H), 6.88 (t, J = 1.6 Hz, 1H), 6.86 (t, J = 1.6 Hz, 1H), 6.79 (td, J = 7.6, 1.2 Hz, 1H), 3.39 (s, 3H), 2.56 (d, J = 13.6 Hz, 1H), 2.05 (d, J = 13.6 Hz, 1H), 1.41 (s, 3H), 1.31 (s, 3H), 0.99 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.7, 143.1, 139.9, 136.2, 133.7, 128.6, 128.1, 127.4, 125.3, 122.5, 122.3, 121.7, 114.7, 51.7, 49.4, 47.4, 29.9, 29.7, 29.1, 26.1.

**IR (ATR)**: v = 2960, 1671, 1598, 1461, 1345, 1279, 1100, 780, 752, 732 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{20}H_{22}NOS (M + H)^+$ : 324.1417; found: 324.1409.

#### 2,2,3a,5,7-Pentamethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3t)



According to the general procedure in 0.2 mmol scale, 3t was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 46.7 mg, 71% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>)  $\delta$  7.36 – 7.27 (m, 3H), 7.15 – 7.09 (m, 2H), 6.80 (s, 1H), 6.61 (d, J = 7.6 Hz, 1H), 6.53 (dd, J = 7.6, 0.8 Hz, 1H), 3.39 (s, 3H), 2.56 (d, J = 13.6 Hz, 1H), 2.29 (s, 3H), 2.07 (d, J = 13.6 Hz, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 0.97 (s, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.9, 147.1, 139.8, 137.9, 136.9, 132.8, 129.1, 128.2, 127.3, 127.0, 123.0, 118.9, 115.5, 51.8, 49.5, 47.7, 29.9, 29.6, 29.2, 26.4, 21.7.

**IR (ATR)**: v = 2960, 1673, 1609, 1508, 1328, 1277, 1102, 732, 720, 701 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{23}H_{26}NO (M + H)^+$ : 332.2009; found: 332.2003.

7-Chloro-2,2,3a,5-tetramethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3u)



According to the general procedure in 0.2 mmol scale,  $3\mathbf{u}$  was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 31.2 mg, 44% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.38 – 7.28 (m, 3H), 7.13 – 7.07 (m, 2H), 6.97 (d, *J* = 2.0 Hz, 1H), 6.68 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.63 (d, *J* = 8.4 Hz, 1H), 3.37 (s, 3H), 2.56 (d, *J* = 13.6 Hz, 1H), 2.07 (d, *J* = 13.6 Hz, 1H), 1.39 (s, 3H), 1.33 (s, 3H), 0.97 (s, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.6, 148.9, 141.0, 136.3, 133.5, 131.8, 128.9, 128.4, 127.3, 122.2, 120.1, 115.0, 51.7, 49.4, 47.8, 30.0, 29.5, 29.1, 26.3.

**IR (ATR)**: v = 2961, 1674, 1593, 1456, 1098, 1028, 907, 728, 713, 700 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{22}H_{23}NOCl (M + H)^+$ : 352.1463; found: 352.1463.

2,2,3a,5,8-Pentamethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3v)



According to the general procedure in 0.2 mmol scale, 3v was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 41.5 mg, 63% yield, thick oil.

<sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.28 (m, 3H), 7.13 (dd, J = 8.0, 2.0 Hz, 2H), 6.95 (dd, J = 8.0, 2.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 3.38 (s, 3H), 2.57 (d, J = 13.5 Hz, 1H), 2.07 (d, J = 13.5 Hz, 1H), 1.98 (s, 3H), 1.40 (s, 3H), 1.34 (s, 3H), 0.98 (s, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 175.7, 147.9, 137.6, 136.8, 133.0, 131.5, 129.0, 128.5, 128.2, 128.1, 127.0, 121.5, 114.5, 51.8, 49.5, 47.7, 29.9, 29.6, 29.2, 26.3, 20.4.

**IR (ATR)**: v = 2960, 2360, 1675, 1489, 1344, 1105, 809, 751, 717, 702 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{23}H_{26}NO (M + H)^+$ : 332.2009; found: 332.2002.

8-Chloro-2,2,3a,5-tetramethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[*c*]quinolin-4-one (3w)



According to the general procedure in 0.2 mmol scale,  $3\mathbf{w}$  was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 31.3 mg, 44% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.40 – 7.31 (m, 3H), 7.12 – 7.09 (m, 3H), 6.89 (d, *J* = 8.8 Hz, 1H), 6.65 (d, *J* = 2.4 Hz, 1H), 3.37 (s, 3H), 2.57 (d, *J* = 13.6 Hz, 1H), 2.07 (d, *J* = 13.6 Hz, 1H), 1.39 (s, 3H), 1.33 (s, 3H), 0.98 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.5, 149.8, 138.5, 135.9, 131.7, 128.8, 128.5, 127.7, 127.5, 127.5, 127.2, 123.2, 115.9, 51.6, 49.4, 47.9, 30.0, 29.5, 29.1, 26.3.

**IR (ATR)**: v = 2961, 2867, 1678, 1467, 1338, 1112, 809, 733, 714, 702 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for C<sub>22</sub>H<sub>23</sub>NOCl (M + H)<sup>+</sup>: 352.1463; found: 352.1462.

#### 2,2,5-Trimethyl-1,3a-diphenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3x)



According to the general procedure in 0.2 mmol scale, 3x was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 56.4 mg, 74% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.43 – 7.33 (m, 5H), 7.25 – 7.18 (m, 4H), 7.16 – 7.11 (m, 1H), 7.07 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 6.90 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.82 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.72 (td, *J* = 7.6, 1.2 Hz, 1H), 3.35 (s, 3H), 2.97 (d, *J* = 13.2 Hz, 1H), 2.36 (d, *J* = 13.2 Hz, 1H), 1.10 (s, 3H), 0.99 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 173.0, 151.8, 143.3, 139.8, 136.6, 130.1, 128.9, 128.4, 128.3, 128.0, 127.3, 127.0, 126.9, 126.7, 122.6, 122.4, 115.0, 59.5, 53.2, 48.2, 30.3, 28.7, 27.8.

**IR (ATR)**: v = 2959, 1666, 1598, 1460, 1350, 1275, 907, 751, 727, 698 cm<sup>-1</sup>.

HRMS m/z (ESI) calcd for  $C_{27}H_{26}NO (M + H)^+$ : 380.2009; found: 380.2002.

5-Benzyl-2,2,3a-trimethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3y)



According to the general procedure in 0.2 mmol scale, 3y was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 61.3 mg, 78% yield, thick oil.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.18 (m, 5H), 7.15 – 7.10 (m, 3H), 7.06 – 7.01 (m, 2H), 6.88 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 6.75 (dd, J = 8.4, 1.2 Hz, 1H), 6.63 (dd, J = 7.6, 1.6 Hz, 1H), 6.54 (td, J = 7.6, 1.2 Hz, 1H), 5.56 (d, J = 16.4 Hz, 1H), 4.60 (d, J = 16.4 Hz, 1H), 2.58 (d, J = 13.6 Hz, 1H), 2.01 (d, J = 13.6 Hz, 1H), 1.37 (s, 3H), 1.32 (s, 3H), 0.90 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.9, 148.4, 139.4, 137.4, 136.7, 132.8, 129.1, 128.7, 128.3, 127.9,

127.6, 127.1, 127.0, 126.1, 122.3, 121.8, 115.5, 51.9, 49.4, 47.9, 46.6, 29.7, 29.2, 26.4.

IR (ATR):  $v = 2960, 1737, 1675, 1598, 1460, 1371, 1238, 751, 718, 698 \text{ cm}^{-1}$ .

HRMS m/z (ESI) calcd for  $C_{28}H_{28}NO (M + H)^+$ : 394.2165; found: 394.2161.

2,2,3a,5-Tetramethyl-1-pentyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3z)



According to the general procedure in 0.2 mmol scale, 3z was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 12.8 mg, 21% yield, thick oil.

<sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (dd, J = 7.5, 1.5 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.08 (td, J = 7.5, 1.0 Hz, 1H), 7.02 (dd, J = 8.0, 1.0 Hz, 1H), 3.36 (s, 3H), 2.45 (d, J = 13.5 Hz, 1H), 2.31 (ddd, J = 13.5, 11.5, 5.5 Hz, 1H), 2.16 (ddd, J = 13.5, 11.5, 5.5 Hz, 1H), 1.85 (d, J = 13.5 Hz, 1H), 1.64 – 1.55 (m, 2H), 1.36 – 1.33 (m, 4H), 1.24 (s, 3H), 1.17 (s, 3H), 1.11 (s, 3H), 0.91 – 0.89 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  176.4, 149.2, 139.6, 130.4, 127.6, 126.7, 123.1, 122.5, 114.7, 51.2, 49.3, 47.2, 32.6, 30.1, 29.9, 29.5, 28.7, 26.2, 25.9, 22.3, 14.0. IR (ATR): v = 2958, 2933, 2863, 2361, 2339, 1675, 1599, 1489, 1276, 750 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{21}H_{30}NO (M + H)^+$ : 312.2322; found: 312.2317.

#### 2,2,3a-Trimethyl-1-phenyl-2,3,3a,5-tetrahydro-4H-cyclopenta[c]quinolin-4-one (3aa)



According to the general procedure in 0.2 mmol scale, **3aa** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 40.1 mg, 66% yield, thick oil.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 8.72 (s, 1H), 7.37 – 7.30 (m, 3H), 7.15 – 7.04 (m, 3H), 6.84 (dd, *J* = 8.0, 0.8 Hz, 1H), 6.67 (dd, *J* = 4.0, 0.8 Hz, 2H), 2.56 (d, *J* = 13.6 Hz, 1H), 2.08 (d, *J* = 13.6 Hz, 1H), 1.45 (s, 3H), 1.40 (s, 3H), 0.98 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 177.2, 149.0, 136.8, 136.7, 133.1, 129.0, 128.3, 128.1, 127.4, 127.1, 122.5, 120.0, 115.4, 51.9, 48.4, 47.8, 29.5, 29.3, 26.6.

**IR (ATR)**: v = 3209, 3058, 2960, 2361, 1678, 1476, 1376, 751, 730, 702 cm<sup>-1</sup>. **HRMS m/z (ESI)** calcd for C<sub>21</sub>H<sub>22</sub>NO (M + H)<sup>+</sup>: 304.1696; found: 304.1693.

2,2,3a-Trimethyl-1-phenyl-3,3a-dihydrocyclopenta[c]chromen-4(2H)-one (3bb)



According to the general procedure in 0.2 mmol scale, **3bb** was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1), 17.6 mg, 29% yield, thick oil.

<sup>1</sup>**H NMR (500 MHz, CDCl**<sub>3</sub>)  $\delta$  7.40 – 7.35 (m, 3H), 7.18 – 7.12 (m, 3H), 7.05 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.79 (td, *J* = 7.5, 1.0 Hz, 1H), 6.67 (dd, *J* = 8.0, 1.5 Hz, 1H), 2.64 (d, *J* = 13.5 Hz, 1H), 2.12 (d, *J* = 13.5 Hz, 1H), 1.46 (s, 3H), 1.39 (s, 3H), 1.01 (s, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 173.4, 151.3, 149.5, 135.9, 129.8, 128.9, 128.8, 128.5, 127.5, 127.5, 127.0, 119.2, 116.5, 50.9, 48.7, 48.1, 29.3, 29.0, 26.1.

**IR (ATR)**: v = 2961, 1771, 1607, 1455, 1210, 1086, 1049, 750, 725, 701 cm<sup>-1</sup>.

**HRMS m/z (ESI)** calcd for  $C_{21}H_{21}NO (M + H)^+$ : 305.1536; found: 305.1532.

### 5. X-ray Crystal Data

Crystal data for **3a** 



| Identification code                   | 2259639 (CCDC number)                                       |
|---------------------------------------|-------------------------------------------------------------|
| Empirical formula                     | C <sub>22</sub> H <sub>23</sub> NO                          |
| Formula weight                        | 317.41                                                      |
| Temperature/K                         | 193.00                                                      |
| Crystal system                        | tetragonal                                                  |
| Space group                           | I4                                                          |
| a/Å                                   | 19.4725(6)                                                  |
| b/Å                                   | 19.4725(6)                                                  |
| c/Å                                   | 9.2892(4)                                                   |
| α/°                                   | 90                                                          |
| β/°                                   | 90                                                          |
| γ/°                                   | 90                                                          |
| Volume/Å <sup>3</sup>                 | 3522.3(3)                                                   |
| Z                                     | 8                                                           |
| $\rho_{calc}g/cm^3$                   | 1.197                                                       |
| $\mu/mm^{-1}$                         | 0.361                                                       |
| F(000)                                | 1360.0                                                      |
| Crystal size/mm <sup>3</sup>          | $? \times ? \times ?$                                       |
| Radiation                             | GaKa ( $\lambda = 1.34139$ )                                |
| $2\Theta$ range for data collection/° | 5.584 to 108.088                                            |
| Inday ranges                          | $-21 \leq h \leq 23,  -21 \leq k \leq 23,  -10 \leq l \leq$ |
| index ranges                          | 11                                                          |
| Reflections collected                 | 11057                                                       |
| Independent reflections               | 3197 [ $R_{int} = 0.0387$ , $R_{sigma} = 0.0358$ ]          |
| Data/restraints/parameters            | 3197/1/221                                                  |
| Goodness-of-fit on F <sup>2</sup>     | 1.065                                                       |

| Final R indexes $[I \ge 2\sigma(I)]$         | $R_1 = 0.0327, wR_2 = 0.0742$ |
|----------------------------------------------|-------------------------------|
| Final R indexes [all data]                   | $R_1 = 0.0369, wR_2 = 0.0764$ |
| Largest diff. peak/hole / e Å $^{\text{-3}}$ | 0.15/-0.14                    |
| Flack parameter                              | 0.04(17)                      |
| O1 C21 1.224(2)                              | C16 C15 1.383(3)              |
| N1 C19 1.418(2)                              | C16 C17 1.377(3)              |
| N1 C21 1.373(3)                              | C19 C18 1.393(3)              |
| N1 C20 1.463(3)                              | C1 C2 1.387(3)                |
| C6 C7 1.481(3)                               | C21 C12 1.521(3)              |
| C6 C5 1.389(3)                               | C11 C8 1.547(3)               |
| C6 C1 1.392(3)                               | C11 C12 1.533(3)              |
| C14 C13 1.463(2)                             | C8 C9 1.529(3)                |
| C14 C19 1.413(3)                             | C8 C10 1.528(3)               |
| C14 C15 1.388(3)                             | C12 C22 1.537(3)              |
| C7 C13 1.336(3)                              | C4 C3 1.378(3)                |
| C7 C8 1.533(3)                               | C2 C3 1.373(4)                |
| C13 C12 1.508(2)                             | C17 C18 1.378(3)              |
| C5 C4 1.385(3)                               |                               |

#### 6. Radical inhibition experiment



To an over-dried steal tube, N-methyl-N-(2-(phenylethynyl)phenyl)methacrylamide (**1a**) (0.1 mmol),  $[Au(dcpm)Cl]_2$  (2 mol%), HCO<sub>2</sub>H (0.2 mmol), DIPA (0.2 mmol), 2-bromopropane (**2a**) (0.3 mmol), 2,2,6,6-tetramethyl-1-piperinedinyloxy(TEMPO) (0.3 mmol) and MeCN (1 mL) were added sequentially under N<sub>2</sub> atmosphere. The resulting mixture was stirred at ambient temperature under the irradiation of blue LEDs for 22 h. After the reaction finished, the reaction mixture was analyzed by HRMS. There was no product **3a** detected. But the alkyl radical generated by **2a** can be trapped by TEMPO and detected by HRMS clearly. The results indicate that this reaction might be carried out through a radical mechanism.



Supplementary Figure 1. HRMS data of the reaction mixture

7. Copies of NMR Spectra



Supplementary Figure 2. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3a



Supplementary Figure 3. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3a



Supplementary Figure 4. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3b



Supplementary Figure 5. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3b



Supplementary Figure 6. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3c



Supplementary Figure 7. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3c



Supplementary Figure 8. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3d



Supplementary Figure 9. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3d



Supplementary Figure 10. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3e



Supplementary Figure 11. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3e



Supplementary Figure 12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3f



Supplementary Figure 13. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3f



Supplementary Figure 14. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3g



fl (ppm)

Supplementary Figure 15. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3g



Supplementary Figure 16. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3h



f1 (ppm)

Supplementary Figure 17. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3h



Supplementary Figure 18. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3i



Supplementary Figure 19. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3i



Supplementary Figure 20. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3j



Supplementary Figure 21. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3j



Supplementary Figure 22. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3k



Supplementary Figure 23. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3k



Supplementary Figure 24. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 31



Supplementary Figure 25. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 31



Supplementary Figure 26. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3m



Supplementary Figure 27. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3m



Supplementary Figure 28. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3n



Supplementary Figure 29. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3n



Supplementary Figure 30. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 30



Supplementary Figure 31. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 30



Supplementary Figure 32. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3p



Supplementary Figure 33. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3p



Supplementary Figure 34. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3q



Supplementary Figure 35. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3q



Supplementary Figure 36. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3r



Supplementary Figure 37. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3r



Supplementary Figure 38. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3s



Supplementary Figure 39. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3s



Supplementary Figure 40. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3t



Supplementary Figure 41. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3t



Supplementary Figure 42. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3u



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Supplementary Figure 43. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3u



Supplementary Figure 44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3v



Supplementary Figure 45. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3v



Supplementary Figure 46. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3w



Supplementary Figure 47. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3w



Supplementary Figure 48. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3x



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Supplementary Figure 49. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3x



Supplementary Figure 50. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3y



Supplementary Figure 51. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3y



Supplementary Figure 52. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3z



Supplementary Figure 53. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3z



Supplementary Figure 54. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for compound 3aa



Supplementary Figure 55. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra for compound 3aa



Supplementary Figure 56. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for compound 3bb



fl (ppm)

Supplementary Figure 57. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) spectra for compound 3bb