Supplementary Information

Vortex fluidic high shear induced crystallisation of fullerene C70 into nanotubules

Kasturi Vimalanathan^{a*}, Zhi Zhang^{b,c}, Jin Zou^{b,c} and Colin L. Raston^{a*}

^a Flinders Institute for Nanoscale Science and Technology, College of Science and

Engineering, Flinders University, Adelaide SA 5001, Australia

^b Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD,

4072, Australia

^c Materials Engineering, The University of Queensland, St Lucia, QLD, Australia

*Corresponding author email: kasturi.vimalanathan@flinders.edu.au and colin.raston@flinders.edu.au

Experimental method

1. Experimental Section

Crystallisation of C₇₀ **nanotubules** In a typical experiment, powder C₇₀ (purchased from Sigma Aldrich with a 98% purity) was dissolved in toluene (1 mg/mL) and the mixture was allowed to stand overnight at room temperature (25°C, 24 hours) (Figure S3). The solution was then decanted, and an equal volume of IPA added, with 1 mL of this solution then pipetted into a VFD quartz tube (20 mm OD, 17.5 mm ID, 18.5 cm long). The VFD process was optimised by systematically varying the rotational speed (4000 - 9000 rpm) and θ (0° to 90°) with the optimised conditions being 7500 rpm and θ 45° respectively. All experiments were initially carried out in the confined mode of operation of the device, with the processing time set at 30 minutes. The method was then translated into a continuous flow processing, with a jet feed set (flow rate 0.5 mL/min) to deliver C₇₀ toluene/IPA solution into the already rapidly rotating tube at ω 7500 rpm and θ 45°. Thereafter, the solution was centrifuged (g = 3.22) with one drop of the supernatant drop casted onto a silicon wafer for characterization; 'g' corresponds to the relative centrifugal force which is calculated based on the below calculation method.

g= (1.118 x 10⁻⁵) x R x S²

whereby R= radius of the rotor (cm) S= speed of the centrifuge (RPM)

Material characterizations Morphology, structure and surface analysis of the samples were characterized by scanning electron microscopy (SEM, FEI F50) equipped with energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction using an X-ray diffractometer (Bruker, Germany) operating with Co K α radiation (λ = 1.78892 Å). Raman spectra were acquired using a Witec alpha300R Raman microscope at an excitation laser wavelength of 532 nm (laser power ~5-10 mW) with a 40X objective (focusing diameter 1.6 µm). Typical integration times for single Raman spectra were typically 30 s and averaged from 2 to 3 repetitions. TEM (JEOL JEM-2100F, operated at 200 kV and equipped with an EDS detector) samples were prepared by drop-casting the dispersion onto standard holey carbon grids.

Fig. S1 (a) Schematic of the VFD and (b) the salient features of the VFD described, and the proposed mechanism for the exclusive formation of the C_{70} nanotubules.

Fig. S2 Zoomed in SEM images of the hollow C₇₀ nanotubules showing a smooth inner and outer surface. The C₇₀ nanotubules were prepared using the optimised conditions which include the fullerene being dispersed in toluene/IPA at a concentration of 1mg/mL (1:1 volume ratio of C₇₀ toluene and IPA) and processed in the VFD at 45^o, and ω 7500 rpm.

Fig. S3 SEM images of C_{70} dissolved in toluene with IPA then added at a 1:1 volume ratio. Aggregates of C_{70} were observed with small amounts of self-assembled 'pencil-like' morphologies.

Fig. S4| Varying the solvent mixture and rotational speed: SEM images of C₇₀ toluene/water (1:1 volume ratio) processed in the VFD (inclination angle 45°, rotational speed **5250 rpm** and flow rate 0.5 mL/min).

Supplementary Figure S5

Fig. S5 | Varying the solvent mixture and rotational speed: SEM images of C₇₀ toluene/water (1:1 volume ratio) processed in the VFD (inclination angle 45°, rotational speed **7000 rpm** and flow rate 0.5 mL/min)

Fig. S6 | Varying the solvent mixture and rotational speed: SEM images of C₇₀ toluene/water (1:1 volume ratio) processed in the VFD (inclination angle 45°, rotational speed **7500 rpm** and flow rate 0.5 mL/min).

Supplementary Figure S7

Fig. S7 | Varying the rotational speed in the VFD: SEM images of C₇₀ toluene/IPA (1:1 volume ratio) processed in the VFD (inclination angle 45°, rotational speed **5250 rpm** and a flow rate of 0.5 mL/min)

Fig. S8 | Varying the rotational speed in the VFD: SEM images of C_{70} toluene/IPA (1:1 volume ratio) processed in the VFD (inclination angle 45°, rotational speed **7000 rpm** and a flow rate 0.5 mL/min)

Supplementary Figure S9

Fig. S9| Varying the volume ratio of toluene and IPA: SEM images of C₇₀ toluene/IPA **(3:1 volume ratio)** processed in the VFD at the optimised conditions (inclination angle 45°, rotational speed 7500 rpm and flow rate of 0.5 mL/min)

Supplementary Figure S10

Fig. S10 | Varying the volume ratio of toluene and IPA: SEM images of C₇₀ toluene/IPA (1:3 volume ratio) processed in the VFD at the optimised conditions (inclination angle 45°, rotational speed of 7500 rpm and a flow rate of 0.5mL/min)