Supporting Information

Pd-Catalyzed Regioselective Rollover Dual C-H Annulation Cascade: Facile Approach to phenanthrene derivatives

Muniganti Naveen Kumar,^{a,b} Vavilapalli Suresh,^{a,b} Attunuri Nagireddy,^{a,b} Jagadeesh Babu Nanubolu^{a,c} and Maddi Sridhar Reddy^{a,b}*

^aDepartment of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.

^bAcademy of Scientific and Innovative Research, Ghaziabad 201002, India. ^cAnalytical Department, CSIR-IICT, Hyderabad 500007, India.

S. No.	Table of Contents	Pages
1	General information and methods	S2
2	Experimental procedures	S2-S4
3	Optimization studies	S4-S6
4	General procedure for title compounds and characteristic data	S6-S19
5	Labelling and KIE studies	S19-S23
6	General procedure and characteristic data of synthetic transformations	S23-S26
7	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S27-S63
8	2D NMR Spectra	S64
9	X-ray crystallography data	S64-S74
10	References	S75

1. General Information and methods.

All reagents and solvents were purchased from commercial sources and used without purification. NMR spectra were recorded with a 300, 400 or 500 MHz spectrometer for ¹H NMR, 100 or 125 MHz for ¹³C NMR spectroscopy. Chemical shifts are reported relative to the residual signals of tetramethylsilane in DMSO- d_6 or deuterated solvent DMSO- d_6 for ¹H and ¹³C NMR spectroscopy. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quartet (q), multiplet (m). HRMS were recorded by using ORBITRAP and ESI mass spectrometer under positive and negative modes. Column chromatography was performed with silica gel (100–200 mesh) as the stationary phase. All reactions were monitored by using TLC. Most of the compounds HRMS was detected under negative ESI-HRMS mode.

Following the known procedure, *o*-aryl phenol and hydroxy-alkynoates were prepared (Table S1and S2). Analytical and spectral data of these compounds are exactly matching with the reported values.¹⁻²

2. Experimental Procedures

2.1. Preparation of o-aryl phenols: General Procedure (GP-1):1

General Procedure for the Synthesis of *o*-aryl phenols 1a-1s:

A mixture of *o*-bromophenol (1 g, 5.78 mmol), aryl boronic acids (1.04 g, 8.67 mmol) and base (0.59 g, 11.56 mmol) in H₂O (15 mL) as a solvent, Pd(OAc)₂ (71 mg, 5 mol%) was introduced. The contents were stirred at 100 °C for 0.5 h. The reaction mixture was extracted with ethyl acetate (3×20 mL). The combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under a vacuum. The crude product was purified through a short silica gel column using petroleum ether/EtOAc (20:1) as an eluent to get the corresponding *o*-aryl phenol as off-white solid **1a**.

Table S1: List of *o*-aryl phenols.

2.2. Preparation of hydroxy-alkynoates: General Procedure (GP-2):²

General Procedure for the Synthesis of 2a-2l:²

To a solution of ethyl propiolate (4.5 mmol) in tetrahydrofuran (20 mL), Lithium diisopropylamide (1.6 M in hexane, 4.5 mmol) was added drop wise by syringe at -78 °C. After stirring for 1 h, a solution of ketone (3 mmol) in THF (5 mL) was added drop wise and the mixture was stirred at the same temperature for 2 h. The solution was allowed to warm to room temperature, and was quenched with saturated aqueous NH₄Cl before extraction with ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (EtOAc:Hexanes) to get the expected hydroxy-alkynoates **2**.

Note: Stereoselectivity of the major isomer of menthone derived propiolate was shown using previous literature.³

Table S2: List of hydroxy-alkynoates

3. Optimization Studies: Table S1: Optimization of Metal Catalyst.^a

Entry	Metal Catalyst	Yield of 3aa ^b
1	[Cp*RhCl ₂] ₂	
2		
3	[RuCl ₂ (p-cymene)] ₂	
4	Pd(OAc) ₂	80%
5	[Cp*Co(CO)I ₂]	
6	MnBr(CO)5	
7	Co(OAc) ₂	
8	$Pd_2(dba)_3$	35%

^aReaction conditions:**1a** (0.5 mmol), **2a** (0.6 mmol), metal complex (10 mol %), NaOAc (2 equiv), Cu(OAc)₂.H₂O (2 equiv), DMF, 100 °C for 3 h, N₂ balloon. ^bIsolated yield

Table S2: Optimization of Oxidant.^a

^aReaction conditions:**1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol %), NaOAc (2 equiv), oxidant (2 equiv), DMF, 100 °C for 3 h, N₂ balloon. ^bIsolated yield

Table S3: Optimization of base.^a

^aReaction conditions:**1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol %), base (2 equiv), Cu(OAc)₂.H₂O (2 equiv), DMF, 100 °C for 3 h, N₂ balloon. ^bIsolated yield

Table S4: Optimization of Solvent.^a

OH ⁺	CO ₂ Et Pd(OAc) ₂ (10 mo Cu(OAc) ₂ .H ₂ O (2 e NaOAc (2 equiv Solvent, 100 °C 2 a	Provide the state of the state
Entry	Solvent	Yield of 3aa ^b
1	t-AmOH	n.r.
2	THF	n.r.
3	MeCN	n.r.
4	Toluene	n.r.
5	MeOH	n.r.
6	DMF	80%
7	DMAc	70%
8	1,4-Dioxane	8%

^aReaction conditions:**1a** (0.5 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol %), NaOAc (2 equiv), Cu(OAc)₂.H₂O (2 equiv), solvent, 100 °C for 3 h, N₂ balloon. ^bIsolated yield

4. General Procedure for title compounds 3 and their Characteristic data: General Procedure for title compounds taking 3aa as an example:

To a mixture of biphenol **1a** (85 mg, 0.5 mmol), 4-hydroxy-2-alkyonate **2a** (94 mg, 0.6 mmol) in DMF, Pd(OAc)₂ (11.2 mg, 10 mol %), Cu(OAc)₂.H₂O (199.6 mg, 2 equiv) sodium acetate (82 mg, 2 equiv) were introduced and the reaction mixture was stirred at 100 °C (oil bath) for 3 hours under nitrogen balloon. After completion of the reaction, the reaction mixture was cooled to room temperature before ice water was added to it. The aqueous layer was extracted with ethyl acetate (3×10 mL), the combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by column chromatography ($R_f = 0.50$) (SiO₂, EtOAc:Hexane, 15:85) to get **3aa** as an off-white solid (111.2 mg, 80% yield, mp 275-280 °C).

7-Hydroxy-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3aa):

¹**H NMR** (400 MHz, **DMSO**-*d*₆) δ 11.16 (s, 1H), 9.93 – 9.85 (m, 1H), 9.09 (dd, *J* = 6.3, 3.3 Hz, 1H), 7.75 (dd, *J* = 5.8, 4.4 Hz, 3H), 7.67 (t, *J* = 7.9 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 1.88 (s, 6H). ¹³**C NMR** (100 MHz, **DMSO**-*d*₆) δ 169.2, 157.2, 155.3, 131.1, 128.7, 128.4, 127.5, 127.1, 126.5, 126.0, 122.8, 121.4, 117.9, 117.1, 116.8, 84.9, 26.6. **HRMS** (**ESI**) calcd for C₁₈H₁₅O₃ [M+H]⁺ 279.1021, found 279.1000.

3-Ethyl-7-hydroxy-3-methylphenanthro[9,10-c]furan-1(3H)-one (3ab):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2b** (102 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ab** as a white solid (109.5 mg, 75% yield), mp 278-282 °C. **¹H NMR (400 MHz, DMSO-***d*₆) δ 11.19 (s, 1H), 9.90 (dd, J = 6.4, 3.4 Hz, 1H), 9.19 – 9.03 (m, 1H), 7.78 – 7.71 (m, 3H), 7.66 (t, J = 7.9 Hz, 1H), 7.45 (dd, J = 7.8, 0.9 Hz, 1H), 2.34 (dt, J = 20.8, 7.4 Hz, 2H), 1.86 (s, 3H), 0.53 (t, J = 7.3 Hz, 3H). ¹³C **NMR (100 MHz, DMSO-***d*₆) δ 169.4, 157.2, 153.9, 131.1, 128.7, 128.5, 127.5, 127.1, 126.8, 126.0, 122.7, 121.2, 118.9, 116.9, 116.8, 87.3, 25.7, 16.7, 13.7. **HRMS (ESI)** calcd for C₁₉H₁₅O₃ [M-H]⁻ 291.1021, found 291.1015.

7-Hydroxy-3-methyl-3-propylphenanthro[9,10-c]furan-1(3H)-one (3ac):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2b** (110 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ac** as a white solid (108.6 mg, 71% yield), mp 283-287 °C. ¹H NMR (**400 MHz, DMSO-***d*₆) δ 11.16 (s, 1H), 9.93 – 9.87 (m, 1H), 9.12 – 9.04 (m, 1H), 7.79 – 7.71 (m, 3H), 7.66 (t, J = 7.9 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 2.29 (tt, J = 14.4, 7.8 Hz, 2H), 1.85 (s, 3H), 1.24 – 1.05 (m, 2H), 0.77 – 0.71 (m, 3H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 169.4, 157.2, 153.9, 131.1, 128.7, 128.5, 127.5, 127.1, 126.8, 126.0, 122.7, 121.2, 118.9, 116.9, 116.8, 87.3, 40.3, 25.7, 16.7, 13.7. HRMS (ESI) calcd for C₂₀H₁₇O₃ [M-H]⁻ 305.1178, found 305.1172.

7-Hydroxy-3-isobutyl-3-methylphenanthro[9,10-c]furan-1(3H)-one (3ad):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2d** (118.8 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ad** as a white solid (118.4 mg, 74% yield), mp 281-286 °C. ¹H NMR (**400 MHz, DMSO-***d*₆) δ 11.16 (s, 1H), 9.95 – 9.85 (m, 1H), 9.13 – 9.07 (m, 1H), 7.78 – 7.70 (m, 3H), 7.66 (t, J = 7.9 Hz, 1H), 7.45 (dd, J = 7.7, 0.9 Hz, 1H), 2.31 (dd, J = 15.1, 5.8 Hz, 1H), 2.21 (dd, J = 15.2, 6.3 Hz, 1H), 1.83 (s, 3H), 1.25 (tt, J = 12.9, 6.5 Hz, 1H), 0.78 (d, J = 6.6 Hz, 3H), 0.48 (d, J = 6.7 Hz, 3H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 169.4, 157.2, 154.0, 131.1, 128.7, 128.4, 127.5, 127.1, 127.0, 125.9, 122.7, 121.2, 119.0, 117.0, 116.8, 87.5, 46.5, 26.8, 24.2, 23.7, 23.6. HRMS (ESI) calcd for C₂₁H₁₉O₃ [M-H]⁻ 319.1334, found 319.1328.

3,3-Diethyl-7-hydroxyphenanthro[**9,10-***c*]**furan-1**(**3***H*)-**one**(**3ae**):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2e** (110 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane15:85) gave pure product **3ae** as a pale grey solid (132 mg, 72% yield). mp 310-314°C. **¹H NMR (400 MHz, DMSO-***d*₆) δ 11.17 (s, 1H), 9.96 – 9.83 (m, 1H), 9.17 – 9.06 (m, 1H), 7.81 – 7.71 (m, 3H), 7.65 (t, J = 7.9 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 2.44 – 2.25 (m, 4H), 0.49 (t, J = 7.3 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.9, 157.2, 151.6, 131.2, 128.8, 128.6, 127.6, 127.2, 127.0, 125.9, 122.8, 121.0, 120.5, 117.1, 116.4, 90.7, 30.5, 7.5. HRMS (ESI) calcd for C₂₀H₁₇O₃ [M-H]⁻ 305.1178, found 305.1172. **8'-Hydroxy-3'H-spiro[cyclopentane-1,1'-phenanthro[9,10-***c***]furan]-3'-one (3af):**

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2f** (109 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3af** as colourless solid (107.9 mg, 71% yield). mp 340-343 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.18 (s, 1H), 9.90 (s, 1H), 9.08

(s, 1H), 7.71 (d, J = 32.4 Hz, 3H), 7.54 (d, J = 7.7 Hz, 1H), 7.49 (dd, J = 36.8, 7.3 Hz, 1H), 2.59 (s, 2H), 2.07 (s, 6H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 169.3, 157.4, 152.0, 131.2, 128.8, 128.5, 127.6, 127.2, 126.7, 126.0, 122.7, 121.4, 119.0, 116.8, 116.5, 94.8, 38.7, 25.5. **HRMS (ESI)** calcd for C₂₀H₁₅O₃ [M-H]⁻ 303.1021, found 303.1016.

8'-Hydroxy-3'H-spiro[cyclohexane-1,1'-phenanthro[9,10-c]furan]-3'-one (3ag):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2g** (117.6 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.60$, SiO₂, Hexane) gave pure product **3ag** as a colourless solid (108.1 mg, 68% yield), mp 325-328 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.14 (s, 1H), 9.94 – 9.84 (m, 1H), 9.12 (dd, J = 6.3, 3.3 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 2.55 (dd, J = 13.3, 3.4 Hz, 2H), 1.80 (d, J = 21.5 Hz, 5H), 1.74 – 1.59 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.3, 157.3, 154.9, 131.1, 128.7, 128.3, 127.6, 127.1, 126.8, 126.2, 122.8, 121.4, 118.1, 117.2, 116.7, 86.5, 34.7, 23.9, 22.4. HRMS (ESI) calcd for C₂₁H₁₇O₃ [M-H]⁻ 317.1178, found 317.1172.

8'-Hydroxy-3'H-spiro[cycloheptane-1,1'-phenanthro[9,10-c]furan]-3'-one (3ah):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2h** (126 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 16:84) gave pure product **3ah** as a pale brown solid (106.2 mg, 64% yield), mp 312-315 °C. ¹H NMR (**400** MHz, DMSO-*d*₆) δ 11.14 (s, 1H), 9.93 – 9.83 (m, 1H), 9.13 – 9.05 (m, 1H), 7.81 – 7.63 (m, 4H), 7.44 (d, *J* = 7.5 Hz, 1H), 2.63 – 2.53 (m, 3H), 1.96 (d, *J* = 11.8 Hz, 2H), 1.91 – 1.79 (m, 7H). ¹³C NMR (**100** MHz, DMSO-*d*₆) δ 169.5, 157.3, 156.8, 131.0, 128.6, 128.3, 127.4, 127.1, 126.5, 126.0, 122.8, 121.5, 117.3, 116.9, 116.7, 89.2, 38.4, 27.0, 23.2. HRMS (ESI) calcd for C₂₂H₁₉O₃ [M-H]⁻ 331.1334, found 331.1328.

8'-Hydroxy-3'H-spiro[cyclooctane-1,1'-phenanthro[9,10-c]furan]-3'-one (3ai):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2i** (134 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.6$, SiO₂, EtOAc:Hexane, 16:84) gave pure product **3ai** as a white solid (105.5 mg, 61% yield), mp 318-322 °C. ¹H NMR (**500 MHz, DMSO-***d*₆) δ 11.16 (s, 1H), 9.92 – 9.86 (m, 1H), 9.13 – 9.05 (m, 1H), 7.79 – 7.68 (m, 4H), 7.44 (dd, J = 6.6, 2.5 Hz, 1H), 2.56 (dd, J = 14.4, 9.6 Hz, 2H), 2.15 (dt, J = 16.8, 6.7 Hz, 2H), 1.94 – 1.89 (m, 1H), 1.83 (td, J = 14.4, 6.8 Hz, 4H), 1.68 (tt, J = 12.0, 6.0 Hz, 5H). ¹³C NMR (**125 MHz, DMSO-***d*₆) δ 169.5, 157.6, 157.3, 131.0, 128.6, 128.3, 127.4, 127.1, 126.5, 126.1, 122.8, 121.5, 117.3, 117.0, 116.7, 88.2, 35.6, 27.2, 22.7, 21.4. HRMS (ESI) calcd for C₂₃H₂₁O₃ [M-H]⁻ 345.1491, found 345.1485.

8'-Hydroxy-3'*H*-spiro[adamantane-2,1'-phenanthro[9,10-*c*]furan]-3'-one (3aj):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2j** (148.8 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 16:84) gave pure product **3aj** as a sticky solid (111 mg, 60% yield). ¹**H** NMR (400 MHz, DMSO-*d*₆) 11.06 (s, 1H), 9.89 (d, J = 9.3 Hz, 1H), 9.58 – 9.28 (m, 1H), 8.45 (d, J = 8.3 Hz, 1H), 7.83 – 7.70 (m, 2H), 7.66 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 3.03 (d, J = 13.5 Hz, 2H), 2.58 (d, J = 11.4 Hz, 2H), 2.26 (s, 1H), 2.08 (s, 2H), 1.99 (d, J = 13.5 Hz, 3H), 1.92 (s, 2H), 1.82 (d, J = 12.0 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.3, 157.1, 155.9, 130.9, 128.5, 128.2, 127.6, 127.0, 126.7, 126.3, 123.1, 122.2, 120.9, 120.7, 116.3, 94.0, 78.3, 37.6, 37.3, 33.4, 26.8, 25.4. HRMS (ESI) calcd for C₂₅H₂₂O₃Na [M+Na]⁺ 393.1478, found 393.1467.

8'-Hydroxy-3,4-dihydro-2*H*,3'*H*-spiro[naphthalene-1,1'-phenanthro[9,10-*c*]furan]-3'- one (3ak):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2k** (146 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.5$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ak** as a sticky solid (93 mg, 51% yield). **¹H NMR (400 MHz, DMSO-***d*₆) δ 11.18 (s, 1H), 9.92 (dd, J = 6.6, 3.3 Hz, 1H), 9.14 (dd, J = 6.4, 3.2 Hz, 1H), 7.86 – 7.75 (m, 2H), 7.41 (t, J = 7.9 Hz, 1H), 7.38 – 7.27 (m, 3H), 6.98 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 7.0 Hz, 1H), 6.59 (d, J = 7.5 Hz, 1H), 3.15 – 3.04 (m, 2H), 2.71 (dd, J = 15.2, 8.2 Hz, 1H), 2.09 (d, J = 12.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.4, 157.2, 153.9, 138.1, 133.3, 129.7, 129.2, 128.8, 128.1, 127.8, 127.4, 127.3, 126.9, 126.3, 122.9, 121.6, 119.6, 117.3, 116.6, 84.9, 36.1, 29.0, 19.8. **HRMS (ESI)** calcd for $C_{25}H_{17}O_3$ [M-H]⁻ 365.1178, found 365.1172.

(2S,5R)-8'-Hydroxy-2-isopropyl-5-methyl-3'*H*-spiro[cyclohexane-1,1'-phenanthro[9,10*c*]furan]-3'-one (3al):

The title compound was prepared from **1a** (85 mg, 0.5 mmol) and **2l** (151.2 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.60$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3al** as a white coloured soild (112.2 mg, 60% yield). mp 250-255°C. ¹H NMR (**400 MHz, DMSO-***d*₆) δ 11.15 (s, 1H), 9.88 (d, J = 7.2 Hz, 1H), 9.22 (d, J = 6.1 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.68 (t, J = 7.9 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 2.22 – 2.10 (m, 3H), 2.04 (d, J = 12.3 Hz, 1H), 1.94 – 1.83 (m, 2H), 1.38 (s, 1H), 1.25 (d, J = 11.1 Hz, 2H), 0.91 (d, J = 5.4 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H), 0.17 (d, J = 6.5 Hz, 3H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 169.3, 157.2, 155.0, 130.7, 128.5, 127.7, 127.5, 127.1, 126.2, 126.1, 122.9, 121.3, 120.6, 119.9, 116.6, 92.2, 49.6, 45.1, 33.2, 27.9, 26.1, 23.3, 23.0, 21.9, 17.9. HRMS (ESI) calcd for C₂₅H₂₅O₃ [M-H]⁻ 373.1804, found 373.1798.

7-Hydroxy-3,3,9-trimethylphenanthro[9,10-c]furan-1(3H)-one (3ba):

The title compound was prepared from **1b** (92 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.53$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ba** as an off-white solid (80 mg, 55% yield), mp 288-293 °C. ¹H NMR (**500 MHz, DMSO-***d*₆) δ 11.08 (s, 1H), 9.72 (s, 1H), 8.97 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.64 (t, J = 7.9 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 2.57 (s, 3H), 1.86 (s, 6H). ¹³C NMR (**125 MHz, DMSO-***d*₆) δ 169.3, 157.3, 154.3, 136.7, 131.3, 128.5, 128.2, 126.7, 123.9, 122.6, 121.2, 117.9, 117.1, 116.6, 84.9, 26.6, 22.3. HRMS (ESI) calcd for C₁₉H₁₇O₃ [M+H]⁺ 293.1178, found 293.1172. **7-Hydroxy-3,3,10-trimethylphenanthro**[**9,10-***c***]furan-1(3***H***)-one (3ca):**

The title compound was prepared from **1c** (92 mg, 0.5 mmol) and **2a** (94 mg, 0. 6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ca** as an off-white solid (113.8 mg, 78% yield), mp 270-275 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.06 (s, 1H), 9.77 (d, J = 8.8 Hz, 1H), 8.89 (s, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.66 – 7.55 (m, 2H), 7.42 (d, J = 7.6 Hz, 1H), 2.54 (s, 3H), 1.86 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.2, 157.0, 155.3, 136.5, 128.9, 128.6, 127.9, 126.3, 126.2, 122.4, 121.6, 117.6, 117.0, 116.6, 84.8, 26.6, 21.3. HRMS (ESI) calcd for C₁₉H₁₇O₃ [M+H]⁺ 293.1178, found 293.1172.

10-(tert-Butyl)-7-hydroxy-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3da):

The title compound was prepared from **1d** (113 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.52$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3da** as a white solid (125.2 mg, 75% yield), mp 290-295 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.06 (s, 1H), 9.80 (d, J = 9.1 Hz, 1H), 9.14 (d, J = 2.2 Hz, 1H), 7.83 (dd, J = 9.2, 2.3 Hz, 1H), 7.72 (d, J = 7.3 Hz, 1H), 7.62 (t, J = 7.9 Hz, 1H), 7.45 – 7.39 (m, 1H), 1.87 (s, 6H), 1.41 (s, 9H).). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.4, 157.1, 155.2, 149.4, 128.9, 128.5, 127.9, 126.3, 126.1, 125.5, 121.4, 118.5, 118.0, 117.0, 116.5, 84.8, 34.7, 31.1, 26.6. HRMS (ESI) calcd for C₂₂H₂₃O₃ [M+H]⁺ 335.1647, found 335.1628

10-Cyclohexyl-7-hydroxy-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3ea):

The title compound was prepared from **1e** (126 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.51$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ea** as a white solid (122.4 mg, 68% yield), mp 270-273°C. ¹H NMR (**500** MHz, DMSO-*d*₆) δ 11.05 (s, 1H), 9.80 (s, 1H), 8.95 (d, J = 1.9 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.63 (dd, J = 13.1, 5.1 Hz, 2H), 7.41 (d, J = 7.7 Hz, 1H), 2.72 (dd, J = 21.2, 9.9 Hz, 1H), 1.94 – 1.88 (m, 2H), 1.87 (s, 6H), 1.83 (s, 1H), 1.74 (d, J = 11.9 Hz, 1H), 1.59 – 1.40 (m, 4H), 1.28 (dd, J = 25.2, 16.1 Hz, 2H). ¹³C NMR (**125** MHz, DMSO-*d*₆) δ 169.3, 157.0, 155.3, 146.3, 129.3, 128.7, 127.9, 126.8, 126.3, 126.2, 121.5, 120.0, 117.8, 117.0, 116.5, 84.8, 43.8, 34.0, 26.6, 26.4, 25.7. HRMS (ESI) calcd for C₂₄H₂₃O₃ [M-H]⁻ 359.1647, found 359.1641.

7-Hydroxy-3,3-dimethyl-10-phenylphenanthro[9,10-*c*]furan-1(3*H*)-one (3fa):

The title compound was prepared from **1f** (123 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.51$, SiO₂, EtOAc:Hexane, 2:8) gave pure product **3fa** as a pale grey solid (115 mg, 65% yield), mp 298-303 °C. ¹H NMR (**400** MHz, DMSO-*d*₆) δ 11.22 (s, 1H), 9.97 (d, J = 9.0 Hz, 1H), 9.39 (d, J = 2.1 Hz, 1H), 8.09 (dd, J = 9.1, 2.2 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.77 (d, J = 7.2 Hz, 1H), 7.68 (t, J = 7.9 Hz, 1H), 7.57 (t, J = 7.7 Hz, 2H), 7.50 – 7.42 (m, 2H), 1.90 (s, 6H). ¹³C NMR (**100** MHz, DMSO-*d*₆) δ 169.3, 157.3, 155.8, 139.6, 138.3, 130.3, 129.4, 129.3, 128.4, 128.0, 127.0, 126.6, 126.5, 126.0, 121.2, 120.2, 118.0, 117.2, 116.8, 85.0, 26.5. HRMS (ESI) calcd for C₂₄H₁₇O₃ [M-H]⁻ 353.1178, found 353.1172.

7-Hydroxy-10-methoxy-3,3-dimethylphenanthro[9,10-c]furan-1(3H)-one (3ga):

The title compound was prepared from **1g** (100 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 1:4) gave pure product **3ga** as a white solid (126.2 mg, 82% yield), mp 250-255 °C. ¹H NMR (**400 MHz, DMSO-***d*₆) δ 11.03 (s, 1H), 9.82 (d, J = 9.5 Hz, 1H), 8.58 (d, J = 2.6 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.39 (dd, J = 11.1, 6.6 Hz, 2H), 3.92 (s, 3H), 1.86 (s, 6H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 169.3, 157.9, 156.4, 155.8, 130.4, 127.9, 127.2, 125.5, 125.2, 121.9, 117.3, 117.0, 116.7, 116.5, 104.1, 84.8, 55.2, 26.6. HRMS (ESI) calcd for C₁₉H₁₇O₄ [M+H]⁺ 309.1127, found 309.1121.

7-Hydroxy-8-methoxy-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3ha):

The title compound was prepared from **1h** (100 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 1:4) gave pure product **3ha** as a white solid (104.7 mg, 68% yield), mp 250-260°C. **¹H NMR (400 MHz, DMSO-***d*₆) δ 9.80 (s, 1H), 8.64 (dd, J = 7.9, 0.9 Hz, 1H), 7.76 – 7.62 (m, 3H), 7.41 (d, J = 8.0 Hz, 1H), 7.31 (dd, J = 7.6, 1.3 Hz, 1H), 4.04 (s, 3H), 1.85 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.9, 156.2, 156.1, 155.9, 128.5, 128.4, 127.7, 126.4, 120.8, 119.4, 117.6, 117.3, 116.1, 115.1, 110.9, 84.6, 56.6, 26.5. HRMS (ESI) calcd for C₁₉H₁₇O₄ [M+H]⁺ 309.1127, found 309.1121.

7-Hydroxy-10-(hydroxymethyl)-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3ia):

The title compound was prepared from **1i** (100 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50 \text{ SiO}_2$, EtOAc:Hexane, 22:78) gave pure product **3ia** as a colourless gel (80 mg, 52% yield). ¹**H NMR (500 MHz, DMSO-***d*₆) δ 11.11 (s, 1H), 9.84 (d, J = 8.9 Hz, 1H), 9.07 (s, 1H), 7.75 – 7.63 (m, 3H), 7.43 (d, J = 7.7 Hz, 1H), 5.47 (s, 1H), 4.74 (d, J = 5.5 Hz, 2H), 1.87 (s, 6H). ¹³**C NMR (125 MHz, DMSO-***d*₆) δ 169.2, 157.1, 155.3, 141.4, 129.9, 128.5, 128.0, 126.3, 126.1, 121.6, 120.1, 117.9, 117.1, 116.6, 84.8, 62.9, 26.6. **HRMS (ESI)** calcd for C₁₉H₁₇O₃ [M+H]⁺ 309.1127, found 309.1121.

10-Fluoro-7-hydroxy-3,3-dimethylphenanthro[9,10-c]furan-1(3H)-one (3ja):

The title compound was prepared from **1j** (94 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane 15:85) gave pure product **3ja** as a off-white solid (94.7 mg, 64%)

yield), mp 290-295 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.36 (s, 1H), 9.83 (dd, J = 9.6, 6.0 Hz, 1H), 8.58 (dd, J = 10.1, 3.0 Hz, 1H), 7.68 (dd, J = 8.0, 1.0 Hz, 1H), 7.63 (t, J = 7.9 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.38 (dd, J = 7.7, 1.1 Hz, 1H), 1.81 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.0, 162.4, 159.9, 157.4, 157.2, 132.2, 132.1, 129.1, 128.5, 128.3, 128.2, 126.6, 121.8, 118.0, 117.8, 116.5, 116.3, 114.6, 108.2, 107.9, 86.2, 27.0. ¹⁹F NMR (376 MHz, DMSO) δ -112.49. (s, 1F). HRMS (ESI) calcd for C₁₈H₁₂FO₃ [M-H]⁻ 295.0770, found 295.0765.

10-Chloro-7-hydroxy-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3ka):

The title compound was prepared from **1k** (102 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ka** as a white solid (96.7 mg, 62% yield), mp 379-383 °. ¹H NMR (**500 MHz, DMSO-***d*₆) δ 11.31 (s, 1H), 9.89 (d, J = 9.3 Hz, 1H), 9.05 (d, J = 2.5 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.70 (t, J = 7.9 Hz, 1H), 7.47 (dd, J = 7.9, 1.0 Hz, 1H), 1.88 (s, 6H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 168.9, 157.1, 156.5, 131.9, 130.7, 129.69, 128.8, 127.5, 127.3, 126.4, 121.7, 120.8, 117.3, 117.1, 117.0, 85.2, 26.4. HRMS (ESI) calcd for C₁₈H₁₂ClO₃ [M-H]⁻ 311.0475, found 311.0469.

7-Hydroxy-3,3-dimethyl-10-(trifluoromethyl)phenanthro[9,10-c]furan-1(3H)-one (3la):

The title compound was prepared from **11** (119 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 16:84) gave pure product **3la** as a pale greyish solid (96.8 mg, 56% yield), mp 310-313 °C. **¹H NMR (400 MHz, DMSO-***d*₆) δ 11.47 (s, 1H), 10.09 (d, J = 9.1 Hz, 1H), 9.41 (s, 1H), 8.06 (dd, J = 9.1, 2.0 Hz, 1H), 7.83 (d, J = 7.0 Hz, 1H), 7.77 (t, J = 7.9 Hz, 1H), 7.52 (dd, J = 7.7, 0.8 Hz, 1H), 1.90 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.9, 157.7, 156.8, 133.6, 129.8, 129.8, 127.2, 127.0, 126.7, 125.8, 125.68, 123.1, 120.3, 119.5, 117.7, 117.4, 117.4, 85.4, 26.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.83. HRMS (ESI) calcd for C₁₉H₁₄F₃O₃ [M+H]⁺ 347.0895, found 347.0941.

8-hydroxy-1,1-dimethyl-3-oxo-1,3-dihydrophenanthro[9,10-*c*]furan-5-carbaldehyde (3ma):

The title compound was prepared from **1m** (99 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 3:7) gave pure product **3ma** as a pale yellow solid (48.9 mg, 32% yield), mp 340-343 °C. ¹H NMR (**500 MHz, DMSO-***d*₆) δ 11.46 (s, 1H), 10.23 (s, 1H), 10.05 (d, J = 8.9 Hz, 1H), 9.58 (s, 1H), 8.19 (d, J = 8.9 Hz, 1H), 7.85 – 7.74 (m, 2H), 7.51 (d, J = 7.7 Hz, 1H), 1.90 (s, 6H). ¹³C NMR (**125 MHz, DMSO-***d*₆) δ 193.1, 168.9, 157.9, 156.4, 135.2, 133.7, 130.0, 129.3, 127.4, 126.0, 125.9, 125.6, 120.6, 118.2, 117.4, 117.4, 85.3, 26.4. HRMS (ESI) calcd for C₁₉H₁₃O₄ [M-H]⁻ 305.0814, found 305.0808.

8-hydroxy-1,1-dimethyl-3-oxo-1,3-dihydrophenanthro[9,10-*c*]furan-5-carbonitrile (3na):

The title compound was prepared from **1n** (97.5 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Only traces of the product (**3na**) formation was observed (<5% yield). **HRMS (ESI)** calcd for $C_{19}H_{12}NO_3[M-H]^-302.0817$, found 302.0811. **23-Hydroxy-17,17-dimethyl-3,16-dioxahexacyclo[11.11.0.0**^{2,10}.0^{4,9}.0^{14,18}.0^{19,24}]tetracosa-1(13), 2(10), 4, 6, 8, 11, 14(18), 19(24), 20, 22-decaen-15-one (30a):

The title compound was prepared from **1o** (130 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 20:80) gave pure product **3oa** as a pale brown solid (88.3 mg, 48 % yield), mp 210-220 °C. ¹H NMR (**400 MHz, CDCl**₃) δ 9.64 (s, 1H), 9.46 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 7.5 Hz, 1H), 7.83 – 7.75 (m, 2H), 7.72 (dd, J = 7.9, 1.3 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.52 (dd, J = 10.9, 4.1 Hz, 1H), 1.99 (s, 6H). ¹³C NMR (**100 MHz, CDCl**₃) δ 169.7, 155.6, 155.3, 154.1, 149.7, 129.3, 128.0, 127.5, 127.5, 124.7,

124.0, 123.2, 121.2, 120.9, 120.6, 120.5, 120.0, 118.9, 118.0, 116.2, 111.7, 84.9, 27.2 . **HRMS (ESI)** calcd for $C_{24}H_{17}O_4$ [M+H]⁺ 369.1127, found 369.1121. *note: IUPAC name of* **3ma** *was obtained from Marvin Sketch software*.

1-Hydroxy-5,5-dimethylbenzo[4',5']thieno[3',2':3,4]phenanthro[9,10-*c*]furan-7(5*H*)-one (3pa):

The title compound was prepared from **1p** (138 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 1:4) gave pure product **3pa** as a sticky solid (80.6 mg, 42% yield). ¹H NMR (**400 MHz, DMSO-***d*₆) δ 11.60 (s, 1H), 9.25 (d, J = 8.5 Hz, 1H), 8.80 (d, J = 8.6 Hz, 1H), 8.52 (dd, J = 5.3, 3.7 Hz, 1H), 8.07 (dd, J = 5.2, 3.6 Hz, 1H), 7.83 – 7.77 (m, 2H), 7.57 – 7.52 (m, 2H), 7.49 (dd, J = 6.0, 2.9 Hz, 1H), 1.90 (s, 6H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 169.0, 154.9, 154.6, 140.3, 137.2, 134.1, 134.0, 129.2, 127.0, 126.7, 126.5, 126.1, 124.4, 122.2, 121.9, 121.6, 120.7, 119.0, 118.4, 116.2, 115.6, 84.6, 26.6. HRMS (ESI) calcd for C₂₄H₁₅O₃S [M-H]⁻ 383.0742, found 383.0736.

7-Hydroxy-3,3,6-trimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3qa):

The title compound was prepared from **1q** (92 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3qa** as a off-white solid (105.1 mg, 72% yield), mp 278-283 °C. ¹H NMR (**400 MHz, DMSO-***d*₆) δ 10.00 (dd, J = 6.6, 3.1 Hz, 1H), 9.72 (s, 1H), 9.08 (dd, J = 6.5, 2.9 Hz, 1H), 7.74 (d, J = 8.1 Hz, 3H), 7.62 (d, J = 8.2 Hz, 1H), 2.52 (s, 3H), 1.87 (s, 6H). ¹³C NMR (**101 MHz, DMSO-***d*₆) δ 169.2, 155.55, 154.3, 131.1, 130.7, 128.9, 127.4, 127.2, 127.1, 126.4, 124.8, 122.8, 117.7, 117.04, 84.7, 79.2, 26.6, 17.8. HRMS (ESI) calcd for C₁₉H₁₇O₃ [M+H]⁺ 293.1178, found 293.1172.

7-Hydroxy-3,3,4-trimethylphenanthro[9,10-c]furan-1(3H)-one (3ra):

The title compound was prepared from **1r** (92 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.55$, SiO₂, EtOAc:Hexane, 15:85) gave pure product **3ra** as a white solid (91.9 mg, 63% yield), mp 265-268 °C. ¹H NMR (**400** MHz, DMSO-*d*₆) δ 10.78 (s, 1H), 9.76 – 9.72 (m, 1H), 9.18 – 9.14 (m, 1H), 7.72 – 7.65 (m, 2H), 7.47 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 2.83 (s, 3H), 1.96 (s, 6H). ¹³C NMR (**100** MHz, DMSO-*d*₆) δ 168.9, 155.4, 155.0, 132.6, 131.3, 128.4, 127.7, 127.1, 127.0, 125.5, 124.6, 123.4, 122.5, 119.3, 116.4, 87.0, 28.0, 25.8. HRMS (ESI) calcd for C₁₉H₁₇O₃ [M+H]⁺ 293.1178, found 293.1172.

7-Hydroxy-6-methoxy-3,3-dimethylphenanthro[9,10-*c*]furan-1(3*H*)-one (3sa):

The title compound was prepared from **1s** (100 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 1:4) gave pure product **3sa** as a white solid (103.1 mg, 67% yield) mp 260-270°C. ¹H NMR (**400 MHz, DMSO-***d*₆) δ 10.05 (s, 1H), 9.89 (dd, J = 6.3, 3.4 Hz, 1H), 9.04 (dd, J = 6.1, 3.3 Hz, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.72 (dd, J = 6.3, 3.4 Hz, 1H), 7.59 (d, J = 8.8 Hz, 1H), 4.05 (s, 3H), 1.86 (s, 6H). ¹³C NMR (**100 MHz, DMSO-***d*₆) δ 169.2, 156.0, 148.2, 145.2, 130.9, 128.8, 127.2, 127.1, 126.4, 122.8, 121.3, 119.7, 117.6, 115.6, 112.74, 84.55, 56.7, 26.7. HRMS (ESI) calcd for C₁₉H₁₇O₄ [M+H]⁺ 309.1127, found 309.1121.

2-(4-Methoxy-5,6,7,8-tetraphenylnaphthalen-1-yl)phenol (5):

The title compound was prepared from **1g** (100 mg, 0.5 mmol) and **4a** (94 mg, 0.6 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 30:70) gave pure product **5** as a white solid (124.6 mg, 45% yield), mp 230-234 °C. ¹H NMR (**500 MHz, CDCl**₃) δ 7.28 (d, J = 1.7 Hz, 1H), 7.11 (dd, J =

3.3, 2.3 Hz, 4H), 7.05 (dd, J = 8.8, 3.9 Hz, 1H), 6.88 (dd, J = 7.7, 3.9 Hz, 2H), 6.84 – 6.80 (m, 4H), 6.77 – 6.72 (m, 6H), 6.66 (dd, J = 9.0, 4.3 Hz, 2H), 6.62 (ddd, J = 9.9, 3.8, 1.7 Hz, 4H), 6.57 (d, J = 1.1 Hz, 1H), 6.45 – 6.42 (m, 1H), 3.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 151.6, 144.1, 141.7, 140.4, 140.3, 140.1, 138.0, 137.0, 132.9, 132.3, 132.2, 131.7, 131.4, 131.4, 131.1, 131.0, 130.6, 130.2, 129.8, 127.9, 126.8, 126.5, 126.3, 126.2, 125.6, 125.6, 125.13, 125.0 124.9, 119.6, 114.7, 106.4, 55.7. HRMS (ESI) calcd for C₄₁H₃₁O₂ [M+H]⁺ 555.2324, found 555.2317.

N-(3,3-dimethyl-1-oxo-1,3-dihydrophenanthro[9,10-c]furan-7-yl)acetamide (6):

The title compound was prepared from **1u** (106 mg, 0.5 mmol) and **2a** (94 mg, 0.6 mmol) according to general procedure A. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 1:4) gave regioisomeric mixture **6** as a white colour solid (71.7 mg, 45% yield). mp 210-214°C. **¹H NMR (400 MHz, DMSO-***d*₆) δ 10.48 (s, 1H), 10.43 (s, 0.24H), 9.38 (d, J = 8.4 Hz, 0.25H), 9.27 (d, J = 8.1 Hz, 1H), 9.09 (d, J = 7.8 Hz, 1H), 9.06 (s, 0.17H), 8.30 (d, J = 8.0 Hz, 0.26H), 8.20 (d, J = 5.8 Hz, 1H), 7.92 – 7.69 (m, 5H), 7.64 (d, J = 7.4 Hz, 0.27H), 2.21 (s, 3.7H), 1.91 (s, 7.68H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.0, 168.9, 155.3, 155.2, 154.3, 136.1, 135.4, 133.1, 131.2, 130.4, 129.4, 129.3, 129.0, 128.0, 127.8, 127.4, 127.3, 126.6, 126.4, 126.0, 125.9, 124.8, 124.5, 123.2, 121.8, 117.9, 117.7, 85.0, 84.5, 79.2, 26.6, 23.5. HRMS (ESI) calcd for C₂₀H₁₆NO₃ [M-H]⁻ 318.1130, found 318.1124.

5. Labelling and KIE studies:

EXP. I: H/D exchange experiment:

To a solution of biphenol **1s** (100 mg, 0.5 mmol) in DMF, Pd(OAc)₂ (11.2 mg, 10 mol %), Cu(OAc)₂.H₂O (199.6 mg, 2 equiv) sodium acetate (82 mg, 2 equiv) were introduced. Later deuterium oxide (50 mg, 5 equiv) and methanol- d_4 (90 mg, 5 equiv) were added to the contents and the resultant reaction mixture was stirred at 100 °C (oil bath) for 2 hours under nitrogen balloon. The reaction mixture was cooled to room temperature before ice water was added to it. The aqueous layer was extracted with ethyl acetate (3×10 mL), the combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by column chromatography ($R_f = 0.50$) (SiO₂, EtOAc:Hexane, 1:4) to get **1s-d** as off-white solid.

To a solution of biphenol **1a** (85 mg, 0.5 mmol), 4-hydroxy-2-alkyonate **2a** (94 mg, 0.6 mmol) in DMF, Pd(OAc)₂ (11.2 mg, 10 mol %), Cu(OAc)₂.H₂O (199.6 mg, 2 equiv) sodium acetate (82 mg, 2 equiv) were introduced. Later deuterium oxide (50 mg, 5 equiv) and methanol- d_4 (90 mg, 5 equiv) were added to the contents and the resultant reaction mixture was stirred at 100 °C (oil bath) for 2 hours under nitrogen balloon. The reaction mixture was cooled to room temperature before ice water was added to it. The aqueous layer was extracted with ethyl acetate (3×10 mL), the combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by column chromatography ($R_f = 0.50$) (SiO₂, EtOAc:Hexane, 15:85) to get **3aa-d** as off-white solid.

Exp-III. KIE determined from two parallel reactions:

To a mixture of biphenol **1a** (85 mg, 0.5 mmol) or **1a**-*d*₅ (87.5 mg, 0.5 mmol) and 4hydroxy-2-alkyonate **2a** (94 mg, 0.6 mmol) in DMF, Pd(OAc)₂ (11.2 mg, 10 mol%), Cu(OAc)₂.H₂O (199.6 mg, 2 equiv) sodium acetate (82 mg, 2 equiv) were introduced and the reaction mixture was stirred at 100 °C (oil bath) for 1 hour under nitrogen balloon. The reaction mixture was cooled to room temperature before ice water was added to it. The aqueous layer was extracted with ethyl acetate (3×10 mL), the combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by column chromatography (R_f = 0.50) (SiO₂, EtOAc:Hexane, 15:85) to get **3aa** (58.3 mg, 42%) or **3aa**-*d*₄ (22.5 mg, 16%) as off-white solids. The k_H/k_D value was determined to be 2.62 by the isolated yield.

To a mixture of biphenol **1a** (85 mg, 0.5 mmol), **1a**-*ds* (87.5 mg, 0.5 mmol) and 4-hydroxy-2alkyonate **2a** (78.3 mg, 0.5 mmol) in DMF, Pd(OAc)₂ (11.2 mg, 10 mol %), Cu(OAc)₂.H₂O (199.6 mg, 2 equiv) sodium acetate (82 mg, 2 equiv) were introduced and the reaction mixture was stirred at 100 °C (oil bath) for 1 hour under nitrogen balloon. The reaction mixture was cooled to room temperature before ice water was added to it. The aqueous layer was extracted with ethyl acetate (3×10 mL), the combined organic extracts were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The crude residue was purified by column chromatography ($R_f = 0.50$) (SiO₂, EtOAc:Hexane, 15:85) to get **3aa+3aa-d4**. The k_H/k_D value of **3aa+3aa-d4** was determined to be 2.45 by ¹H NMR.

6. General Procedure and Characteristic Data of Synthetic Transformations. 3,3-Dimethyl-1,3-dihydrophenanthro[9,10-*c*]furan-7-ol (7a):

To a round-bottomed flask, compound **3aa** (50 mg, 0.18 mmol) was dissolved in CH₂Cl₂ before the addition of DIBAL-H (0.45 mL, 0.54 mmol, 1.2 M in toluene) at 0 °C. The mixture was stirred at room temperature until the complete consumption of starting materials (monitored by TLC). The solvent was evaporated using a rotary evaporator, and the residue was added to 3 M NaOH. The aqueous layer was extracted with ethyl acetate (2 × 10 mL), the organic layer was evaporated, and the residue was purified by column chromatography, $R_f = 0.50$ (SiO₂, EtOAc:hexane, 1:4), to get **7a** as colourless solid in 85% (40.3 mg) yield, mp 245-248 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.59 (m, 4H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 5.53 (s, 2H), 1.85 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 138.6, 133.6, 130.7, 129.6, 129.3, 127.2, 126.8, 126.5, 126.5, 124.1, 120.3, 116.8, 113.1, 89.5, 71.1, 28.3. HRMS Mass (ESI) calcd for C₁₈H₁₅O₂ [M-H]⁻ 263.1072, found 263.1067.

3-Methyl-3-propyl-1,3-dihydrophenanthro[9,10-c]furan-7-ol (7b):

The title compound was prepared from **3ac** (50 mg, 0.16 mmol) using DIBAL-H (0.41 mL, 0.49 mmol, 1.2 M in toluene) following the above procedure. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 1:4) gave pure product **7b** as a off-white solid (38.7 mg, 83% yield), mp 248-251 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (d, J = 8.4 Hz, 1H), 7.70 – 7.56 (m, 4H), 7.47 (t, J = 7.9 Hz, 1H), 7.02 (dd, J = 7.7, 0.8 Hz, 1H), 6.05 (s, 1H), 5.53 (d, J = 1.6 Hz, 2H), 2.28 (ddd, J = 14.4, 12.0, 4.7 Hz, 1H), 2.07 (ddd, J = 14.4, 11.8, 4.5 Hz, 1H), 1.79 (s, 3H), 1.42 (ddd, J = 12.9, 7.4, 2.8 Hz, 1H), 1.03 – 0.89 (m, 1H), 0.82 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 136.9, 134.5, 130.8, 129.9, 129.3, 127.2, 126.8, 126.53, 126.4, 124.0, 120.1, 116.5, 113.1, 92.5, 72.0, 43.8, 27.7, 17.8, 14.4. HRMS Mass (ESI) calcd for C₂₀H₁₉O₂ [M-H]⁻ 291.1385, found 291.1380. **7-Methoxy-3,3-dimethylphenanthro**[9,10-c]furan-1(3H)-one (8):

A round-bottomed flask was charged with compound **3aa** (0.18 mmol, 50 mg) and K₂CO₃ (0.27 mmol, 37.2 mg) in acetone. Methyl iodide (0.17 mmol, 38.3 mg) was added drop wise at 0 °C, and the reaction mixture was stirred at room temperature for overnight. The solvent was removed before 10 mL of water was added. The aqueous layer was extracted with ethyl acetate (2 × 10 mL), the organic layer was evaporated, and the residue was purified by column chromatography. A colorless solid **8** was obtained in 86% (45.2 mg) yield. R_f = 0.50 (SiO₂, EtOAc:hexane, 5:95), mp 180–186 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.77 – 9.70 (m, 1H), 9.35 – 9.27 (m, 1H), 7.76 – 7.71 (m, 2H), 7.71 – 7.67 (m, 2H), 7.37 (dd, *J* = 6.1, 3.1 Hz, 1H), 4.18 (s, 3H), 1.95 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 159.6, 154.7, 131.1, 128.9, 127.7, 127.6, 127.2, 124.3, 124.0, 119.5, 118.0, 111.5, 84.8, 56.1, 27.19. HRMS(ESI) calcd for C₁₉H₁₇O₃ [M+H]⁺ 293.1178, found 293.1190.

10-Methoxy-7-(4-methoxyphenyl)-3,3-dimethylphenanthro[9,10-c]furan-1(3H)-one (9):

A round-bottomed flask was charged with compound **3ga** (0.16 mmol, 50 mg), pyridine (0.32 mmol, 25.65 mg) in dichlromethane, triflic anhydride (0.32 mmol, 92 mg) was added drop wise at 0 °C, and the reaction mixture was stirred at room temperature for 3 hours. The solvent was removed before 10 mL of water was added. The aqueous layer was extracted with ethyl acetate (2×10 mL), the organic layer was concentrated, and the residue was purified by column chromatography. A colorless solid (53 mg) was obtained.

This triflated adduct (53 mg, 0.12) in 1,4-dioxane, para methoxy phenyl boronic acid (27 mg, 0.18 mmol), potassium phosphate (77 mg, 0.36 mmol), Pd(PPh₃)₄ (10 mol%) were added and the mixture was stirred at 90 °C for 5 h under nitrogen atmosphere. After completion of the reaction, brine solution was added (10 mL) at room temperature and was extracted with ethyl acetate (3 × 10 mL). The solvent was removed under vacuum and the product was purified through a short silica gel column using EtOAc:Hexanes (1:9) as the eluent to get product **9** as a colorless solid (40 mg, 62 % yield), mp 205-208 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 2.9 Hz, 1H), 7.99 (dd, J = 7.6, 1.9 Hz, 1H), 7.74 (d, J = 9.5 Hz, 1H), 7.68 – 7.60 (m, 2H), 7.32 – 7.27 (m, 2H), 7.04 – 6.97 (m, 2H), 6.82 (dd, J = 9.5, 2.9 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 1.99 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 159.2, 158.8, 155.5, 141.1, 137.2, 133.8, 132.9, 130.3, 130.0, 129.7, 125.5, 125.3, 125.3, 124.6, 118.6, 116.5, 114.8, 104.1, 84.8, 55.6, 55.5, 27.3. HRMS(ESI) calcd for C₂₆H₂₃O₄ [M+H]⁺ 399.1596, found 399.1590.

6-Chloro-3,3-dimethyl-1,3-dihydrophenanthro[9,10-c]furan-7-ol (8):

A round-bottomed flask was charged with compound **7a** (0.19 mmol, 50 mg) in 1:4 ratio of water and ethyl acetate mixture as solvents, sodium chloride (0.38 mmol, 22 mg), oxone (0.09 mmol, 28 mg) were added and the reaction mixture was stirred at room temperature for overnight. Water was added to the reaction mixture and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The organic layer was concentrated, and the residue was purified by column chromatography. A pale brown color solid **10** was obtained in 65% (36.6 mg) yield. $R_f = 0.55$ (SiO₂, EtOAc:hexane, 5:95), mp 170-173 °C.

¹H NMR (400 MHz, CDCl₃) δ 9.75 (d, J = 8.1 Hz, 1H), 7.87 – 7.44 (m, 5H), 6.83 (s, 1H), 5.51 (s, 2H), 1.82 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 138.4, 134.2, 130.3,

129.3, 128.3, 127.5, 127.1, 126.9, 126.5, 124.2, 117.5, 116.6, 89.2, 71.0, 28.3. **HRMS(ESI)** calcd for $C_{18}H_{14}ClO_2$ [M-H]⁻ 297.0682, found 297.0677.

7. Copies of ¹H, ¹³C, ¹⁹F NMR spectra:

S45

S58

110 100 f1 (ppm)

---5.51

S63

8. 2D NMR Spectra:

9. X-ray crystallography data: Crystallography data of 3aa:

Sample Preparation for Crystal Growth: The compound **3aa** was dissolved in acetone in a beaker and kept for slow evaporation at room temperature. Formation of needle shape crystals was observed after three days. The single crystals were then subjected to X-ray diffraction analysis.

Figure 1. ORTEP diagram of KB693 compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. There are two molecules of KB693 (labelled A and B) and a molecule of acetone with 0.5 site occupancy in the asymmetric unit of the crystal (refer Figure 2). Only molecule shown figure 1 Α is in for clarity.

Figure 2. ORTEP diagram of KB693 compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. There are two molecules of KB693 (labelled A and B) with full site occupancy and acetone solvent with 0.5 site occupancy in the asymmetric unit of the crystal (the stoichiometry of compound: solvent is 2:0.5 or 4:1).

Crystal data for KB693: 4(C₁₈H₁₄O₃).(C₃H₆O), M = 1171.24, Triclinic, Space group P-1(No.2), a = 10.0982(19)Å, b = 11.617(3)Å, c = 13.448(3)Å, $a = 86.075(6)^{\circ}$, $\beta = 79.905(4)^{\circ}$, $\gamma = 71.038(4)^{\circ}$, V = 1468.8(5)Å³, Z = 1, $D_c = 1.324$ g/cm³, $F_{000} = 616$, Bruker D8 QUEST PHOTON III C7 HPAD detector, Mo-K α radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{\text{max}} = 55^{\circ}$, $\mu = 0.090$ mm⁻¹, 36590 reflections collected, 6612 unique (R_{int} = 0.0362), 425 parameters, RI = 0.0525, wR2 = 0.1296, R indices based on 5106 reflections with I > 2 σ (I) (refinement on F^2), Final *GooF* = 1.050, largest difference hole and peak = -0.189 and 0.375 e.Å⁻³. **CCDC deposition number 2254681** contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>

Data collection and Structure solution details for KB693:

X-ray data for the compound were collected at room temperature on a Bruker D8 QUEST instrument with an IµS Mo microsource ($\lambda = 0.7107$ Å) and a PHOTON-III C7 HPAD detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2-4] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other Hatoms]. CCDC deposition number 2254681 contains the supplementary crystallographic of data for this paper which can be obtained free charge at https://www.ccdc.cam.ac.uk/structures/

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. G. M. Sheldrick, Acta Crystallogr., 2015, C71: 3-8.
- 3. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Cryst.*, 2011, 44, 1281-1284.
- Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) KB693_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: KB693_0m

Bond precision:	C-C = 0.0023 A	Wavelength=0.71073		
Cell:	a=10.0982(19) alpha=86.075(6)	b=11.617 beta=79.9	(3) 905(4)	c=13.448(3) gamma=71.038(4)
Temperature:	293 K			
	Calculated		Reported	
Volume	1468.8(6)		1468.8(5))
Space group	P -1		P -1	
Hall group	-P 1		-P 1	
Moiety formula	4(C18 H14 O3), C3	H6 O	4(C18 H1	4 O3), C3 H6 O
Sum formula	C75 H62 O13		C75 H62 (013
Mr	1171.25		1171.24	
Dx,g cm-3	1.324		1.324	
Z	1		1	
Mu (mm-1)	0.090		0.090	
F000	616.0		616.0	
F000'	616.31			
h,k,lmax	13,15,17		13,15,17	
Nref	6740		6612	
Tmin, Tmax	0.975,0.987		0.689,0.	746
Tmin'	0.975			
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	mits: Tmin	n=0.689 Ti	max=0.746
Data completene:	ss= 0.981	Theta <mark>(</mark> ma	ax) = 27.50	00
R(reflections)=	0.0525(5106)			wR2(reflections)=
S = 1.030	Npar= 42	25		0.1447 (0012)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT260_ALERT_2_C Large Average Ueq of Residue Including 0.184 Check 015 PLAT767_ALERT_4_C INS Embedded LIST 6 Instruction Should be LIST 4 Please Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF 126 Report 37 Note

Alert level G			
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	4	Note	
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	4	Report	
PLAT019_ALERT_1_G _diffrn_measured_fraction_theta_full/*_max < 1.0	0.995	Report	
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	3	Report	
PLAT174_ALERT_4_G The CIF-Embedded .res File Contains FLAT Records	1	Report	
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records	1	Report	
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	1	Report	
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100	Report	
PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K)	293	Check	
PLAT200_ALERT_1_G Reporteddiffrn_ambient_temperature (K)	293	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of O1S Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of C1S Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of C2S Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of C3S Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of H2SA Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of H2SB Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of H2SC Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of H3SA Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of H3SB Constrained at	0.5	Check	
PLAT300_ALERT_4_G Atom Site Occupancy of H3SC Constrained at	0.5	Check	
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 3)	100%	Note	
PLAT333_ALERT_2_G Large Aver C6-Ring C-C Dist C5A -C18A .	1.42	Ang.	
PLAT333_ALERT_2_G Large Aver C6-Ring C-C Dist C5B -C18B .	1.42	Ang.	
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	18	Note	
<pre>PLAT789_ALERT_4_G Atoms with Negative _atom_site_disorder_group #</pre>	10	Check	
PLAT860_ALERT_3_G Number of Least-Squares Restraints	28	Note	
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !	
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	3	Note	
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File	12	Note	
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res			
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	18	Info	
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by	2	Check	

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight

32 ALERT level G = General information/check it is not something unexpected

4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

```
7 ALERT type 2 Indicator that the structure model may be wrong or deficient5 ALERT type 3 Indicator that the structure quality may be low18 ALERT type 4 Improvement, methodology, query or suggestion2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Crystallography data of 7a:

Sample Preparation for Crystal Growth: The compound 7a was dissolved in CDCl₃ in a beaker and kept for slow evaporation at room temperature. Formation of needle shape crystals was observed after two days. The single crystals were then subjected to X-ray diffraction analysis.

Figure 1. ORTEP diagram of KB887 compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for KB887: C₁₈H₁₆O₂, M = 264.31, Monoclinic, Space group $P2_1/c$ (No.14), a = 9.6943(4)Å, b = 14.0544(6)Å, c = 10.9983(5)Å, $a = 90^{\circ}$, $\beta = 116.2955(18)^{\circ}$, $\gamma = 90^{\circ}$, V = 1343.43(10)Å³, Z = 4, $D_c = 1.307$ g/cm³, $F_{000} = 560$, Bruker D8 QUEST PHOTON III C7 HPAD detector, Mo-K α radiation, $\lambda = 0.71073$ Å, T = 294(2)K, $2\theta_{\text{max}} = 55^{\circ}$, $\mu = 0.084$ mm⁻¹, 14510 reflections collected, 3056 unique (R_{int} = 0.0284), 187 parameters, R1 = 0.0463, wR2 = 0.1193, R indices based on 2464 reflections with I > 2 σ (I) (refinement on F^2), Final *GooF* = 1.054, largest difference hole and peak = -0.143 and 0.246 e.Å⁻³. **CCDC deposition number 2257234** contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>

Data collection and Structure solution details for KB887:

X-ray data for the compound were collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ Å) and a PHOTON-III C7 HPAD detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2-4] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms]. The O bound H atom was located in the difference Fourier map and its positional coordinates were refined. **CCDC deposition number 2257234** contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. G. M. Sheldrick, Acta Crystallogr., 2015, C71: 3-8.
- 3. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Cryst.*, 2011, 44, 1281-1284.

 Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) KB887_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: KB887_0m

Bond precision:	C-C = 0.0020 A		Wavelength=0.71073		
Cell:	a=9.6943(4) alpha=90	b=14.0544(6 beta=116.29	5) 955(18)	c=10.9983(5) gamma=90	
Temperature:	294 K			2	
	Calculated		Reported		
Volume	1343.43(10)		1343.43(10)	
Space group	P 21/c		P 21/c		
Hall group	-P 2ybc		-P 2ybc		
Moiety formula	C18 H16 O2		C18 H16 O2		
Sum formula	C18 H16 O2		C18 H16 O2		
Mr	264.31		264.31		
Dx,g cm-3	1.307		1.307		
Z	4		4		
Mu (mm-1)	0.084		0.084		
F000	560.0		560.0		
F000′	560.26				
h,k,lmax	12,18,14		12,18,14		
Nref	3089		3056		
Tmin,Tmax	0.978,0.985		0.672,0.74	6	
Tmin'	0.978				
Correction metho AbsCorr = MULTI-	d= # Reported T SCAN	Limits: Tmi	.n=0.672 Tma	x=0.746	
Data completenes	s= 0.989	Theta (m	ax)= 27.499		
R(reflections)=	0.0463(2464)			wR2(reflections)=	
S = 1.054	Npar=	= 187		0.1290(0000)	
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

citck on the hypertinks for more details of the to

Alert level C

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of	02 Check
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor	2.1 Note
PLAT767_ALERT_4_C INS Embedded LIST 6 Instruction Should be LIST 4	Please Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600	31 Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF	20 Note

Alert level G

PLAT019_ALERT_1_G _diffrn_measured_fraction_theta_full/*_max < 1.0	0.997 Report
PLAT128_ALERT_4_G Alternate Setting for Input Space Group P21/c	P21/n Note
PLAT333_ALERT_2_G Large Aver C6-Ring C-C Dist C5 -C10 .	1.42 Ang.
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	3 Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File	5 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	4.7 Low
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res	55.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	17 Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock KB887_0m - ellipsoid plot

10. References:

(a) Luo, S.; Luo, F.-X.; Zhang, X.-S.; Shi, Z.-J. Angew. Chem. Int. Ed. 2013, 52, 10598-10601. (b) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Nature Catalysis 2018, 1, 469-478. (c) Inamoto, K.; Kadokawa, J.; Kondo, Y. Org. lett. 2013, 15, 3962-3965.

2. (a) Liao, G.; Song, H.; Yin, X.; Shi, B. Chem. Commun. 2017, 53, 7824-7827. (b) Xu, Y.;

Li, B.; Zhang, X.; Fan, X. Adv. Synth. Catal. 2018, 360, 2613-2620.

3. Spino, C.; Beaulieu, C. J. Am. Chem. Soc. 1998, 120, 11832-11833.