Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Modified minimal-size fragments of Heparan Sulfate as inhibitors of

endosulfatase-2 (Sulf-2)

Alice Kennett,^a Sven Epple,^a Gabriella van der Valk,^a Irene Georgiou,^a Evelyne Gout,^b Romain R. Vivès^b and Angela J. Russell* a,c

^{a.} Department of Chemistry, University of Oxford, Oxford OX1 3TA ^{b.} Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France

General experimental

All reactions involving organometallic or other moisture-sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried over a MBRAUN MB SPS-800 solvent purification system. Water was purified by an Elix[®] UV-10 system. All other reagents were used as supplied (analytical or HPLC grade) without prior purification. Organic layers were dried over Na₂SO₄. Thin layer chromatography was performed on aluminium plates coated with 60 F254 silica. Plates were visualised using UV light (254 nm), 1% aq KMnO4, 10% ethanolic phosphomolybdic acid or 10% ethanolic panisaldehyde. Flash column chromatography was performed either on Kieselgel 60 silica on a glass column, or on a Biotage Isolera Four automated flash column chromatography platform. Melting points were recorded on SRS MPA120 EZ-Melt Melting Point Apparatus and are uncorrected. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter with a water-jacketed 10 cm cell. Specific rotations are reported in 10⁻¹ deg cm² g⁻¹ and concentrations in g/100 mL. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as a thin film. Selected characteristic peaks are reported in cm⁻¹. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. Spectra were recorded at rt unless otherwise stated. The field was locked by external referencing to the relevant deuteron resonance. Low-resolution mass spectra were recorded on either an Agilent 6120 Single Quadrupole or a Waters LCT Premier spectrometer. Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyalanine.

Inhibitors **1**, **1** β and **2** were prepared following reported protocols and characterisation data were consistent with the literature.^{1, 2}

Compound preparations

Benzyl ((2*S*,3*S*,4a*S*,5*R*,7*S*,8*R*,8a*R*)-5-(hydroxymethyl)-2,3,7-trimethoxy-2,3dimethylhexahydro-5*H*-pyrano[3,4-b][1,4]dioxin-8-yl)carbamate (8)

7² (1.75 g, 5.35 mmol), (1*S*)-(+)-10-camphorsulfonic acid (190 mg, 0.535 mmol), trimethyl orthoformate (1.75 mL, 16.05 mmol) and 2,3-butanedione (516 µL, 5.89 mmol) were suspended in CH₃OH (20 mL) and the resulting solution was heated at 75 °C for 72 h. The solvent was removed in vacuo and the residue was partitioned between EtOAc (20 mL) and satd aq NaHCO₃ (20 mL). The organic layer was washed with brine (10 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Purification via column chromatography (eluent pentanes/EtOAc 1:1) gave **8** as a white solid (1.95 g, 83%); mp 65–68 °C; $[\alpha]_D^{25}$ + 194 (c 0.2 in CH₃OH); v_{max} (film) 2948 br (O–H), 2160 (C–H), 2034 (C–H), 1977 (C–H), 1707 (C=O), 1512 (C=O); δ_H (400 MHz, CDCl₃) 1.27 (s, 3H, C(11)H₃ or C(12)H₃), 1.27 (s, 3H, C(11)H₃ or C(12)H₃), 3.19 (s, 3H, C(9)H₃ or C(10)H₃), 3.25 (s, 3H, C(9)H₃ or C(10)H₃), 3.34 (s, 3H, C(8)H₃), 3.69 – 3.78 (m, 3H, C(4)H, C(5)H, $C(6)H_A$, 3.79 – 3.88 (m, 2H, C(3)H, $C(6)H_B$), 3.89 – 3.99 (m, 1H, C(2)H), 4.79 (d, J = 3.0 Hz, 1H, C(1)*H*), 4.87 (d, J = 8.5 Hz, 1H, N*H*), 5.03 – 5.21 (m, 2H, C(7)*H*₂), 7.28 – 7.45 (m, 5H, *Ph*); δ_{C} (101 MHz, CDCl₃) 17.8, 17.9 (C(11), C(12)), 48.0 (C(9), C(10)), 53.0 (C(2)), 55.3 (C(8)), 61.5 (C(6)), 66.9 (C(4)), 67.0 (C(7)), 68.0 (C(3)), 69.9 (C(5)), 99.0 (C(1)), 99.8, 100.0 (C(13), C(14)), 128.3, 128.6 (*o*,*m*,*p*-*Ph*), 136.6 (*i*-*Ph*), 156.2 (C=O); *m*/*z* (ESI⁺) 464 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₁H₃₁NNaO₉⁺ ([M+Na]⁺) requires 464.1891; found 464.1887.

((2*S*,3*S*,4a*S*,5*R*,7*S*,8*R*,8a*R*)-8-(((Benzyloxy)carbonyl)amino)-2,3,7-trimethoxy-2,3dimethylhexahydro-5*H*-pyrano[3,4-b][1,4]dioxin-5-yl)methyl trifluoromethanesulfonate (9)

Trifluoromethanesulfonic anhydride (46 µL, 0.272 mmol) was added to a solution of 8 (100 mg, 0.227 mmol) and N,N-diisopropylethylamine (47 μ L, 0.272 mmol) in CH₂Cl₂ (1 mL) at 0 °C. The resulting solution was stirred at 0 °C for 1 h. The reaction was retreated with *N*,*N*-diisopropylethylamine (47 µL, 0.272 mmol) and trifluoromethanesulfonic anhydride (46 μ L, 0.272 mmol) and the reaction was stirred at rt for an additional 1 h. The reaction was quenched with H₂O (1 mL) and extracted with CH₂Cl₂ (3 × 3 mL). The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification via column chromatography (gradient elution, $0\% \rightarrow 20\%$ EtOAc in pentanes) gave **9** as a pale yellow solid (75 mg, 58%); mp 58–61 °C; $[\alpha]_D^{25}$ +82.7 (*c* 0.03 in CH₃OH); v_{max} (film) 1717 (C=O), 1514 (C=O), 1515 (S=O), 1246 (S=O); δ_H (400 MHz, CDCl₃) 1.27 (s, 3H, C(11)H₃ or C(12)H₃), 1.28 (s, 3H, C(11)H₃ or C(12)H₃), 3.19 (s, 3H, C(9)H₃ or C(10)H₃), 3.22 (s, 3H, C(9)H₃ or C(10)H₃), 3.36 (s, 3H, $C(8)H_3$, 3.69 (t, J = 9.8 Hz, 1H, C(4)H), 3.83 (dd, J = 10.8, 9.5 Hz, 1H, C(3)H), 3.98 (ddd, J = 10.1, 5.3, 1.9 Hz, 2H, C(2)H, C(5)H), 4.60 (dd, J = 10.7, 5.4 Hz, 1H, C(6)H_A), 4.65 – 4.75 (m, 1H, C(6)H_B), 4.84 (d, J = 8.9 Hz, 1H, NH), 5.02 – 5.20 (m, 2H, C(7)H₂), 7.28 – 7.45 (m, 5H, Ph); δ_{c} (126 MHz, CDCl₃) 17.5, 17.7 (*C*(11), *C*(12)), 48.0, 48.1, (*C*(9), *C*(10)), 52.46 (*C*(3)), 55.48 (*C*(8)), 66.32 (*C*(4)), 66.99 (C(7)), 67.34 (C(5)), 67.81 (C(3)), 73.83 (C(6)), 98.95 (C(1)), 99.96, 100.05 (C(13), C(14)), 118.61 (q, J = 319.5 Hz, CF_3), 128.26, 128.51 (o,m,p-Ph), 136.38 (i-Ph), 155.88 (CO); δ_F (376 MHz, CDCl₃) –74.53; *m/z* (ESI⁺) 596 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₂H₃₀F₃NNaO₁₁S⁺ ([M+Na]⁺) requires 596.1384; found 596.1386.

Benzyl ((2*S*,3*S*,4a*R*,5*R*,7*S*,8*R*,8a*R*)-5-(2-(*N*,*N*-bis(2,4-dimethoxybenzyl)sulfamoyl)ethyl)-2,3,7-trimethoxy-2,3 dimethylhexa-hydro-5*H*-pyrano[3,4-b][1,4]dioxin-8-yl)carbamate (10)

n-BuLi (1.6 M in hexanes, 445 µL, 0.712 mmol) was added dropwise to a solution of CH₃SO₂(DMB)₂ (268 mg, 0.678 mmol) in THF (3 mL) at -78 °C. The resulting solution was stirred for 15 min before a solution of 9 (194 mg, 0.339 mmol) in THF (2 mL) was added dropwise and the reaction was stirred for 5 h; the temperature was maintained at -78 °C throughout. The reaction was quenched with H_2O (5 mL) and extracted with EtOAc (3 × 5 mL). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification via column chromatography (eluent EtOAc/pentanes 4:6) gave 10 as a white solid (180 mg, 65%); mp 85–91 °C; $[\alpha]_D^{25}$ +113 (c 0.1 in CH₃OH); v_{max} (film) 2927 (C–H), 2836 (C–H), 1721, 1613 (C=O), 1588, 1507 (C=O), 1456, 1328, 1293, 1261, 1208 (S=O), 1115, 1032 (S=O); δ_H (500 MHz, CDCl₃) 1.25 (s, 6H, C(13)H₃, C(14)H₃), 1.73 – 1.84 (m, 1H, C(6)H_A), 2.24 – 2.34 (m, 1H, C(6) H_B), 2.73 – 2.83 (m, 1H, C(7) H_A), 2.95 – 3.05 (m, 1H, C(7) H_B), 3.16 (s, 3H, C(15) H_3 or $C(16)H_3$, 3.21 (s, 6H, $C(9)H_3$, $C(15)H_3$ or $C(16)H_3$), 3.31 – 3.42 (m, 1H, C(4)H), 3.55 (t, J = 8.7Hz, 1H, C(5)H), 3.71 – 3.78 (m, 7H, C(3)H, 2 × C(11)H₃), 3.80 (s, 6H, 2 × C(12)H₃), 3.84 – 3.94 $(m, 1H, C(2)H), 4.33 - 4.42 (m, 4H, 2 \times C(10)H_2), 4.66 (d, J = 2.8 Hz, 1H, C(1)H), 4.83 (d, J = 9.0$ Hz, 1H, NH), 5.03 – 5.21 (m, 2H, C(8)H₂), 6.37 – 6.42 (m, 2H, 2 × C(19)H), 6.44 (dd, J = 8.3, 2.3 Hz, 2H, 2 × C(21)H), 7.22 (d, J = 8.3 Hz, 2H, 2 × C(20)H), 7.28 – 7.42 (m, 5H, Ph); δ_c (126 MHz, CDCl₃) 17.6, 17.7 (*C*(13), *C*(14)), 24.9 (*C*(6)), 45.5 (*C*(10)), 47.8, 47.9 (*C*(15), *C*(16)), 49.5 (*C*(13)), 52.8 (C(2)), 54.9 (C(9)), 55.1, 55.4 (2 × C(11), 2 × C(12)), 66.9 (C(8)), 67.8 (C(5)), 67.9 (C(3)), 70.4 (*C*(4)), 98.3 (2 × *C*(19)), 98.5 (*C*(1)), 99.7, 99.8 (*C*(17), *C*(18)), 103.9 (2 × *C*(21)), 117.1 (2 × PMB-*i*-Ph), 128.2, 128.5 (*o*,*m*,*p*-Ph), 131.0 (2 × C(20)), 136.5 (*i*-Ph), 156.0 (CO), 158.4 (2 × PMB *m-Ph*), 160.5 (2 × PMB *o-Ph*); *m/z* (ESI⁺) 841 (100%, [M+Na]⁺); HRMS (ESI⁺) C₄₀H₅₄N₂NaO₁₄S⁺ ([M+Na]⁺) requires 841.3188; found 841.3187.

((2*S*,3*R*,4*R*,5*S*,6*R*)-4,5-Dihydroxy-2-methoxy-6-(2-sulfamoylethyl)tetrahydro-2*H*-pyran-3yl)sulfamic acid (3)

(1) Cbz-deprotection. Pd/C (10% wt, 8 mg) was added to a solution of 9 (170 mg, 0.210 mmol) in CH₃OH (3 mL) under Ar. The reaction was evacuated and filled with Ar three times before being placed under an atmosphere of H₂. The reaction was stirred at rt for 16 h, filtered through Celite and concentrated in vacuo. (2) N-sulfation. Pyridine-sulfur trioxide complex $(17.0 \text{ mg}, 107 \mu \text{mol})$ was added portion-wise to a solution of the above amine in H₂O (1 mL)at pH 9–10. The pH was re-adjusted after each addition by addition of 1 M aq NaOH. The reaction was stirred at rt for 16 h. The solvent was removed in vacuo, and the residue was triturated in chloroform, filtered and the filtrate was concentrated in vacuo. (3) Bis-acetal hydrolysis. F₃CCO₂H (1 mL) was added to the intermediate bisacetal in H₂O (1 mL) and the resulting solution was stirred at rt for 2 h. The solvent was removed in vacuo and purification via column chromatography (eluent CH₃OH:CH₂Cl₂:NH₄OH 3:7:0.01), followed by elution from a Dowex[®] 50WX8 Na⁺-form column using water as the eluent gave **3** as a white gum (5 mg, 7% over 3 steps) $[\alpha]_D^{25}$ +12.5 (*c* 0.4 in H₂O); δ_H (500 MHz, D₂O) 1.85 – 1.94 (m, 1H, C(6)H_A), 2.26 - 2.34 (m, 1H, C(6)H_B), 3.17 (dd, J = 10.4, 3.7 Hz, 1H, C(2)H), 3.20 - 3.27 (m, 1H, C(4)H), 3.28 -3.41 (m, 5H, C(7)H₂, C(8)H₃), 3.46 (dd, J = 10.3, 9.1 Hz, 1H, C(3)H), 3.64 (td, J = 9.6, 2.7 Hz, 1H, C(5)H), 4.92 (d, J = 3.6 Hz, 1H, C(1)H); δ_{C} (126 MHz, $D_{2}O$) 25.38 (C(6)), 50.6 (C(7)), 55.4 (C(8)), 57.8 (*C*(2)), 69.0 (*C*(5)), 71.2 (*C*(3)), 73.5 (*C*(4)), 98.5 (*C*(1)); *m*/*z* (ESI[−]) 349 (100%, [M-H][−]); HRMS (ESI⁻) $C_8H_{17}N_2O_9S_2^{-}([M-NH_4]^{-})$ requires 349.0381; found 349.0384.

((2*S*,3*S*,4a*S*,5*R*,7*S*,8*R*,8a*R*)-8-(((benzyloxy)carbonyl)amino)-2,3,7-trimethoxy-2,3dimethylhexahydro-5*H*-pyrano[3,4-b][1,4]dioxin-5-yl)methyl dimethylsulfamate (S1)

7 (500 mg, 1.13 mmol) in THF (5 mL) was added to NaH (60% wt in mineral oil, 100 mg, 2.49 mmol) under N2 at 0 °C and the resulting suspension was stirred at rt for 1 h. N,N'-Dimethylsulfamoyl chloride (146 µL, 1.36 mmol) was added and the resulting solution was stirred at rt for 16 h. The reaction was retreated with NaH (60% in mineral oil, 100 mg, 2.49 mmol) and N,N'-dimethylsulfamoyl chloride (146 µL, 1.36 mmol) and the resulting solution was stirred at rt for 16 h. The reaction was quenched with satd aq NaHCO₃ (5 mL) and extracted with EtOAc (2 × 5 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification via column chromatography (gradient elution, $0\% \rightarrow 55\%$ EtOAc in pentanes) gave **S1** as a white solid (351 mg, 57%); mp 63–73 °C; [α]_D²⁵ + 180 (*c* 0.1 in CH₃OH); ν_{max} (film) 2951 (C–H), 2181 (C–H), 1716 (C=O), 1512 (C=O), 1455 (S=O), 1358 (S=O); δ_H (500 MHz, (CD₃)₂CO) 1.22, 1.25 (2 × s, 2 × 3H, C(12)H₃, C(13)H₃), 2.91 (s, 6H, 2 × C(9)H₃), 3.22, 3.25 (2 × s, 2 × 3H, C(10)H₃, C(11)H₃), 3.36 (s, 3H, C(8)H₃), 3.64 (t, J = 9.4 Hz, 1H, C(4)H), 3.83 - 3.97 (m, 3H, C(2)H, C(3)H, C(5)H), 4.27 (dd, J = 10.9, 5.4 Hz, 1H, C(6)H_A), 4.39 (dd, J = 10.9, 2.0 Hz, 1H, C(6) H_B), 4.75 (d, J = 3.0 Hz, 1H, C(1)H), 4.99 – 5.15 (dd, J = 34.5, 12.6 Hz, 2H, C(7) H_2), 6.25 (d, J = 8.5 Hz, 1H, NH), 7.27 – 7.45 (m, 5H, Ph); δ_c (126 MHz, (CD₃)₂CO) 18.0, 18.1 (C(12), C(13)), 38.7 (C(9)), 48.2, 48.3 (C(10), C(11)), 53.9 (C(2)), 55.6 (C(8)), 66.6 (C(7)), 67.7 (C(4)), 68.3 (C(3)), 68.7 (C(6)), 68.8 (C(5)), 100.1 (C(1)), 100.5, 100.6 (C(14), C(15)), 128.55, 128.60, 129.18 (o,m,p-Ph), 138.35 (i-Ph), 157.07 (CO); m/z (ESI⁺) 571 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₂₃H₃₆N₂NaO₁₁S⁺ ([M+Na]⁺) requires 571.1932; found 571.1934.

Sodium((2*S*,3*S*,4a*S*,5*R*,7*S*,8*R*,8a*R*)-5-(((*N*,*N*-dimethylsulfamoyl)oxy)methyl)-2,3,7trimethoxy-2,3-dimethylhexahydro-5*H*-pyrano[3,4-b][1,4]dioxin-8-yl)sulfamate (S2)

(1) Cbz-deprotection. Pd/C (10% wt, 35 mg) was added to a solution of S1 (350 mg, 0.638 mmol) in CH₃OH (4 mL) under Ar. The reaction was evacuated and filled with Ar three times before being placed under an atmosphere of H₂. The reaction was stirred at rt for 16 h, filtered through Celite and concentrated in vacuo to give the intermediate amine which was used without further purification (233 mg, 88%). (2) N-sulfation. Pyridine-sulfur trioxide complex (42.0 mg, 0.266 mmol) was added portion-wise to a solution of the abovementioned amine (100 mg, 0.241 mmol) in H₂O (1 mL) at pH 9–10. The pH was re-adjusted after each addition by addition of 1 M aq NaOH. The reaction was stirred at rt for 16 h. The solvent was removed in vacuo and the residue was triturated in CH₃OH, filtered and the filtrate was concentrated *in vacuo* to give **S2** as a white gum (118 mg, 96%); $[\alpha]_{D}^{25}$ + 9 (*c* 0.1 in CH₃OH); δ_{H} (500 MHz, D₂O) 1.35, 1.36 (2 × s, 2 × 3H, C(11)H₃, C(12)H₃), 2.95 (s, 6H, 2 × C(8)H₃), 3.30, 3.33 (2 × s, 2 × 3H, C(9)H₃, C(10)H₃), 3.41 – 3.48 (m, 4H, C(2)H, C(7)H₃), 3.74 (t, J = 9.9 Hz, 1H, C(4)H), 3.85 (t, J = 10.3 Hz, 1H, C(3)H), 4.02 (dt, J = 10.0, 3.0 Hz, 1H, C(5)H), 4.47 (d, J = 2.7 Hz, 2H, C(6)H₂), 5.14 (d, J = 3.5 Hz, 1H, C(1)H); δ_{C} (126 MHz, D₂O) 16.75, 16.80, (C(11), C(12)), 37.88(C(8)), 47.90, 48.10 (C(9), C(10)), 54.93 (C(2)), 55.71 (C(7)), 66.43 (C(4)), 67.18, 67.19 (C(3), C(5)), 68.08 (C(6)), 98.87 (C(1)), 100.21, 100.53 (C(13), C(14)); m/z (ESI⁺) 539 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₁₅H₂₉N₂Na₂O₁₂S₂⁺ ([M+Na]⁺) requires 539.0976; found 539.0953. Carbon NMR contains TFA as an impurity.

Ammonium ((2*S*,3*R*,4*R*,5*S*,6*R*)-6-(((*N*,*N*-dimethylsulfamoyl)oxy)methyl)-4,5-dihydroxy-2methoxytetrahydro-2*H*-pyran-3-yl)sulfamate (2)

F₃CCO₂H (0.8 mL) was added to a solution of **S2** (118 mg, 0.23 mmol) in H₂O (0.8 mL) and the resulting solution was stirred at rt for 2 h. The solvent was removed *in vacuo* and purification via column chromatography (eluent CH₃OH:CH₂Cl₂:NH₄OH 3:7:0.01) gave **2** as a white solid (10 mg, 11%); mp 95–109 °C; $[\alpha]_D^{25}$ + 108 (*c* 0.1 in CH₃OH); δ_H (500 MHz, D₂O) 2.86 (s, 6H, 2 × C(8)H₃), 3.18 (dd, *J* = 10.2, 3.6 Hz, 1H, C(2)H), 3.35 (s, 3H, C(7)H₃), 3.41 – 3.48 (m, 1H, C(4)H), 3.48 – 3.56 (m, 1H, C(3)H), 3.81 (ddd, *J* = 10.0, 4.8, 2.1 Hz, 1H, C(5)H), 4.37 (dd, *J* = 11.3, 4.9 Hz, 1H, C(6)H_A), 4.41 (dd, *J* = 11.2, 2.1 Hz, 1H, C(6)H_B), 4.96 (d, *J* = 3.6 Hz, 1H, C(1)H); δ_C (126 MHz, D₂O) 37.9 (*C*(8)), 55.5 (*C*(7)), 57.5 (*C*(2)), 69.2 (*C*(5)), 69.4 (*C*(6)), 69.5 (*C*(4)), 71.3 (*C*(3)), 98.6 (*C*(1)); *m*/*z* (ESI⁻) 781 (7%), 759 ([2M–H]⁻, 18%) 379 ([M–H]⁻, 100%); HRMS (ESI⁻) C₉H₁₉N₂O₁₀S₂⁻ ([M–Na]⁻) requires 379.0487; found 379.0483.

Benzyl ((2*S*,3*R*,4*R*,5*S*,6*R*)-4-(benzyloxy)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-5-hydroxy-2-methoxytetrahydro-2*H*-pyran-3-yl)carbamate (16)

TBDPSCI (1.17 mL, 4.51 mmol) was added to a solution of **15** (synthesised according to literature procedures)^{3,4} (1.34 g, 3.22 mmol), DMAP (78 mg, 0.639 mmol) and Et₃N (2.80 mL, 20.0 mmol) in CH₂Cl₂ (16 mL) and the reaction was stirred at rt for 16 h. The reaction was diluted with CH₂Cl₂ (50 mL) and washed with H₂O (50 mL). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification via column chromatography (gradient elution, 0% \rightarrow 20% EtOAc in pentane) gave **16** as a colourless viscous oil (1.82 g, 86%); $[\alpha]_D^{25}$ +32.3 (*c* 1.0 in CHCl₃); v_{max} (film) 3439 (O–H), 2930 (C–H), 2897 (C–H), 2855 (C–H), 2837 (C–H), 1707 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.07 (s, 9H, C(CH₃)₃), 3.31 (s, 3H, C(7)H₃), 3.53 (dd, J =

10.4, 8.7 Hz, 1H, C(3)*H*), 3.62 (dt, J = 9.4, 4.4 Hz, 1H, C(5)*H*), 3.76 (t, J = 9.2 Hz, 1H, C(4)*H*), 3.88 (d, J = 4.4 Hz, 2H, C(6)*H*₂), 3.96 (td, J = 10.1, 3.4 Hz, 1H, C(2)*H*), 4.67 (d, J = 3.6 Hz, 1H, C(1)*H*), 4.73 (d, J = 2.0 Hz, 2H, C(9)*H*₂), 4.92 (d, J = 9.9 Hz, 1H, N*H*), 5.08 (d, J = 12.2 Hz, 1H, C(10)*H*_A), 5.15 (d, J = 12.2 Hz, 1H, C(10)*H*_B), 7.27 – 7.48 (m, 16H, *Ph*), 7.70 (ddt, J = 5.9, 4.2, 1.7 Hz, 4H, *Ph*); δ_{C} (101 MHz, CDCl₃) 19.4 (*C*(CH₃)₃), 27.0 (*C*(*C*H₃)₃), 54.4 (*C*(2)), 55.1 (*C*(7)), 64.6 (*C*(6)), 67.1 (*C*(9)), 71.2 (*C*(5)), 72.2 (*C*(4)), 74.5 (*C*(10)), 80.8 (*C*(3)), 99.1 (*C*(1)), 127.9 (*Ph*), 127.9 (*Ph*), 128.1 (*Ph*), 128.3 (*Ph*), 128.4 (*Ph*), 128.6 (*Ph*), 128.7 (*Ph*), 129.9 (*Ph*), 129.9 (*Ph*), 133.2 (*Ph*), 133.3 (*Ph*), 135.8 (*Ph*), 136.6 (*Ph*), 138.6 (*Ph*), 156.1 (*C*=O); *m/z* (ESI⁺) 678 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₃₈H₄₅NNaO₇Si⁺ ([M+Na]⁺) requires 678.2858; found 678.2854.

(2*S*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-4-(benzyloxy)-6-(((2*R*,3*S*,4*R*,5*R*,6*S*)-4-(benzyloxy)-5-(((benzyloxy)carbonyl)amino)-2-(((tert-butyldiphenylsilyl)oxy)methyl)-6methoxytetrahydro-2*H*-pyran-3-yl)oxy)tetrahydro-2*H*-pyran-3,5-diyl diacetate (17)

16 (2.35 g, 3.58 mmol) and **12** (synthesised according to literature procedures)⁵ (1.50 g, 2.98 mmol) were dissolved in CH₂Cl₂ (60 mL), under N₂, and dried over 4 Å molecular sieves (2.0 g, freshly activated) for 1 h at rt. The reaction was cooled to −60 °C and NIS (873 mg, 3.88 mmol) and TfOH (1 M in Et₂O, 895 µL, 0.895 mmol) were added in quick succession. The reaction was allowed to warm to −20 °C over 3 h. The reaction was quenched by addition of NaHCO₃ (30 mL) and filtered through Celite[®]. The organic layer was washed with satd aq Na₂S₂O₃ (30 mL), brine, dried over Na₂SO₄ and concentrated in vacuo. Purification via column chromatography (gradient elution, 10%→30% EtOAc in pentane) gave **17** as a white solid (2.60 g, 84%); mp 64−66 °C; $[\alpha]_D^{25}$ +13.7 (*c* 1.0 in CHCl₃); v_{max} (film) 2933 (C−H), 2900 (C−H), 2858 (C−H), 1739 (C=O); δ_H (400 MHz, CDCl₃) 1.07 (s, 9H, C(CH₃)₃), 1.93 (s, 3H, *Ac*), 1.94 (s, 3H, *Ac*), 2.04 (s, 3H, *Ac*), 3.25 (s, 3H, C(7)H₃), 3.51 (dd, J = 10.3, 9.2 Hz, 1H, C(3)H), 3.62 (ddd, J = 9.7, 3.5, 1.9 Hz, 1H, C(5)H), 3.69 (td, J = 2.9, 1.0 Hz, 1H, C(3)H), 3.81 − 3.92 (m, 3H, C(6)H₂, C(6')H_A), 3.96 (dq, J = 10.3, 4.3 Hz, 2H, C(6')H_B, C(2)H), 4.13 (t, J = 9.5 Hz, 1H, C(4)H), 4.43 (d, J = 11.3 Hz, 1H, C(3')OCH_APh), 4.58 − 4.64 (m, 2H, C(1)H, C(5')H), 4.65 − 4.69 (m, 2H, C(3')OCH_B, C(3)OCH_A),

4.72 (d, J = 11.5 Hz, 1H, C(3)OCH_B), 4.75 (t, J = 2.5 Hz, 1H, C(4')H), 4.79 (d, J = 10.0 Hz, 1H, NH), 4.87 – 4.94 (m, 1H, C(2')H), 5.01 (d, J = 2.6 Hz, 2H, C(9)H₂), 5.18 (s, 1H, C(1')H), 7.10 (dd, J = 7.3, 2.3 Hz, 2H, Ph), 7.19 (dd, J = 5.6, 1.8 Hz, 3H, Ph), 7.28 (td, J = 8.9, 5.7 Hz, 5H, Ph), 7.31 – 7.45 (m, 11H, Ph), 7.67 – 7.71 (m, 2H, Ph), 7.71 – 7.75 (m, 2H, Ph); δ_c (101 MHz, CDCl₃) 19.6 (C(CH₃)₃), 20.9 (Ac), 20.9 (Ac), 21.0 (Ac), 26.9 (C(CH₃)₃), 55.0 (C(7)), 55.5 (C(2)), 62.4 (C(6')), 62.9 (C(6)), 63.6 (C(5')), 67.0 (C(9)), 67.2 (C(4')), 67.5 (C(2')), 72.2 (C(5)), 72.5 (C(3')OCH₂Ph), 72.9 (C(3')), 73.1 (C(4)), 75.3 (C(3)OCH₂Ph), 79.3 (C(3)), 96.6 (C(1')), 98.8 (C(1)), 127.4 (Ph), 127.6 (Ph), 127.7 (Ph), 128.1 (Ph), 128.3 (Ph), 128.3 (Ph), 128.5 (Ph), 128.6 (Ph), 129.6 (Ph), 129.7 (Ph), 133.5 (Ph), 134.1 (Ph), 135.8 (Ph), 136.1 (Ph), 136.4 (Ph), 137.5 (Ph), 138.4 (Ph), 156.0 (C_{Cbz} =O), 169.7 (C_{Ac} =O), 170.4 (C_{Ac} =O), 170.8 (C_{Ac} =O); m/z (ESI⁺) 1056 ([M+Na]⁺, 100%) ; HRMS (ESI⁺) $C_{57}H_{68}NO_{15}Si^+$ ([M+H]⁺) requires 1034.4353; found 1034.4347.

Benzyl ((2*S*,3*R*,4*R*,5*S*,6*R*)-4-(benzyloxy)-5-(((2*S*,3*R*,4*S*,5*R*,6*S*)-4-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-2methoxytetrahydro-2*H*-pyran-3-yl)carbamate (18)

CH₃ONa (126 mg, 2.34 mmol) was added to a solution of **17** (4.85 g, 4.69 mmol) in CH₃OH/CH₂Cl₂ (1:1, 60 mL) and the reaction was stirred at rt for 16 h. The reaction was quenched by addition of 1 M HCl, and concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂ and H₂O (1:1, 60 mL), the organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to give **18** as a white solid (4.18 g, 98%); mp 74–77 °C; $[\alpha]_D^{25}$ +23.1 (*c* 1.0 in CHCl₃); v_{max} (film) 3437 (O–H), 2932 (C–H), 2895 (C–H), 2858 (C–H), 1713 (C=O); δ_H (400 MHz, CDCl₃) 1.07 (s, 9H, C(CH₃)₃), 2.99 (dd, J = 12.5, 2.2 Hz, 1H, C(6')H_A), 3.32 (s, 3H, C(7)H₃), 3.42 – 3.53 (m, 2H, C(3)H, C(6')H_B), 3.60 – 3.73 (m, 3H, C(5)H, C(2')H, C(3')H), 3.82 (d, J = 3.4 Hz, 1H, C(4')H), 3.87 (d, J = 2.8 Hz, 2H, C(6)H₂), 4.02 – 4.11 (m, 3H, C(2)H, C(4)H, C(5')H), 4.41 – 4.50 (m, 2H, C(3)OCH₂Ph), 4.55 (d, J = 11.3 Hz, 1H, C(3')OCH_APh), 4.63 – 4.74 (m, 2H, C(1)H, C(3')OCH_BPh), 4.96 (d, J = 10.1 Hz, 1H, NH), 5.06 (s, 2H, C(9)H₂), 5.19 (s, 1H, C(1')H), 7.05 – 7.15 (m, 2H, Ph), 7.22 (dd, J = 5.1, 2.0 Hz, 3H, Ph), 7.28 – 7.46 (m, 16H, Ph), 7.75

(ddt, J = 14.1, 6.4, 1.8 Hz, 4H, *Ph*); δ_{C} (101 MHz, CDCl₃) 19.5 (*C*(CH₃)₃), 26.9 (C(*C*H₃)₃), 55.1 (*C*(7)), 55.5 (*C*(2)), 62.9 (*C*(6)), 64.8 (*C*(5')), 65.2 (*C*(6')), 66.4 (*C*(2')), 67.1 (*C*(9)), 71.5 (*C*(4')), 72.0 (C(3')OCH₂Ph), 72.4 (*C*(5)), 73.5 (*C*(4)), 75.2 (C(3)OCH₂Ph), 75.6 (*C*(3')), 79.8 (*C*(3)), 98.9 (*C*(1)), 101.1 (*C*(1')), 127.5 (*Ph*), 127.7 (*Ph*), 127.8 (*Ph*), 128.0 (*Ph*), 128.2 (*Ph*), 128.3 (*Ph*), 128.3 (*Ph*), 128.3 (*Ph*), 128.5 (*Ph*), 128.6 (*Ph*), 129.8 (*Ph*), 129.9 (*Ph*), 133.2 (*Ph*), 133.5 (*Ph*), 135.9 (*Ph*), 136.1 (*Ph*), 136.5 (*Ph*), 138.5 (*Ph*), 156.1 (*C*=O); *m/z* (ESI⁺) 930 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₅₁H₆₁NNaO₁₂Si⁺ ([M+Na]⁺) requires 930.3855; found 930.3857.

Benzyl ((2*S*,3*R*,4*R*,5*S*,6*R*)-4-(benzyloxy)-5-(((1*R*,3*R*,4*R*,7*S*,8*S*)-8-(benzyloxy)-7-hydroxy-6oxo-2,5-dioxabicyclo[2.2.2]octan-3-yl)oxy)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-2methoxytetrahydro-2*H*-pyran-3-yl)carbamate (19)

TEMPO (28 mg, 179 µmol) and (diacetoxyiodo)benzene (567 mg, 1.76 mmol) were added in quick succession to a solution of 18 (800 mg, 882 µmol) in CH₂Cl₂ (8.8 mL) and the reaction was stirred at rt for 16 h. The reaction was diluted with CH₂Cl₂ (10 mL), washed with satd aq NaHCO₃ (10 mL), 10% Na₂S₂O₃ (10 mL) and brine, dried over Na₂SO₄ and concentrated in *vacuo*. Purification via column chromatography (gradient elution, $0\% \rightarrow 30\%$ EtOAc in pentane) gave **19** as a colourless glass (485 mg, 61%); mp 77–81 °C; $[\alpha]_D^{25}$ +13.6 (*c* 1.0 in CHCl₃); v_{max} (film) 3437 (O-H), 2932 (C-H), 2895 (C-H), 2858 (C-H), 1792 (C_{Lactone}=O), 1715 (C_{Cbz}=O); δ_H (400 MHz, CDCl₃) 1.06 (s, 9H, C(CH₃)₃), 3.30 (s, 3H, C(7)H₃), 3.55 (dt, J = 9.7, 2.4 Hz, 1H, C(5)H), 3.59 – 3.67 (m, 2H, C(3)H, C(3')H), 3.71 (dd, J = 11.5, 3.1 Hz, 1H, C(6)H_A), 3.79 (dd, J = 11.7, 1.8 Hz, 1H, C(6)H_B), 3.98 (d, J = 3.3 Hz, 1H, C(5')H), 3.99 – 4.10 (m, 2H, C(2)H, C(4)H), 4.14 (dd, J = 5.0, 3.0 Hz, 1H, C(4')H), 4.27 (d, J = 2.8 Hz, 1H, C(2')H), 4.48 (s, 2H, C(3)OCH₂Ph), 4.65 (d, J = 11.2 Hz, 1H, $C(3')OCH_APh$, 4.71 (d, J = 3.7 Hz, 1H, C(1)H), 4.83 (t, J = 11.5 Hz, 2H, NH, $C(3')OCH_BPh)$, 5.08 (q, J = 12.2 Hz, 2H, $C(9)H_2$), 5.41 (dd, J = 2.6, 1.3 Hz, 1H, C(1')H), 7.26 – 7.34 (m, 12H, *Ph*), 7.41 (dtd, J = 16.5, 7.6, 6.0 Hz, 8H, *Ph*), 7.67 (dp, J = 9.1, 2.1 Hz, 5H, *Ph*); δ_c (101 MHz, CDCl₃) 19.3 (*C*(CH₃)₃), 27.0 (C(CH₃)₃), 54.8 (*C*(2)), 55.2 (*C*(7)), 62.4 (*C*(6)), 67.1 (*C*(9)), 71.3 (C(5')), 71.3 (C(5)), 71.5 (C(4')), 72.3 (C(3)OCH₂Ph), 72.5 (C(2')), 74.2 (C(3')OCH₂Ph), 77.4 (C(4)),

79.1 (*C*(3)), 81.3 (*C*(3')), 97.6 (*C*(1')), 99.0 (*C*(1)), 127.7 (*Ph*), 127.8 (*Ph*), 127.9 (*Ph*), 127.9 (*Ph*), 128.0 (*Ph*), 128.2 (*Ph*), 128.4 (*Ph*), 128.6 (*Ph*), 128.6 (*Ph*), 129.9 (*Ph*), 130.1 (*Ph*), 132.9 (*Ph*), 135.8 (*Ph*), 136.1 (*Ph*), 136.5 (*Ph*), 137.5 (*Ph*), 138.7 (*Ph*), 156.0 (*C*_{Cbz}=O), 168.0 (*C*_{Lactone}=O); *m/z* (ESI⁺) 926 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₅₁H₅₈NO₁₂Si⁺ ([M+H]⁺) requires 904.3723; found 904.3717.

Benzyl ((2*S*,3*R*,4*R*,5*S*,6*R*)-4-(benzyloxy)-5-(((1*R*,3*R*,4*R*,7*S*,8*S*)-8-(benzyloxy)-7-hydroxy-6oxo-2,5-dioxabicyclo[2.2.2]octan-3-yl)oxy)-6-(hydroxymethyl)-2-methoxytetrahydro-2*H*pyran-3-yl)carbamate (20)

Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF, 110 mg, 399 µmol) was added to a solution of 19 (380 mg, 421 µmol) in DMF (4 mL) under N₂ and the reaction was stirred at rt for 16 h. The reaction was quenched by addition of satd aq NH₄Cl (5 mL) and extracted with EtOAc (2 × 10 mL). The combined organic layers were washed with ½ sat brine (5 × 5 mL), brine, dried over Na₂SO₄ and concentrated in vacuo. Purification via column chromatography (gradient elution, $0\% \rightarrow 60\%$ EtOAc in pentane) gave **20** as a white solid (130 mg, 75%); mp 86-88 °C; [α]²⁵_D +24.7 (*c* 1.0 in CHCl₃); ν_{max} (film) 3424 (O-H), 2936 (C-H), 2922 (C-H), 2865 (C–H), 2844 (C–H), 1790 (C_{Lactone}=O), 1702 (C_{Cbz}=O); δ_H (400 MHz, CDCl₃) 3.28 (s, 3H, C(7)H₃), 3.48 – 3.59 (m, 1H, C(5)H), 3.59 – 3.71 (m, 4H, C(3)H, C(3')H, C(6)H₂), 3.79 (t, J = 9.4 Hz, 1H, C(4)H), 3.93 (d, J = 3.4 Hz, 2H, C(2)H, C(5')H), 4.13 (s, 1H, C(4)H), 4.46 (t, J = 2.7 Hz, 1H, C(2')H), 4.61 (s, 4H, C(1)H, C(3)OCH₂Ph, C(3')OCH_APh), 4.71 (d, J = 10.8 Hz, 1H, C(3')OCH_BPh), 4.81 (d, J = 9.9 Hz, 1H, NH), 5.00 (q, J = 12.2 Hz, 2H, C(9)H₂), 5.34 (dd, J = 2.6, 1.3 Hz, 1H, C(1')H), 7.14 - 7.33 (m, 15H, *Ph*); δ_C (151 MHz, CDCl₃) 54.9 (*C*(2)), 55.4 (*C*(7)), 61.9 (*C*(6)), 67.2 (*C*(8)), 70.9 (C(5)), 71.3 (C(5')), 71.5 (C(4')), 72.7 (C(2')), 74.0, 74.2 (C(3)OCH₂Ph and C(3')OCH₂Ph), 77.5 (C(4)), 79.1 (C(3)), 81.2 (C(3')), 97.5 (C(1')), 99.1 (C(1)), 127.8 (Ph), 127.9 (Ph), 128.2 (Ph), 128.4 (Ph), 128.4 (Ph), 128.5 (Ph), 128.7 (Ph), 128.8 (Ph), 136.4 (Ph), 137.3 (Ph), 138.5 (Ph), 156.0

(*C*_{Cbz}=O), 167.7 (*C*_{Lactone}=O); *m*/*z* (ESI⁺) 688 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₃₅H₄₀NO_{12⁺} ([M+H]⁺) requires 666.2545; found 666.2544.

((2*R*,3*S*,4*R*,5*R*,6*S*)-4-(benzyloxy)-3-(((1*R*,3*R*,4*R*,7*S*,8*S*)-8-(benzyloxy)-7-hydroxy-6-oxo-2,5dioxabicyclo[2.2.2]octan-3-yl)oxy)-5-(((benzyloxy)carbonyl)amino)-6-methoxytetrahydro-2*H*-pyran-2-yl)methyl sulfamate (21)

CISO₂NH₂ (52.0 mg, 401 μ mol) in PhCH₃ (220 μ L) was added to a solution of **20** (150 mg, 225 μ mol) in DMF (1.35 mL) at -20 °C under N₂ and the reaction was stirred at -20 °C for 16 h. The reaction was quenched by addition of satd aq NaHCO₃ (5 mL) and extracted with EtOAc $(3 \times 5 \text{ mL})$. The combined organic layers were washed with ½ sat brine $(5 \times 5 \text{ mL})$, brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification via column chromatography (gradient elution, $0\% \rightarrow 60\%$ EtOAc in pentane) gave **21** as a white solid (111 mg, 66%); mp 164-167 °C; [α]_D²⁵ –3.5 (*c* 1.0 in CH₃OH); ν_{max} (film) 3378 (O–H), 2918 (C–H), 2877 (C–H), 2851 (C–H), 2838 (C–H), 1787 (C_{Lactone}=O), 1702 (C_{Cbz}=O); δ_H (400 MHz, MeOD) 3.4 (s, 3H, C(7)H₃), 3.7 – 3.8 (m, 5H, C(2)H, C(3)H, C(4)H, C(5)H, C(3')H), 4.0 (d, J = 3.5 Hz, 1H, C(2')H), 4.2 (dd, J = 10.9, 1.7 Hz, 1H, C(6) H_A), 4.3 (dd, J = 4.6, 3.5 Hz, 1H, C(5')H), 4.3 (dd, J = 11.0, 3.3 Hz, 1H, C(6) H_B), 4.6 (d, J = 3.5 Hz, 2H, C(1)H, C(3')OCH_A), 4.7 (s, 2H, C(3)OCH₂), 4.9 – 4.9 (m, 2H, C(5')H, C(3')OCH_B), 5.0 -5.1 (m, 2H, NHCOOCH₂Ph), 5.4 (dd, J = 2.7, 1.3 Hz, 1H, C(1')H), 7.2 - 7.5 (m, 15H, 3 × Ph); δ_{C} (101 MHz, MeOD) 55.8 (C(7)), 56.6 (C(2)), 67.7 (NHCOOCH₂Ph), 68.8 (C(6)), 69.9 (C(5)), 72.3 (C(4')), 72.9 (C(2')), 73.0 (C(3)OCH₂Ph), 73.6 (C(5')), 76.0 (C(3')OCH₂Ph), 80.2, 80.5 (C(3) and C(4)), 82.5 (C(3')), 100.2 (Ar), 100.5 (Ar), 128.5 (Ar), 128.9 (Ar), 129.0 (Ar), 129.0 (Ar), 129.2 (*Ar*), 129.4 (*Ar*), 129.5 (*Ar*), 139.2 (*Ar*), 139.9 (*Ar*), 158.6 (*C*_{Cbz}=O), 170.1 (*C*_{lactone}=O); *m/z* (ESI⁺) 767 ([M+Na]⁺, 100%); HRMS (ESI⁺) C₃₅H₄₁N₂O₁₄S⁺ ([M+H]⁺) requires 745.2273; found 745.2273.

Sodium (2*R*,3*S*,4*S*,5*R*,6*R*)-3,4,5-trihydroxy-6-(((2*R*,3*S*,4*R*,5*R*,6*S*)-4-hydroxy-6-methoxy-2-((sulfamoyloxy)methyl)-5-(sulfonatoamino)tetrahydro-2*H*-pyran-3-yl)oxy)tetrahydro-2*H*pyran-2-carboxylate (4)

(1) Hydrogenation. A suspension of 21 (100 mg, 0.134 mmol), Pd(OH)₂/C (20% wt, 200 mg) and cyclohexene (4 mL) in CH₃OH (10 mL) and H₂O (0.75 mL) was heated at 80 °C for 16 h. The reaction was filtered through a PTFE membrane filter and concentrated in vacuo to give 22 as a colourless gum (36 mg, 58%). (2) N-sulfation. SO₃·Py (12.0 mg, 71.0 µmol) was added portion-wise to a solution of 22 (30.0 mg, 65.0 μ mol) in H₂O (0.5 mL, pH 9-10) at rt and pH was readjusted after each portion by addition of 1 M NaOH. The reaction was stirred at rt for 16 h, concentrated in vacuo and purification via ion-paired reversed phase chromatography (gradient elution, $0 \rightarrow 100\%$ MeCN in triethylammonium bicarbonate (1 M)). The product containing fractions were concentrated *in vacuo* then eluted from a Dowex[®] 50X8 Na⁺-form column (eluent H₂O) and lyophilised to give **4** as a white solid (8 mg, 22%); mp 248–254 °C (dec.); $[\alpha]_D^{25}$ +36.1 (*c* 1.0 in CH₃OH); v_{max} (film) 3347 (br., O–H), 3066 (C–H), 3032 (C–H), 2917 (C–H), 2852 (C–H), 1675 (C=O); δ_H (600 MHz, D₂O) 3.35 (ddd, J = 10.4, 3.7, 1.3 Hz, 1H, C(2)*H*), 3.47 (d, J = 1.4 Hz, 3H, CH_3), 3.49 (ddd, J = 7.6, 6.1, 1.3 Hz, 1H, C(2')H), 3.66 – 3.70 (m, 1H, C(3')H), 3.72 (ddd, J = 10.4, 8.8, 1.3 Hz, 1H, C(3)H), 3.82 – 3.89 (m, 2H, C(4)H, C(4')H), 4.05 – 4.10 (m, 1H, C(5)H), 4.51 – 4.59 (m, 3H, C(6)H₂, C(5')H), 4.86 (dd, J = 6.2, 1.4 Hz, 1H, C(1')H), 5.09 (d, J = 3.4 Hz, 1H, C(1)*H*); δ_{C} (151 MHz, D₂O) 55.6 (*C*H₃), 57.6 (*C*(2)), 68.1 (*C*(6)), 68.2 (*C*(5)), 69.5 (C(3)), 71.1 (C(4)), 71.7 (C(5')), 71.8 (C(2')), 72.7 (C(3')), 77.5 (C(4')), 98.4 (C(1)), 100.8 (C(1')), 176.0 (C=O); HRMS (ESI⁻) C₁₃H₂₃N₂O₁₆S₂⁻([M-2Na+H]⁻) requires Exact Mass: 527.0494; found 527.0494.

(2*S*,3*R*,4*S*,5*R*,6*S*)-6-(acetoxymethyl)-4,5-bis(benzyloxy)-2-(((2*R*,3*S*,4*R*,5*R*,6*S*)-4-(benzyloxy)-5-(((benzyloxy)carbonyl)amino)-2-(((tert-butyldiphenylsilyl)oxy)methyl)-6methoxytetrahydro-2*H*-pyran-3-yl)oxy)tetrahydro-2*H*-pyran-3-yl benzoate (24)

16 (875 mg, 1.04 mmol) and 23 (synthesised according to literature procedures)⁶ (450 mg, 0.690 mmol) in CH₂Cl₂/Et₂O (1:4, 7 mL) were dried over 4 Å molecular sieves (700 mg) under N_2 for 1 h and the reaction was cooled to -4 °C and TMSOTf (50 μ L, 270 μ mol) was added dropwise. The reaction was stirred at 0 °C for 1 h before being quenched by addition of satd aq NaHCO₃ (4 mL). The reaction was filtered through Celite[®] and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. Purification via column chromatography (eluent acetone/pentane, 1:4) gave **24** as a white solid (757 mg, 96%); mp 59–61 °C; $[\alpha]_{25}^{D}$ +35.8 (*c* 1.0 in CHCl₃); v_{max} (film) 3066 (C–H), 3032 (C–H), 2931 (C–H), 2894 (C–H), 2858 (C–H), 1718 (C=O); δ_H (400 MHz, CDCl₃) 0.96 (s, 9H, C(CH₃)₃), 1.90 (s, 3H, C(7')H₃), 3.20 (s, 3H, C(7)H₃), 3.37 (t, J = 2.9 Hz, 1H, C(3')H), 3.50 (t, J = 9.7 Hz, 1H, C(3)H), 3.54 – 3.59 (m, 1H, C(5)H), 3.79 (d, J = 11.6 Hz, 1H, C(6)H_A), 3.85 – 3.89 (m, 2H, C(6)H_B, C(4')H), 3.90 (td, J = 10.1, 3.5 Hz, 1H, C(2)H), 4.07 (d, J = 6.3 Hz, 2H, C(6') H_2), 4.15 (t, J = 9.4 Hz, 1H, C(4)H), 4.26 (d, J = 11.5 Hz, 1H, C(3') OH_APh), 4.40 – 4.47 (m, 2H, C(3)OH_APh C(3')OH_BPh), 4.50 (dt, J = 7.9, 3.8 Hz, 1H, C(5')H), 4.56 – 4.60 (m, 2H, C(1)*H*, C(4')O*H*_APh), 4.69 (d, J = 9.9 Hz, 1H, N*H*), 4.71 – 4.79 (m, 2H, C(3)O*H*_APh, C(4')O*H*_BPh), 4.93 – 5.03 (m, 2H, C(8)H₂), 5.16 (s, 1H, C(2')H), 5.28 (s, 1H, C(1')H), 7.08 – 7.16 (m, 9H, Ar), 7.17 – 7.33 (m, 18H, Ar), 7.48 (td, J = 7.4, 1.4 Hz, 1H, Ar), 7.57 (d, J = 7.8 Hz, 2H, Ar), 7.65 (d, J = 7.3 Hz, 2H, Ar), 7.88 (d, J = 8.2 Hz, 2H, Ar); δ_{C} (176 MHz, CDCl₃) 19.5 (C(CH₃)₃), 21.0 (C(7')), 26.9 (C(CH₃)₃), 55.0 (C(7)), 55.3 (C(2)), 62.9 (C(6)), 63.4 (C(6')), 65.6 (C(5')), 67.0 (C(8)), 68.4 (C(2')), 72.1 (C(4')), 72.2 (C(3')OCH₂Ph), 72.2 (C(5)), 72.5 (C(4')OCH₂Ph), 73.2 (C(4)), 73.6 (C(3')), 75.2 (C(3)OCH₂Ph), 79.2 (C(3)), 96.8 (C(1')), 98.8 (C(1)), 127.3 (Ar), 127.5 (Ar), 127.6 (Ar), 127.8 (Ar), 127.9 (Ar), 128.0 (Ar), 128.1 (Ar), 128.2 (Ar), 128.3 (Ar), 128.4 (Ar), 128.4 (Ar), 128.4 (Ar), 128.5 (Ar), 128.6 (Ar), 129.6 (Ar), 129.6 (Ar), 129.7 (Ar), 130.1 (Ar), 133.3 (Ar), 133.4 (*Ar*), 133.8 (*Ar*), 135.8 (*Ar*), 136.1 (*Ar*), 136.5 (*Ar*), 137.7 (*Ar*), 137.7 (*Ar*), 137.8 (*Ar*), 138.7 (*Ar*), 156.0 (C_{Cbz} =O), 165.8 (C_{Bz} =O), 171.0 (C_{Ac} =O); m/z (ESI⁺) 1145 ([M+H]⁺, 100%); HRMS (ESI⁺) $C_{67}H_{73}NO_{14}NaSi^{+}$ ([M+Na]⁺) requires 1166.4693; found 1166.4638.

(2*S*,3*R*,4*S*,5*R*,6*S*)-6-(Acetoxymethyl)-4,5-bis(benzyloxy)-2-(((2*R*,3*S*,4*R*,5*R*,6*S*)-4-(benzyloxy)-5-(((benzyloxy)carbonyl)amino)-2-(hydroxymethyl)-6-methoxytetrahydro-2*H*-pyran-3yl)oxy)tetrahydro-2*H*-pyran-3-yl benzoate (25)

Acetic acid (100 μL, 1.75 mmol) and TBAF (1 M in THF, 1.65 mL, 1.65 mmol) were sequentially added to a solution of 24 (940 mg, 822 µmol) in THF (23.5 mL) at rt and the reaction was stirred at rt for 16 h. The reaction was quenched by addition of satd aq NaHCO₃ (20 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. Purification via column chromatography (gradient elution, $0\% \rightarrow 30\%$ acetone in pentane) gave **25** as a white solid (475 mg, 64%); mp 117–120 °C; [α]^D₂₅ +32.0 (*c* 1.0 in CHCl₃); ν_{max} (film) 3443 (OH), 3064 (CH), 3031 (CH), 2952 (CH), 2924 (CH), 1718 (C=O); δ_H (400 MHz, CDCl₃) 1.96 (s, 3H, C(7')H₃), 3.31 (s, 3H, C(7)H₃), 3.51 (t, J = 3.5 Hz, 1H, (C(4')H), 3.56 (dd, J = 10.4, 9.1 Hz, 1H, C(3)H), 3.64 (dt, J = 10.0, 3.2 Hz, 1H, C(5)H), 3.82 (d, J = 3.4 Hz, 2H, C(6)H₂), 3.87 – 3.97 (m, 3H, C(2)H, C(4)H, C(3')H), 4.14 (dd, J = 11.5, 4.9 Hz, 1H), 4.22 (dd, J = 11.5, 7.6 Hz, 1H), 4.37 (d, J = 11.6 Hz, 1H, C(4')OCH_APh), 4.43 – 4.52 (m, 2H, C(5')H, $C(3)OCH_APh$), 4.55 (d, J = 11.5 Hz, 1H, $C(4')OCH_BPh$), 4.61 – 4.67 (m, 2H, C(1)H, C(3')OCH_APh), 4.69 (d, J = 9.6 Hz, 1H), 4.75 – 4.87 (m, 2H, C(3)OCH_BPh, C(3')OCH_BPh), 5.01 (s, 2H, C(8) H_2), 5.20 (d, J = 3.1 Hz, 2H, C(1')H, C(2')H), 7.13 – 7.39 (m, 22H, 4 × Ph, 2 × C(9')H), 7.49 – 7.57 (m, 1H, C(10')H), 7.89 – 8.00 (m, 2H, 2 × C(8')H); δ_{C} (151 MHz, CDCl₃) 21.1 (C(7')), 55.1 (*C*(2)), 55.3 (*C*(7)), 61.7 (*C*(6)), 63.0 (*C*(6')), 66.7 (*C*(5')), 67.0 (*C*(8)), 69.2 (*C*(5)), 71.7 (*C*(2')), 72.5 (C(4')OCH₂Ph), 73.0 (C(3')OCH₂Ph), 73.0 (C(3')), 74.1 (C(4')), 74.7 (C(4)), 75.1 (C(3)OCH₂Ph), 78.9 (C(3)), 97.4 (C(1')), 99.1 (C(1)), 127.5 (Ar), 128.0 (Ar), 128.0 (Ar), 128.1 (Ar), 128.2 (Ar), 128.2 (Ar), 128.3 (Ar), 128.3 (Ar), 128.4 (Ar), 128.5 (Ar), 128.5 (Ar), 128.6 (Ar), 128.6 (Ar), 129.6 (Ar), 130.1 $(2 \times C(8'))$, 133.4 (C(10')), 136.5 (i-Ph), 137.6 (i-Ph), 137.7 (i-Ph), 138.5 (*i-Ph*), 155.9 (C_{Cbz} =O), 165.9 (C_{Bz} =O), 171.1 (C_{Ac} =O); *m*/*z* (ESI⁺) 928 ([M+Na]⁺, 100%); HRMS (ESI⁺) $C_{51}H_{55}NNaO_{14}^+$ ([M+Na]⁺) requires 928.3515; found 928.3509.

((2*R*,3*S*,4*R*,5*R*,6*S*)-4-(Benzyloxy)-5-(((benzyloxy)carbonyl)amino)-3-(((2*S*,3*R*,4*R*,5*R*,6*S*)-4,5bis(benzyloxy)-3-hydroxy-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)-6methoxytetrahydro-2*H*-pyran-2-yl)methyl sulfamate (28)

(1) 60-sulfamoylation. Sulfamoyl chloride (490 mg, 4.28 mmol) was added to a solution of 25 (2.30 g, 2.14 mmol) in DMF (10 mL) at 0 °C and the reaction was stirred at rt for 16 h. The reaction was quenched by addition of $\frac{1}{2}$ sat brine (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with ½ sat brine (5 × 5 mL), brine, dried over Na₂SO₄ and concentrated in vacuo. Purification via column chromatography (gradient elution, $0\% \rightarrow 30\%$ acetone in pentane) gave **26** as a white solid (2.12 g, 85%). (2) Ester deprotection. NaOCH₃ (125 mg, 2.27 mmol) was added to a solution of **26** (1.33 g, 1.36 mmol) in CH₃OH (11 mL) at 0 °C and the reaction was stirred at rt for 16 h. The reaction was guenched by addition of Amberlite IR-120 (2 g), filtered and concentrated in vacuo to give 27 that was used without further purification (1.07 g, 94%). (3) Lactone formation. TEMPO (29 mg, 187 μ mol) and (bisacetoxy)iodobenzene (723 mg, 2.25 mmol) were consecutively added to a solution of 27 (960 mg, 936 µmol) in CH₂Cl₂/H₂O (2:1, 15.6 mL) at rt and the reaction was stirred vigorously for 16 h. The reaction was diluted with EtOAc (20 mL) and washed with 10% aq Na₂S₂O₃ (20 mL), satd aq NaHCO₃ (20 mL), brine, then dried over Na₂SO₄ and concentrated in vacuo. Purification via column chromatography (eluent acetone/pentane, 3:7) gave 28 as a white solid (925 mg, 96%); mp 80–82 °C; $[\alpha]_{25}^{D}$ +2.5 (*c* 1.0 in CHCl₃); v_{max} (film) 3370 (br., N–H), 3033 (C–H), 2936 (C–H), 1789 (C=O), 1715 (C=O), 1518 (N–H), 1454 (S=O), 1369 (S=O); δ_H (400 MHz, $CDCI_3$) 3.33 (s, 3H, C(7)H₃), 3.66 – 3.79 (m, 2H, C(3)H, C(5)H), 3.81 (d, J = 9.4 Hz, 1H, C(4)H), 3.87 (ddd, J = 4.4, 3.0, 1.2 Hz, 1H, C(3')H), 3.99 (td, J = 9.9, 3.5 Hz, 1H, C(2)H), 4.07 (t, J = 4.0 Hz, 1H, C(4')H), 4.22 (d, J = 11.1 Hz, 1H, C(6) H_A), 4.29 (d, J = 3.3 Hz, 1H, C(5')H), 4.35 – 4.42 (m, 1H, C(6) H_B), 4.43 (d, J = 11.8 Hz, H, C(4')O H_A Ph), 4.55 (d, J = 1.7 Hz, 1H, C(4')O H_B Ph), 4.57 –

4.61 (m, 3H, C(3)OH_APh, C(3')OH₂Ph), 4.62 – 4.64 (m, 1H, C(2')H), 4.67 (d, J = 3.5 Hz, 1H, C(1)H), 4.76 (d, J = 10.7 Hz, 1H, C(3)OH_BPh), 4.89 (d, J = 9.9 Hz, 1H, NH), 4.97 (s, 2H, SO₂NH₂), 5.01 – 5.11 (m, 2H, C(8)H₂), 5.42 (s, 1H, C(1')H), 7.13 – 7.43 (m, 2OH, $4 \times Ph$); δ_{C} (151 MHz, CDCl₃) 54.7 (*C*(2)), 55.7 (*C*(7)), 67.3 (*C*(8)), 68.7 (*C*(5')), 68.8 (*C*(5)), 68.9 (*C*(6)), 71.8 (*C*(4')), 72.2 (*C*(2')), 72.6 (C(3')OCH₂Ph), 74.5 (C(3)OCH₂Ph), 77.2 (*C*(4)), 77.9 (*C*(4')), 78.7 (*C*(3)), 80.0 (*C*(3')), 97.9 (*C*(1')), 99.1 (*C*(1)), 128.0 (*Ph*), 128.0 (*Ph*), 128.1 (*Ph*), 128.3 (*Ph*), 128.4 (*Ph*), 128.4 (*Ph*), 128.4 (*Ph*), 128.6 (*Ph*), 128.7 (*Ph*), 136.2 (*i*-*Ph*), 137.0 (*i*-*Ph*), 137.1 (*i*-*Ph*), 137.9 (*i*-*Ph*), 156.0 (*C*_{Cbz}=O), 167.5 (*C*_{lactone}=O); *m/z* (ESI⁺) 835 ([M+H]⁺, 100%); HRMS (ESI⁺) C₄₂H₄₇N₂O₁₄S⁺ ([M+H]⁺) requires 835.2720; found 835.2738.

Sodium (2*R*,3*R*,4*S*,5*S*,6*R*)-4,5-bis(benzyloxy)-2-(((2*R*,3*S*,4*R*,5*R*,6*S*)-4-(benzyloxy)-5-(((benzyloxy)carbonyl)amino)-6-methoxy-2-((sulfamoyloxy)methyl)tetrahydro-2*H*-pyran-3-yl)oxy)-6-carboxytetrahydro-2*H*-pyran-3-yl sulfate (29)

(1) Lactone hydrolysis. LiOH (1 M aq, 1.65 mL, 1.65 mmol) was added to **28** (230 mg, 276 μ mol) in THF (15 mL) and stirred at rt for 1 h. The reaction was neutralised by addition of Dowex[®] 50WX4-200R acidic resin, filtered and concentrated *in vacuo*. (2) *O*-Sulfation. The residue was dissolved in DMF (3.45 mL) under N₂ and sulfur trioxide-pyridine complex (263 mg, 1.65 mmol) was added. The reaction was heated at 60 °C for 18 h. The reaction was quenched by addition of NaHCO₃ (800 mg) and H₂O (1 mL), and was stirred at rt for 1 h. The reaction was concentrated *in vacuo* and the residue was azeotroped with H₂O (2 × 15 mL), then PhMe (1 × 15 mL). Purification via column chromatography (eluent, EtOAc/IPA/H₂O = 82:16:2) gave **29** as a white solid (178 mg, 66% over two steps); mp 87-89 °C; [α]^D₂₅ +23.2 (*c* 1.0 in CH₃OH); v_{max} (film) 3437 (O–H), 3064 (C–H), 3033 (C–H), 2954 (C–H), 1714 (C_{carbamate}=O), 1615 (C_{carboxylate}=O), 1517 (C_{carbamate}=O), 1455 (S_{sulfate}=O), 1368 (S_{sulfamate}=O), ; δ_{H} (400 MHz, MeOD) 3.38 (s, 3H, C(7)H₃), 3.64–3.84 (m, 3H, C(2)H, C(3)H, C(4)H), 3.88–3.96 (m, 1H, C(5)H), 4.05 (s, 1H, C(3')H), 4.20 (t, J = 2.5 Hz, 1H, C(4')H), 4.33 (dd, J = 11.1, 5.9 Hz, 1H, C(6)H_A), 4.44 – 4.56 (m, 3H, C(6)H_B, C(6')H_A, C(9)H_A), 4.57 (d, J = 3.5 Hz, 1H, C(1)H), 4.62 – 4.71 (m, 3H,

C(2')*H*, C(6')*H*_B, C(7')*H*_A), 4.78 (t, J = 11.4 Hz, 2H, C(7')*H*_B, C(9')*H*_B), 4.90 (d, J = 1.9 Hz, 1H, C(5')*H*), 4.92 – 5.03 (m, 2H, C(8)*H*₂), 5.36 (s, 1H, C(1')*H*), 7.11 – 7.37 (m, 16H, *Ar*), 7.37 – 7.47 (m, 4H, *Ar*); δ_{C} (126 MHz, MeOD) 55.7 (*C*(7)), 56.9 (*C*(2)), 67.7 (*C*(8)), 69.6 (*C*(6)), 71.1 (*C*(5')), 71.2 (*C*(5)), 71.8 (*C*(2')), 72.6 (*C*(4')), 72.9 (*C*(7')), 73.6 (*C*(6')), 76.1 (*C*(3')), 77.2 (*C*(9)), 78.6 (*C*(3)), 80.4 (*C*(4)), 100.1 (*C*(1)), 101.0 (*C*(1')), 128.6 (*Ar*), 128.8 (*Ar*), 128.9 (*Ar*), 129.0 (*Ar*), 129.0 (*Ar*), 129.0 (*Ar*), 129.3 (*Ar*), 129.4 (*Ar*), 129.4 (*Ar*), 129.6 (*Ar*), 130.0 (*Ar*), 138.0 (*i*-*Ph*), 138.7 (*i*-*Ph*), 139.0 (*i*-*Ph*), 139.3 (*i*-*Ph*), 158.4 (*C*_{Cbz}=O), 176.3 (*C*_{Acid}=O); *m/z* (ESI⁻) 931 (100%, [M–Na]⁻); HRMS (ESI⁻) C₄₂H₄₇N₂O₁₈S₂⁻ ([M–Na]⁻) requires 931.2271; found 931.2266.

Sodium (2*R*,3*S*,4*S*,5*R*,6*R*)-3,4-dihydroxy-6-(((2*R*,3*S*,4*R*,5*R*,6*S*)-4-hydroxy-6-methoxy-2-((sulfamoyloxy)methyl)-5-(sulfonatoamino)tetrahydro-2*H*-pyran-3-yl)oxy)-5-(sulfonatooxy)tetrahydro-2*H*-pyran-2-carboxylate (5)

(1) Global deprotection. Pd(OH)₂/C (120 mg) was added to a solution of **29** (160 mg, 171 μ mol) in phosphate buffer (20 mM, pH = 7.0)/CH₃OH (17 mL, 1:9) under N₂. The reaction flask was evacuated and back filled with N₂ (× 3) before being put under an atmosphere of H₂ and the reaction was stirred at rt for 16 h. The reaction was filtered through celite and concentrated *in vacuo*. (2) *N*-Sulfation. The crude residue was dissolved in H₂O (3 mL), and the solution was adjusted to pH 9-10 by addition of 2 N NaOH (aq). Sulfur trioxide-pyridine complex (40.0 mg, 257 µmol) was added in four equal portions in half-hour intervals at rt, and the pH value was re-adjusted to pH 9-10 using of 2 N NaOH(aq) after each addition. The reaction was stirred at rt for 3 h, then concentrated *in vacuo* and purification via column chromatography on Sephadex G-25 (eluent H₂O), followed by a column of DOWEX 50WX8-Na⁺ (eluent H₂O) gave **5** as a white solid (45 mg, 39%); mp 269–277 °C (dec.); [α]_D²⁵+ 13.2 (*c* 1.0 in H₂O); v_{max} (film) 3348 (br. O–H), 2918 (C–H), 2852 (C–H), 1676 (C_{carboxylate}=O), 1365 (S=O), 1180 (S=O); $\delta_{\rm H}$ (400 MHz, D₂O) 3.28 (dd, J = 10.2, 3.6 Hz, 1H, C(2)*H*), 3.42 (s, 3H, C(7)*H*₃), 3.68 (dd, J = 10.2, 8.8 Hz, 1H, C(3)*H*), 3.75 (t, J = 9.4 Hz, 1H, C(4)*H*), 3.97 (t, J = 3.7 Hz, 2H, C(5)*H*,

C(4')*H*), 4.00 – 4.07 (m, 1H, C(3')*H*), 4.25 (ddd, J = 4.2, 2.6, 0.8 Hz, 1H, C(2')*H*), 4.36 (d, J = 3.1 Hz, 2H, C(6)*H*₂), 4.6 – 4.7 (m, 1H, C(5')*H*) 5.02 (d, J = 3.6 Hz, 1H, C(1)*H*), 5.15 (d, J = 2.6 Hz, 1H, C(1')*H*); $\delta_{\rm C}$ 13C NMR (151 MHz, D₂O) 55.5 (*C*(7)), 57.8 (*C*(2)), 67.1 (*C*(6)), 68.4 (*C*(5)), 69.3 (*C*(5')), 69.3 (*C*(4')), 69.5 (*C*(3')), 69.8 (*C*(3)), 75.0 (*C*(2')), 77.8 (*C*(4)), 98.3 (*C*(1)), 99.3 (*C*(1')), 176.1 (*C*=O); *m/z* (ESI⁺) 675 (100%, [M–H]⁻); HRMS (ESI⁻) C₁₃H₂₃N₂O₁₉S₃⁻ ([M–3Na+2H]⁻) requires 607.0063; found 607.0055.

2,2,2-trichloroethyl (3'-(sulfamoyloxy)-[1,1'-biphenyl]-3-yl)sulfamate (11)

Compound **11** was synthesised according to the route described by Reuillon et al; $\delta_{\rm H}$ (400 MHz, CDCl₃) δ 7.54 – 7.40 (m, 6H), 7.37 – 7.32 (m, 1H), 7.30 – 7.26 (m, 1H), 6.85 (s, 1H), 4.99 (s, 2H), 4.69 (s, 2H); *m/z* (ESI⁻) 473 (95%, [M(³⁵Cl)₃–H]⁻, 475 (100%, [M(³⁵Cl)(³⁷Cl)₂–H]⁻), 479 (9%, [M(³⁹Cl)₂–H]⁻). Characterisation data are consistent with the literature.⁷

Biological assay protocols

HSulf-2 activity assay

HSulf-2 was expressed, isolated and purified following a protocol by Seffouh et al.⁸ Sulfatase activity was monitored by the hydrolysis of 4-MUS to fluorescent methylumbelliferone (4MU, λ_{Ex} 360 nm, λ_{Em} 460 nm), and compounds were screened for the inhibition of 4-MUS hydrolysis in the presence of HSulf-2 according to a protocol described by Seffouh et al.⁸ Assays were performed in white 96-well plates (Corning). HSulf-2 (160 ng/µL) activity was measured by using 4-MUS (10 mM) in assay buffer (50 mM Tris base, 10 mM MgCl₂, (pH 7.5)) in the absence or presence of inhibitors. Experiments were incubated at 37 °C for 4 h, then quenched by addition of an equal volume of 1M Tris base (pH 11.5) and analysed on a fluorescence plate reader (Fusion, Perkin–Elmer). Inhibition is reported as a percentage of the uninhibited control: % activity=[rate with inhibitor/rate control×100]; and % Inhibition=[100–% activity]. All values represent an average of two or more independent measurements.

Sulfatase from A. aerogenes activity assay

Compounds were screened in a 96-well white plate (Corning) using 4-MUS as a substrate. Assays were performed in white 96-well plates (Corning). Sulfatase from Aerobacter aerogenes (Sigma Aldrich, S1629) (172 ng/ μ L) activity was measured by using 4-MUS (10 mM) in assay buffer (50 mM Tris base, 10 mM MgCl₂, (pH 7.5)) in the absence or presence of inhibitors. Experiments were incubated at 37 °C for 1 h, then quenched by addition of an equal volume of 1M Tris base (pH 11.5) and analysed on a fluorescence plate reader (Fusion, Perkin–Elmer). Inhibition is reported as a percentage of the uninhibited control: % activity=[rate with inhibitor/rate control×100]; and % Inhibition=[100–% activity]. All values represent an average of two or more independent measurements.

Determination of IC₅₀ value for compound 5 against HSulf-2

Percentage inhibition was plotted against logarithmic inhibitor concentration (M) using the non-linear sigmoidal dose-response curve described by the equation below using Prism 4 software (GraphPad), with constraining curve fit parameters set to reflect minimum and maximum inhibition values (set to 0 and 100 % inhibition, respectively).

$$Y = Bottom + (Top - Bottom)/(1 + 10^{((X - LogIC50)))}$$

Figure S1. Determination of IC₅₀ value for compound **5** against HSulf-2. **(A)** IC₅₀ curve for compound **5**. **(B)** Experimental data given as the mean of %Inhibition at different concentrations of compound **5** (given as log[**5**] (M)) and standard deviation (SD) based on two replicates (N). **(C)** Best -fit values and 95% confidence intervals.

References

- 1. M. Schelwies, D. Brinson, S. Otsuki, Y. H. Hong, M. K. Lotz, C. H. Wong and S. R. Hanson, *Chembiochem*, 2010, **11**, 2393-2397.
- 2. D. C. Miller, B. Carbain, G. S. Beale, S. F. Alhasan, H. L. Reeves, U. Baisch, D. R. Newell, B. T. Golding and R. J. Griffin, *Org. Biomol. Chem.*, 2015, **13**, 5279-5284.
- 3. H. Saito, Y. Nishimura, S. Kondo and T. Takeuchi, *Chemistry Letters*, 1988, 1235-1238.
- 4. J. C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, G. Torri and P. Sinay, *Carbohydrate Research*, 1984, **130**, 221-241.
- 5. T. H. Li, H. Ye, X. F. Cao, J. J. Wang, Y. H. Liu, L. F. Zhou, Q. Liu, W. J. Wang, J. Shen, W. Zhao and P. Wang, *Chemmedchem*, 2014, **9**, 1071-1080.
- 6. Y. P. Hu, S. Y. Lin, C. Y. Huang, M. M. L. Zulueta, J. Y. Liu, W. Chang and S. C. Hung, *Nature Chemistry*, 2011, **3**, 557-563.
- 7. T. Reuillon, S. F. Alhasan, G. S. Beale, A. Bertoli, A. Brennan, C. Cano, H. L. Reeves, D. R. Newell, B. T. Golding, D. C. Miller and R. J. Griffin, *Chemical Science*, 2016, **7**, 2821-2826.
- 8. E. M. R. Seffouh A, Makshakova O, Gout E, Hassoun ZEO, Andrieu JP, Lortat-Jacob H, Vivès RR, *Cellular and Molecular Life Sciences*, 2019, **9**, 1807-1819.

NMR spectra

