Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Supporting Information

An efficient Selectfluor-mediated condensation of indoles and anthranilates for synthesis of indoloquinazolinones

Xinzhe Wang, Zhipeng Wu, Guogang Tu, Yuanyue Zhao, Xiaodong Xiong*

School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China E-mail: xiongxd@ncu.edu.cn

Table of contents

S2-S5	Experimental procedures
S5-S26	Physical data
S26	References
S27-S101	¹ H and ¹³ C NMR Spectra

(A) General information

Commercially available reagents were used directly without further purification. For others, we prepared them in suitable reaction conditions. NMR spectra were recorded on a Brucker ADVANCE III 400MHz spectrometer (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz). Chemical shifts (δ) were reported in ppm relative to CDCl₃ (δ 7.26) for the ¹H NMR and to CDCl₃ (δ 77.16) for the ¹³C NMR measurements. Mass spectra were recorded on Therno Finnigan MAT 95 XL spectrometer and Bruker solariX 9.4 Tesla FTICR spectrometer. GC/MS analysis was conducted on a Shimadzu GCMSQP2010 instrument equipped with a Restec-5HT column (30 m × 0.25 mm, Hewlett-Packard). IR spectra were recorded on a PerkinElmer FT-IR spectrophotometer and reported in terms of wavenumber of absorption (cm⁻¹). Flash column chromatography was performed on 300-400 mesh silica gel from Qingdao Haiyang Chemical Co., Ltd. Reactions were monitored by thin-layer chromatography (TLC) using 254 nm UV light to visualize the progress of the reactions.

(B) General Procedure for the Preparation of Indologuinazolinone 3

To a stirred solution of indole 1 (0.25 mmol, 1.0 eq), aniline 2 (0.5 mmol, 2.0 eq), NaHCO₃ (0.75 mmol, 3.0 eq) and 4Å MS (100 mg) in CH₃CN (1 mL) were added selectfluor (0.38 mmol, 1.5 eq). The reaction mixture was stirred at room temperature for 5 h. Upon completion, the reaction was quenched with saturated aqueous Na₂SO₃ (30 mL). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to yield **3**.

(C) General Procedure for the Intermolecular Solvolytic Coupling of Indoloquinazolinone 3a with Various Nucleophiles

To a stirred solution of indoloquinazolinone 3a (0.1 mmol, 1.0 eq) in the indicated solvent (2 mL) were added nucleophile (0.2 mmol, 2.0 eq). The reaction mixture was stirred at indicated temperature. Upon completion, the reaction mixture was diluted with dichloromethane (20 mL), and washed with brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to yield the corresponding products 4-23.

(D) General Procedure for Synthesis of Phaitanthrin A

To a stirred solution of indoloquinazolinone 3k (0.1 mmol, 1.0 eq) and K₂CO₃ (0.15 mmol, 1.5 eq) in DCM (2 mL) were added CF₃COOH (1.0 mmol, 1.0 eq). The reaction mixture was stirred at 25 °C for 24 h. Upon completion, the reaction mixture was diluted with dichloromethane (20 mL), and washed with brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 2:1) to provide phaitanthrin A 24 (18.4 mg, 60%).

(E) General Procedure for Synthesis of Phaitanthrin B, Cephalanthrin A and Cruciferane

- 1) To a stirred solution of indoloquinazolinone **31** (0.3 mmol, 1.0 eq) in DCM/H₂O (10 mL, v/v 10/1) were added CF₃COOH (3.0 mmol, 10.0 eq). The reaction mixture was stirred at 60 °C for 12 h. Upon completion, the reaction mixture was diluted with ethyl acetate (30 mL), and washed with brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 1:1) to provide phaitanthrin B **25** (87.9 mg, 91%).
- 2) To a stirred solution of phaitanthrin B (0.1 mmol, 1.0 eq) in MeOH (4 mL) were added 20% NaOH aqueous (0.15 mmol, 1.5 eq). The reaction mixture was stirred at 0 °C for 1 h. Upon completion, the reaction was quenched with 2N HCl (4 mL),

and the mixture was extracted with ethyl acetate (3 x 10mL), washed with brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 2:1) to provide cephalanthrin A **26** (29.6 mg, 96%).

3) To a stirred solution of phaitanthrin B (0.1 mmol, 1.0 eq) in MeOH/CHCl₃ (2 mL, v/v 1/1) was added NaBH₄ (0.2 mmol, 2.0 eq) in small portions at 25 °C. The reaction mixture was stirred at 25 °C for 6 h. Upon completion, the reaction mixture was quenched with 2N HCl (1 mL). The reaction mixture was concentrated in vacuo and the obtained residue was dissolved in ethyl acetate (20 mL), and washed with brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 1:1) to provide cruciferane 27 (19.9 mg, 68%).

(F) Preliminary mechanistic study

To gain a clearer picture on the mechanism, radical capture experiment was conducted. Introducing the radical scavenger butylated hydroxytoluene (BHT) into this Selectfluor mediate fluorocyclization of 1a with 2a under standard conditions provided 3a in 69% yield. This result suggests the involvement of radical pathway was impossible. The indole 28, which protected by methyl group, was examined. It was found that the intermolecular fluorination gave compound 29 in 18% yield and compound 30 in 72% yield, suggesting that fluorinated intermediate was unstable which subsequently underwent the defluorination, oxidation and nucleophilic substitution.

(G) X-ray diffraction data of 3a (CCDC 2245917)

(H) Analytical Data

6-fluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3a)

White solid. $R_f = 0.50$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.07 (d, J = 20.8 Hz, 3H), 7.39 (t, J = 7.6 Hz, 1H), 7.54-7.60 (m, 2H), 7.64-7.67 (m, 1H), 7.81 (dt, J = 1.6, 7.6 Hz, 1H), 7.87 (dd, J = 1.2, 8.4 Hz, 1H), 8.41 (dd, J = 1.6, 8.0 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 156.3, 156.1, 147.1 (2), 139.4 (2), 134.8, 132.0 (2), 129.4, 129.2, 128.5 (2), 128.3, 127.2 (2), 127.1, 124.3 (2), 122.6 (2), 117.5 (2), 94.5, 92.7, 23.1, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.2 (q, J = 20.8 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₂FN₂O m/z [M+H]⁺: 267.0928, found: 267.0932.

6-chloro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (4)

White solid. $R_f = 0.50$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 3H), 7.41 (dt, J = 1.2, 7.6 Hz, 1H), 7.52 (dt, J = 1.6, 8.0 Hz, 1H), 7.58 (dt, J = 1.6, 7.2 Hz, 1H), 7.66 (dd, J = 1.2, 7.6 Hz, 1H), 7.82 (dt, J = 1.2, 6.8 Hz, 1H), 7.88 (dd, J = 1.2, 8.0 Hz, 1H), 8.43 (dd, J = 1.6, 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 159.0, 147.3, 138.0, 134.8, 133.1, 131.0, 128.3, 128.0, 127.3, 127.2, 123.9, 122.1, 117.5, 64.7, 28.2. HRMS (ESI) calcd for C₁₆H₁₂ClN₂O m/z [M+H]⁺: 283.0633, found: 283.0635.

6-fluoro-6-octylindolo[2,1-b]quinazolin-12(6H)-one (3b)

Pale yellow oil. $R_f = 0.40$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, J = 6.8 Hz, 3H), 1.12-1.28 (m, 12H), 2.37-2.58 (m, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.54-7.63 (m, 3H), 7.81 (dt, J = 1.6, 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 8.42 (dd, J = 1.6, 8.0 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 156.1, 155.9, 147.2, 147.1, 140.1, 140.0, 134.7, 131.9 (2), 128.6, 128.5, 128.3 (2), 128.2, 127.2, 127.1, 127.0, 124.6, 122.6, 117.5, 97.2, 95.3, 36.5, 36.2, 31.8, 29.5, 29.2, 29.1, 23.1 (2), 22.7, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ –141.0 (t, J = 12.2 Hz, 1F). HRMS (ESI) calcd for C₂₃H₂₆N₂OF m/z [M+H]⁺: 365.2024, found: 365.2028.

6-(cyclopropylmethyl)-6-fluoroindolo[2,1-b]quinazolin-12(6H)-one (3c)

White solid. $R_f = 0.30$ (PE:DCM = 1:1); ¹H NMR (400 MHz, CDCl₃) δ -0.04-0.08 (m, 2H), 0.17-0.42 (m, 3H), 2.25-2.33 (m, 1H), 2.56-2.63 (m, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.55-7.60 (m, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.81 (dt, J = 1.6, 7.2 Hz, 1H), 7.87 (dd, J = 1.2, 8.0 Hz, 1H), 8.43 (dd, J = 1.6, 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 156.5, 156.3, 147.1 (2), 140.2, 140.1, 134.7, 131.9 (2), 128.6, 128.5, 128.4, 128.2, 127.2, 126.9 (2), 125.0, 122.5, 117.4, 97.3, 95.4, 41.1, 40.8, 5.0, 4.9, 4.4, 4.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -141.2 (t, J = 10.5 Hz, 1F). HRMS (ESI) calcd for C₁₉H₁₆N₂OF m/z [M+H]⁺: 307.1241, found: 307.1245.

6-benzyl-6-fluoroindolo[2,1-b]quinazolin-12(6H)-one (3d)

Yellow solid. $R_f = 0.30$ (PE:DCM = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 3.54 (dd, J = 6.8, 13.6 Hz, 1H), 3.92 (dd, J = 4.0, 9.6 Hz, 1H), 7.03 (d, J = 6.8 Hz, 2H), 7.10-7.17 (m, 3H), 7.21-7.24 (m, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.47-7.51 (m, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.84 (dt, J = 1.6, 7.6 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 8.39 (dd, J = 1.2, 7.6 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 155.9, 155.7, 147.0 (2), 139.9 (2), 134.8, 132.6 (2), 131.9 (2), 130.8, 128.5, 128.4, 128.3,

127.6, 127.5, 127.4, 127.2, 126.6 (2), 125.6, 122.5, 117.3, 96.6, 94.7, 43.0, 42.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –142.3 (q, *J*= 9.9 Hz, 1F). HRMS (ESI) calcd for C₂₂H₁₆N₂OF *m/z* [M+H]⁺: 343.1241, found: 343.1236.

2-(6-fluoro-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)ethyl acetate (3e) Pale yellow solid. $R_f = 0.30$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.59 (s, 3H), 2.74-2.83 (m, 1H), 2.95-3.05 (m, 1H), 3.92-3.98 (m, 1H), 4.22-4.29 (m, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.56-7.64 (m, 3H), 7.81 (dt, J = 1.6, 6.8 Hz, 1H), 7.87 (dd, J = 1.2, 8.4 Hz, 1H), 8.42 (dd, J = 1.6, 8.0 Hz, 1H), 8.57 (dd, J = 0.8, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 159.3, 155.5, 155.3, 147.0 (2), 140.1 (2), 134.9, 132.4 (2), 128.6, 128.5 (2), 127.4, 127.2, 127.1 (2), 124.8 (2), 122.5 (2), 117.6 (2), 95.7, 93.8, 77.5, 77.2, 76.8, 59.2, 59.1, 35.3, 35.0, 20.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -140.2 (t, J = 11.3 Hz, 1F). HRMS (ESI) calcd for C₁₉H₁₆N₂O₃F m/z [M+H]⁺: 339.1139, found: 339.1137.

2-(6-fluoro-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)ethyl benzoate (3f) Brown solid. $R_f = 0.20$ (PE:DCM = 1:2); ¹H NMR (400 MHz, CDCl₃) δ 2.85-2.94 (m, 1H), 3.19-3.29 (m, 1H), 4.14-4.21 (m, 1H), 4.48-4.54 (m, 1H), 7.08 (t, J = 7.8 Hz, 1H), 7.32-7.39 (m, 2H), 7.48-7.57 (m, 4H), 7.65 (d, J = 7.2 Hz, 1H), 7.72-7.79 (m, 2H), 8.31 (dd, J = 1.6, 7.8 Hz, 1H), 8.53 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 159.22, 155.6, 155.4, 147.0 (2), 140.2 (2), 134.7, 133.0, 132.4 (2), 129.3, 129.1, 128.5 (2), 128.2, 128.1, 127.2 (2), 127.1 (2), 127.0, 124.8 (2), 122.5 (2), 117.7 (2), 95.9, 94.1, 77.5, 77.2, 76.8, 59.9, 59.8, 35.2, 34.9. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.0 (t, J = 10.5 Hz, 1F). HRMS (ESI) calcd for C_{24H18}N₂O₃F m/z [M+H]⁺: 401.1296, found: 401.1299.

6-(2-((tert-butyldimethylsilyl)oxy)ethyl)-6-fluoroindolo[2,1-b]quinazolin-12(6H)one (3g)

Brown oil. $R_f = 0.30$ (PE:DCM = 1:1); ¹H NMR (400 MHz, CDCl₃) δ -0.38 (s, 3H), -0.35 (s, 3H), 0.54 (s, 9H), 2.56-2.65 (m, 1H), 3.02-3.11 (m, 1H), 3.39-3.46 (m, 1H), 3.67-3.73 (m, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.54-7.62 (m, 3H), 7.80 (dt, J = 1.6, 6.8 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 8.42 (dd, J = 1.6, 8.0 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 156.5, 156.3, 147.2 (2), 140.4 (2), 134.6, 132.0 (2), 128.5, 128.4, 128.0, 127.6, 127.4, 127.0, 126.8 (2), 124.9 (2), 122.6 (2), 117.6 (2), 96.7, 94.9, 58.8, 58.7, 38.8, 38.5, 25.7, 18.1, -5.9 (2). ¹⁹F NMR (376 MHz, CDCl₃) δ -139.0 (q, J = 6.8 Hz, 1F). HRMS (ESI) calcd for C₂₃H₂₈FN₂O₂Si m/z [M+H]⁺: 411.1899, found: 411.1896.

6-fluoro-6-(2-methoxyethyl)indolo[2,1-b]quinazolin-12(6H)-one (3h)

White solid. $R_f = 0.20$ (PE:DCM = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 1.58 (s, 3H), 2.74-2.83 (m, 1H), 2.96-3.05 (m, 1H), 3.90-3.96 (m, 1H), 4.22-4.28 (m, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.57-7.65 (m, 3H), 7.21 (dt, J = 1.6, 7.6 Hz, 1H), 7.87 (dd, J = 1.2, 8.0 Hz, 1H), 8.42 (dd, J = 1.6, 8.0 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 159.3, 155.5, 155.3, 147.0, 146.9, 140.1, 140.0, 134.9, 132.4 (2), 128.5 (3), 127.3, 127.2 (2), 127.1 (2), 124.8 (2), 122.5, 117.6 (2), 95.7, 93.8, 59.2 (2), 35.3, 35.0, 20.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -140.2 (t, J = 10.9 Hz, 1F). HRMS (ESI) calcd for C₁₈H₁₆FN₂O₂ m/z [M+H]⁺: 311.1190, found: 311.1194.

6-(2-bromoethyl)-6-fluoroindolo[2,1-b]quinazolin-12(6H)-one (3i)

Brown solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.84-2.96 (m, 1H), 3.08-3.19 (m, 1H), 3.41-3.48 (m, 1H), 3.63-3.69 (m, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.58-7.64 (m, 3H), 7.81-7.88 (m, 2H), 8.42 (d, J = 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 154.8, 154.7, 146.9, 146.8, 140.0 (2), 134.9, 132.6 (2), 128.7, 128.6, 127.2 (2), 127.0, 124.7, 122.6, 117.7, 95.8, 93.9, 40.1, 39.7, 24.6, 24.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.2 (q, J = 9.0 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₃N₂OBrF m/z [M+H]⁺: 359.0190, found: 359.0193.

6-chloro-6-fluoroindolo[2,1-b]quinazolin-12(6H)-one (3j)

Purple solid. $R_f = 0.40$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, J = 7.6 Hz, 1H), 7.62-7.70 (m, 2H), 7.78 (d, J = 7.2 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 149.1, 146.5, 139.7, 139.6, 135.2, 134.4, 129.3, 129.2, 127.5, 127.4, 124.7, 123.1, 122.8, 122.5, 122.3, 117.7, 115.3, 112.8. ¹⁹F NMR (376 MHz, CDCl₃) δ –102.3 (s, 1F). HRMS (ESI) calcd for C₁₅H₉N₂OClF *m*/*z* [M+H]⁺: 287.0382, found: 287.0384.

6-fluoro-6-(2-oxopropyl)indolo[2,1-b]quinazolin-12(6H)-one (3k)

Yellow solid. $R_f = 0.20$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3H), 3.79-3.99 (m, 2H), 7.35 (dt, J = 1.2, 7.6 Hz, 1H), 7.53-7.60 (m, 3H), 7.76-7.81 (m, 2H), 8.43 (dd, J = 1.6, 8.0 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 202.9, 159.4, 155.6, 155.5, 147.0 (2), 140.9, 140.8, 134.6, 132.3 (2), 128.3 (2), 128.2, 127.5, 127.4, 127.3, 126.8 (2), 123.9, 122.7, 117.6 (2), 94.0, 92.2, 49.7, 49.4, 30.5, 30.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -141.8 (t, J = 8.3 Hz, 1F). HRMS (ESI) calcd for C₁₈H₁₄FN₂O₂ m/z [M+H]⁺: 309.1034, found: 309.1035.

methyl 2-(6-fluoro-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)acetate (3l) Yellow solid. $R_f = 0.30$ (PE:EtOAc = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 3.46 (s, 3H), 3.61 (dd, J = 6.8, 16.4 Hz, 1H), 3.83 (dd, J = 9.2, 16.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.55-7.59 (m, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.79 (dt, J = 1.6, 7.2 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 8.42 (dd, J = 1.6, 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 168.0, 159.3, 155.4, 155.2, 147.1, 147.0, 140.8 (2), 134.6, 132.5 (2), 128.5, 128.4, 128.3, 127.3, 127.2, 127.0, 126.9 (2), 124.3 (2), 122.8, 117.5 (2), 93.6, 91.8, 77.5, 77.2 (2), 76.8, 52.1, 40.7, 40.3. ¹⁹F NMR (376 MHz, CDCl₃) δ – 140.1 (t, J = 10.2 Hz, 1F). HRMS (ESI) calcd for C₁₈H₁₄FN₂O₃ m/z [M+H]⁺: 325.0983, found: 325.0986.

6-fluoro-6,7-dimethylindolo[2,1-b]quinazolin-12(6H)-one (3m)

White solid. $R_f = 0.30$ (PE:DCM = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 2.14 (d, J = 20.4 Hz, 3H), 2.60 (s, 3H), 7.15 (d, J = 7.6 Hz, 1H), 7.42 (dt, J = 1.6, 8.0 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.81 (dt, J = 1.6, 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.39-8.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 156.8, 156.6, 147.1 (2), 139.5, 139.4, 136.6, 134.7, 131.5 (2), 129.4, 129.3, 128.4, 128.1, 127.2, 127.0, 126.9, 122.6, 114.9, 95.5, 93.6, 22.7, 22.4, 18.0. ¹⁹F NMR (376 MHz, CDCl₃) δ –148.1 (q, J = 20.2 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂OF m/z [M+H]⁺: 281.1085, found: 281.1089.

6-fluoro-6,8-dimethylindolo[2,1-b]quinazolin-12(6H)-one (3n)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.05 (d, J = 20.8 Hz, 3H), 2.44 (s, 3H), 7.34 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.79 (dt, J = 1.6, 7.2 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 8.40 (dd, J = 1.6, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 156.5, 156.3, 147.2 (2), 137.3, 137.2 (2), 137.1, 134.6, 132.5, 132.4, 129.5, 129.3, 128.5, 128.2, 127.1, 124.8, 122.7, 117.2, 94.6, 92.8, 23.0, 22.7, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.2 (q, J = 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂OF m/z [M+H]⁺: 281.1085, found: 281.1088.

6-fluoro-8-methoxy-6-methylindolo[2,1-b]quinazolin-12(6H)-one (30)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.05 (d, J = 20.8 Hz, 3H), 3.88 (s, 3H), 7.04 (d, J = 8.8 Hz, 1H), 7.16 (s, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.78 (dt, J = 1.6, 7.2 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 8.39 (dd, J = 1.6, 8.0 Hz, 1H), 8.43 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0 (2), 158.9, 156.5, 156.3, 147.1 (2), 134.5, 132.8, 132.7, 131.0, 130.8, 128.5, 128.2, 127.0, 122.7, 118.5, 116.7 (2), 110.3, 94.6, 92.7, 56.0, 23.1, 22.8. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.9 (q, J = 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂O₂F m/z [M+H]⁺: 297.1034, found: 297.1037.

6,8-difluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3p)

White solid. $R_f = 0.30$ (PE:EtOAc = 15:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.8 Hz, 3H), 7.22-7.27 (m, 1H), 7.33-7.36 (m, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.82 (dt, J = 1.6, 7.2 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.39 (dd, J = 1.6, 8.0 Hz, 1H), 8.51-8.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (2), 160.2, 160.1, 159.2, 156.0, 155.8, 147.0, 146.9, 135.4 (3), 135.3, 134.9, 131.4, 131.3, 131.2, 131.1, 128.5, 128.4, 127.1, 122.5, 119.0, 118.9, 118.8, 118.7, 118.5 (2), 112.2, 111.9, 94.1 (2), 92.3 (2), 23.0, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.14- –113.08 (m, 1F), –146.4 (q, J = 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₁N₂OF₂ m/z [M+H]⁺: 285.0834, found: 285.0839.

8-chloro-6-fluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3q)

White solid. $R_f = 0.30$ (PE:DCM = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.8 Hz, 3H), 7.52 (dd, J = 2.0, 8.8 Hz, 1H), 7.56-7.61 (m, 2H), 7.81 (t, J = 7.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 8.47 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 155.8, 155.6, 147.1 (2), 137.9, 137.8, 134.9, 132.8, 132.7, 132.0 (2), 131.2, 131.0, 128.6, 128.5, 127.2, 124.8, 122.5, 118.6, 94.1, 92.2, 22.9, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.7 (q, J = 20.3 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₀N₂OFClNa m/z [M+Na]⁺: 323.0358, found: 323.0362.

6,9-difluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3r)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.4 Hz, 3H), 7.08 (dt, J = 1.6, 8.4 Hz, 1H), 7.57-7.63 (m, 2H), 7.82 (dt, J = 1.6, 6.8 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.30 (dd, J = 2.4, 9.2 Hz, 1H), 8.39 (dd, J = 1.6, 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9 (2), 163.4 (2), 159.2, 156.3, 156.1, 140.7 (2), 140.6, 135.0, 128.6, 128.5, 127.3, 125.7, 125.6, 125.3, 125.2, 125.1, 125.0, 122.4, 114.1, 114.0, 113.8 (2), 106.3, 106.0, 94.0, 92.2, 23.0, 22.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –105.66– –105.58 (m, 1F), –136.5 (dq, J = 5.6, 21.1 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₁N₂OF₂ m/z [M+H]⁺: 285.0834, found: 285.0838.

9-bromo-6-fluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3s)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.05 (d, J = 20.4 Hz, 3H), 7.49-7.55 (m, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.80-7.88 (m, 2H), 8.40 (d, J = 8.0 Hz, 1H), 8.77 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 155.9, 155.7, 147.0 (2), 140.3 (2), 135.1, 130.2 (2), 128.6, 128.5, 128.4, 128.2, 127.3, 125.9, 125.8, 125.5, 122.4, 120.9, 94.1, 92.3, 22.9, 22.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.0 (q, J = 20.6 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₁N₂OFBr m/z [M+H]⁺: 345.0033, found: 345.0037.

9-bromo-6-fluoro-6-isopropylindolo[2,1-b]quinazolin-12(6H)-one (3t)

White solid. $R_f = 0.30$ (PE:EtOAc = 12:1); ¹H NMR (400 MHz, CDCl₃) δ 2.05 (d, J = 20.4 Hz, 3H), 7.49-7.55 (m, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.82 (t, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.40 (d, J = 8.0 Hz, 1H), 8.77 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 155.9, 155.7, 146.9 (2), 141.1, 141.0, 135.1, 129.9, 128.7, 128.5, 127.2, 126.5, 126.3, 126.1, 125.6 (2), 122.2, 120.7, 99.0, 97.1, 35.8, 35.5, 16.2 (2), 15.9 (2). ¹⁹F NMR (376 MHz, CDCl₃) δ -150.2 (d, J = 7.1 Hz, 1F). HRMS (ESI) calcd for C₁₈H₁₅N₂OFBr *m/z* [M+H]⁺: 373.0346, found: 373.0348.

9-bromo-6-cyclopentyl-6-fluoroindolo[2,1-b]quinazolin-12(6H)-one (3u)

White solid. $R_f = 0.40$ (PE:EtOAc = 15:1); ¹H NMR (400 MHz, CDCl₃) δ 1.49-1.59 (m, 6H), 1.63-1.72 (m, 1H), 1.83-1.89 (m, 1H), 3.00-3.10 (m, 1H), 7.50-7.60 (m, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.80-7.87 (m, 2H), 8.40 (d, J = 8.0 Hz, 1H), 8.80 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 155.9, 155.7, 147.0 (2), 140.9 (2), 135.0, 130.0 (2), 128.7, 128.4, 127.3, 127.2 (2), 126.3, 125.6, 125.5, 122.2, 120.7, 98.0, 96.1, 46.8, 46.6, 27.0 (2), 26.6 (2), 25.8, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –146.4 (d, J = 10.5 Hz, 1F). HRMS (ESI) calcd for C₂₀H₁₆N₂OFBrNa m/z [M+Na]⁺: 421.0322, found: 421.0327.

9-bromo-6-cyclohexyl-6-fluoroindolo[2,1-b]quinazolin-12(6H)-one (3v)

White solid. $R_f = 0.40$ (PE:EtOAc = 15:1); ¹H NMR (400 MHz, CDCl₃) δ 0.94-1.13 (m, 2H), 1.20-1.37 (m, 3H), 1.45-1.48 (m, 1H), 1.64-1.69 (m, 2H), 1.80-1.85 (m, 1H), 1.96-2.01 (m, 1H), 2.53-2.61 (m, 1H), 7.49-7.54 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.82 (dt, J = 1.6, 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 8.39 (dd, J = 1.6, 8.0 Hz, 1H), 8.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 156.1, 155.9, 146.9 (2), 141.0, 140.9, 135.0, 129.9, 129.8, 128.7, 127.2, 126.9, 126.7, 126.5, 125.5 (2), 122.2, 120.7, 98.6, 96.7, 45.8, 45.6, 26.2, 26.1, 26.0, 25.9 (2), 25.8, 25.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -153.2 (d, J = 7.1 Hz, 1F). HRMS (ESI) calcd for C₂₁H₁₉N₂OFBr m/z [M+H]⁺: 413.0659, found: 413.0662.

10-chloro-6-fluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3w)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.04 (d, J = 20.4 Hz, 3H), 7.34 (t, J = 7.6 Hz, 1H), 7.54-7.60 (m, 3H), 7.77-7.83 (m, 2H), 8.36 (dd, J = 1.6, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 156.2, 156.0, 146.5 (2), 137.1, 137.0, 135.0 (2), 134.7, 133.3, 133.1, 128.4, 128.3, 128.2, 127.9, 127.6, 123.3, 122.9, 122.8, 94.0, 92.2, 23.3. 23.0. ¹⁹F NMR (376 MHz, CDCl₃) δ –134.5 (q, J = 20.4 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₁N₂OFCl m/z [M+H]⁺: 301.0538, found: 301.0539.

6-fluoro-2,6-dimethylindolo[2,1-b]quinazolin-12(6H)-one (3x)

Yellow solid. $R_f = 0.30$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.4 Hz, 3H), 3.96 (s, 3H), 7.37-7.41 (m, 2H), 7.56 (t, J = 8.0 Hz, 1H), 7.65 (d, J = 6.8 Hz, 1H), 7.78-7.80 (m, 2H), 8.56 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 159.3, 154.1, 153.9, 141.6, 141.5, 139.6, 139.5, 132.0, 131.9, 130.0, 129.8, 129.6, 127.1 (2), 124.4, 124.3, 123.7, 117.5, 107.3, 94.4, 92.6, 56.1, 23.0, 22.7. ¹⁹F

NMR (376 MHz, CDCl₃) δ –137.0 (q, J= 20.4 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂O₂F m/z [M+H]⁺: 297.1034, found: 297.1038.

6-fluoro-2,6-dimethylindolo[2,1-b]quinazolin-12(6H)-one (3y)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.8 Hz, 3H), 2.52 (s, 3H), 7.35-7.39 (m, 1H), 7.52-7.57 (m, 1H), 7.59-7.65 (m, 2H), 7.75 (d, J = 8.0 Hz, 1H), 8.18 (s, 1H), 8.53 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 155.5, 155.3, 145.1, 145.0, 139.5 (2), 138.7, 136.1, 131.9 (2), 129.5, 129.3, 128.3, 127.0 (2), 126.7, 124.2, 122.3, 117.5, 94.4, 92.6, 23.0, 22.7, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –137.5 (q, J = 20.5 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂OF m/z [M+H]⁺: 281.1085, found: 281.1089.

2-chloro-6-fluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3z)

White solid. $R_f = 0.40$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.8 Hz, 3H), 7.41 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 2.4, 8.8 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 8.36 (d, J = 2.4 Hz, 1H), 8.52 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 156.6, 156.4, 145.6 (2), 139.2, 139.1, 135.1, 134.3, 132.1 (2), 130.0, 129.4, 129.2, 127.4 (2), 126.6, 124.3, 123.7, 117.5, 94.5, 92.6, 23.0, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.3 (q, J = 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₀N₂OClFNa *m*/z [M+Na]⁺: 323.0358, found: 323.0359.

2-bromo-6-fluoro-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3aa)

Brown solid. $R_f = 0.30$ (PE:DCM = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.8 Hz, 3H), 7.41 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.53

(s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 156.7, 156.5, 146.0, 145.9, 139.2, 139.1, 137.9, 132.1 (2), 130.2, 129.8, 129.4, 129.2, 127.4 (2), 124.4, 124.0, 122.2, 117.5, 94.5, 92.7, 23.0, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.4 (q, *J*= 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₆H₁₁N₂ONBrF *m*/*z* [M+H]⁺: 345.0033, found: 345.0038.

6-fluoro-2,3-dimethoxy-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3ab)

Yellow solid. $R_f = 0.20$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (d, J = 20.8 Hz, 3H), 4.03 (s, 3H), 4.04 (s, 3H), 7.29 (s, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.53-7.59 (m, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.74 (s, 1H), 8.55 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 155.5, 155.3, 145.1, 145.0, 139.5 (2), 138.7, 136.1, 131.9 (2), 129.5, 129.3, 128.3, 127.0 (2), 126.7, 124.2, 122.3, 117.5, 94.4, 92.6, 23.0, 22.7, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –137.5 (q, J = 20.5 Hz, 1F). HRMS (ESI) calcd for C₁₈H₁₆N₂O₃F m/z [M+H]⁺: 327.1139, found: 327.1139.

6-fluoro-4-methoxy-6-methylindolo[2,1-b]quinazolin-12(6H)-one (3ac)

Yellow solid. $R_f = 0.20$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.10 (d, J = 20.4 Hz, 3H), 4.06 (s, 3H), 7.27 (d, J = 9.2 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.50-7.58 (m, 2H), 7.65 (d, J = 7.6 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 155.4, 155.3, 155.1, 139.4, 139.3, 137.5, 137.4, 131.9 (2), 129.8, 129.6, 128.7, 127.2 (2), 124.3, 123.9, 118.5, 117.6, 115.4, 94.5, 92.7, 56.7, 23.1, 22.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.2 (q, J = 20.5 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂O₂F m/z [M+H]⁺: 297.1034, found: 297.1036.

6-fluoro-4,6-dimethylindolo[2,1-b]quinazolin-12(6H)-one (3ad)

Brown solid. $R_f = 0.30$ (PE:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 2.07 (d, J = 20.8 Hz, 3H), 2.72 (s, 3H), 7.39 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz

= 7.6 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 154.7, 154.5, 145.6 (2), 139.6, 139.5, 137.3, 135.6, 132.0, 131.9, 129.6, 129.4, 127.8, 127.0 (2), 124.8, 124.3, 122.6, 117.5, 94.5, 92.7, 23.0, 22.7, 17.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –136.7 (q, J= 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₇H₁₄N₂OF m/z [M+H]⁺: 281.1085, found: 281.1088.

6-fluoro-6-methylpyrido[3',2':4,5]pyrimido[1,2-a]indol-12(6H)-one (3ae)

White solid. $R_f = 0.20$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 2.10 (d, J = 20.8 Hz, 3H), 7.42 (t, J = 7.6 Hz, 1H), 7.51-7.59 (m, 2H), 7.66 (dd, J = 2.0, 7.2 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 8.73 (dd, J = 2.0, 8.0 Hz, 1H), 9.03 (dd, J = 2.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 159.7, 159.3, 157.6 (2), 156.1, 139.0 (2), 136.7, 132.1 (2), 129.6, 129.4, 127.7, 127.6, 124.5, 123.5, 118.1, 117.3, 94.5, 92.7, 22.7, 22.4. ¹⁹F NMR (376 MHz, CDCl₃) δ –138.4 (q, J = 20.7 Hz, 1F). HRMS (ESI) calcd for C₁₅H₁₁N₃OF m/z [M+H]⁺: 268.0881, found: 268.0884.

10-fluoro-10-methylthieno[2',3':4,5]pyrimido[1,2-a]indol-4(10H)-one (3af)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.04 (d, J = 20.8 Hz, 3H), 7.36 (d, J = 6.0 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.60-7.64 (m, 2H), 8.57 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 157.0, 156.8, 156.1, 139.4, 132.1 (2), 129.8, 129.7, 127.4 (2), 125.6, 125.2, 124.3, 122.8, 117.9, 94.3, 92.5, 22.8, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –140.0 (q, J = 20.4 Hz, 1F). HRMS (ESI) calcd for C₁₄H₁₀N₂OFS m/z [M+H]⁺: 273.0492, found: 273.0496.

6-azido-6-methylindolo[2,1-b]quinazolin-12(6H)-one (5)

White solid. $R_f = 0.40$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 1.95 (s, 3H), 7.40 (d, J = 7.6 Hz, 1H), 7.51-7.59 (m, 3H),7.81 (dt, J = 1.6, 8.0 Hz, 1H), 7.86 (t, J = 8.4 Hz, 1H), 8.41 (dd, J = 1.6, 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 158.3, 147.1, 138.8, 134.8, 131.0, 130.9, 128.3, 127.9, 127.2,

127.1, 123.6, 122.1, 117.5, 65.5, 23.8. HRMS (ESI) calcd for C₁₆H₁₁N₅ONa *m/z* [M+Na]⁺: 312.0856, found: 312.0857.

6-methyl-6-(phenylamino)indolo[2,1-b]quinazolin-12(6H)-one (6)

White solid. $R_f = 0.20$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.87 (s, 3H), 6.15 (d, J = 8.0 Hz, 2H), 6.59 (t, J = 7.2 Hz, 1H), 6.88 (t, J = 8.4 Hz, 2H), 7.35 (dt, J = 1.2, 7.6 Hz, 1H), 7.49-7.54 (m, 3H), 7.73-7.75 (m, 2H), 8.43 (d, J = 8.0 Hz, 1H), 8.68 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 160.2, 147.4, 144.8, 138.3, 134.6, 134.0, 129.9, 129.2, 127.8, 127.3 (2), 127.1, 123.3, 121.8, 119.3, 117.7, 115.0, 62.6, 30.2. HRMS (ESI) calcd for C₂₂H₁₈N₃O m/z [M+H]⁺: 340.1444, found: 340.1448.

tert-butyl (6-methyl-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)carbamate (7)

White solid. $R_f = 0.30$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 1.07 (s, 9H), 1.73 (s, 3H), 5.47 (s, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.45-7.50 (m, 2H), 7.52-7.56 (m, 1H), 7.77-7.80 (m, 2H), 8.43 (d, J = 8.0 Hz, 1H), 8.59 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 160.0, 153.7, 147.5, 138.8, 134.6, 129.6, 127.6, 127.2, 127.1, 126.8, 122.1, 121.9, 117.3, 80.9, 60.1, 27.9, 26.9. HRMS (ESI) calcd for C₂₁H₂₂N₃O₃ *m/z* [M+H]⁺: 364.1656, found: 364.1659.

6-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-6-methylindolo[2,1-b]quinazolin-12(6 H)-one (8)

White solid. $R_f = 0.40$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 1.97 (s, 3H), 5.13-5.19 (m, 1H), 7.43 (dt, J = 7.2 Hz, 1H), 7.57-7.62 (m, 3H), 7.80-7.86 (m, 2H), 8.40 (d, J = 7.2 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 156.7, 146.7, 139.3, 134.9, 131.8, 129.4, 128.3 (2), 127.3, 127.2, 124.7, 122.3,

117.6, 81.7, 70.9, 70.5, 70.2, 69.9, 69.6, 23.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –72.8 – -72.9 (m, 3F), –73.3 – -73.4 (m, 3F). HRMS (ESI) calcd for C₁₉H₁₃F₆N₂O₂ *m/z* [M+H]⁺: 415.0876, found: 415.0884.

6-methyl-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl benzoate (9)

White solid. $R_f = 0.30$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.05 (s, 3H), 7.32 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.49-7.58 (m, 4H), 7.73-7.77 (m, 2H), 8.01 (d, J = 3.2 Hz, 2H), 8.45 (d, J = 8.0 Hz, 1H), 8.65 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 159.9, 158.7, 147.3, 139.5, 134.5, 133.7, 131.4, 130.7, 130.1, 129.2, 128.5, 128.0, 127.5, 127.2, 126.8, 122.4, 122.3, 117.4, 25.4. HRMS (ESI) calcd for C₂₃H₁₆N₂O₃Na *m*/*z* [M+Na]⁺: 391.1053, found: 391.1057.

6-hydroxy-6-methylindolo[2,1-b]quinazolin-12(6H)-one (10)¹

White solid. $R_f = 0.30$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CD₃OD) δ 1.82 (s, 3H), 7.42 (dt, J = 1.2, 7.6 Hz, 1H), 7.50 (dt, J = 1.2, 7.6 Hz, 1H), 7.58-7.62 (m, 1H), 7.66-7.68 (m, 1H), 7.81-7.89 (m, 2H), 8.33-8.36 (m, 1H), 8.49 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 163.6, 161.2, 148.7, 139.6, 136.6, 135.9, 131.0, 128.6, 128.5, 128.2, 127.7, 124.7, 123.0, 118.0, 76.3, 26.1. HRMS (ESI) calcd for C₁₆H₁₃N₂O₂ m/z [M+H]⁺: 265.0972, found: 265.0976.

6-methyl-6-(p-tolylthio)indolo[2,1-b]quinazolin-12(6H)-one (11)

White solid. $R_f = 0.50$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.02 (s, 3H), 2.17 (s, 3H), 6.75 (d, J = 7.6 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 7.34-7.39 (m, 1H),

7.51-7.57 (m, 2H), 7.81 (dt, J = 1.6, 6.8 Hz, 1H), 7.90 (dd, J = 1.2, 8.0 Hz, 1H), 8.28-8.30 (m, 1H), 8.34 (dd, J = 1.6, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 159.7, 147.5, 140.3, 138.5, 136.4, 134.5, 134.0, 129.4, 129.3, 127.8, 127.1, 126.9, 126.6, 126.0, 124.0, 121.4, 116.9, 56.6, 23.4, 21.3. HRMS (ESI) calcd for C_{23H19}N₂OS m/z [M+H]⁺: 371.1213, found: 371.1216.

6-methyl-6-thiocyanatoindolo[2,1-b]quinazolin-12(6H)-one (12)

White solid. $R_f = 0.40$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H), 7.45 (dt, J = 0.6, 7.6 Hz, 1H), 7.57-7.62 (m, 2H), 7.70 (dd, J = 1.2, 7.6 Hz, 1H), 7.82-7.89 (m, 2H), 8.43 (dd, J = 1.6, 8.0 Hz, 1H), 8.62 (dd, J = 1.2, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 157.7, 147.0, 138.8, 135.0, 131.7, 129.9, 128.3 (2), 127.4, 127.2, 123.9, 121.9, 117.7, 109.3, 56.5, 24.9. HRMS (ESI) calcd for C₁₇H₁₁N₃OSNa *m*/*z* [M+Na]⁺: 328.0515, found: 328.0518.

6-(4-(dimethylamino)phenyl)-6-methylindolo[2,1-b]quinazolin-12(6H)-one (13) White solid. $R_f = 0.20$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3H), 2.90 (s, 3H), 6.63-6.67 (m, 2H), 7.18-7.21 (m, 2H), 7.33-7.35 (m, 2H), 7.45-7.50 (m, 2H), 7.72-7.75 (m, 2H), 8.41 (d, J = 8.0 Hz, 1H), 8.69 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 160.4, 149.8, 148.0, 139.0, 137.9, 134.2, 129.5, 128.6, 127.8, 127.5, 126.8 (2), 126.7, 124.3, 121.4, 117.4, 112.5, 52.2, 40.6, 25.6. HRMS (ESI) calcd for C₂₄H₂₂N₃O *m/z* [M+H]⁺: 368.1757, found: 368.1758.

6-(2-hydroxy-5-methylphenyl)-6-methylindolo[2,1-b]quinazolin-12(6H)-one (14) White solid. $R_f = 0.40$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.15 (s, 3H), 6.77 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.01 (dd, J = 2.0, 8.0 Hz, 1H), 7.48-7.59 (m, 4H), 7.73-7.80 (m, 2H), 8.38 (d, J = 7.2 Hz, 1H), 8.69 (d, J = 7.6 Hz, 1H), 11.07 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 159.6, 154.4, 145.6, 139.0, 134.8, 134.6, 130.3, 129.5, 129.3, 128.4, 127.5, 127.1, 126.8, 126.6, 126.4, 126.0, 121.4, 120.6, 117.7, 53.5, 24.4, 20.8. HRMS (ESI) calcd for C₂₃H₁₉N₂O₂ *m/z* [M+H]⁺: 355.1441, found: 355.1445.

6-(3a,7a-dihydro-1H-indol-3-yl)-6-methylindolo[2,1-b]quinazolin-12(6H)-one (15)

White solid. $R_f = 0.20$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 2.06 (s, 3H), 6.55 (d, J = 7.6 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.98 (s, 1H), 7.06 (t, J = 7.6 Hz, 1H), 7.26-7.31 (m, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 2H), 7.69-7.75 (m, 2H), 8.49 (d, J = 8.0 Hz, 1H), 8.80 (d, J = 8.0 Hz, 1H), 9.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 160.5, 147.7, 138.8, 137.3, 137.0, 134.6, 128.9, 127.2, 127.1 (2), 125.4, 124.0, 123.7, 122.2, 121.5, 119.8, 119.2, 117.5, 116.1, 111.6, 49.0, 26.1. HRMS (ESI) calcd for C₂₄H₁₉N₃ONa *m*/*z* [M+Na]⁺: 388.1420, found: 388.1421.

6-allyl-6-methylindolo[2,1-b]quinazolin-12(6H)-one (16)

White solid. $R_f = 0.40$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 1.66 (s, 3H), 2.73-2.79 (m, 1H), 2.82-2.88 (m, 1H), 4.83 (dd, J = 1.6, 10.0 Hz, 1H), 4.91 (dd, J = 1.6, 16.8 Hz, 1H), 5.31-5.41 (m, 1H), 7.35 (dt, J = 1.2, 7.2 Hz, 1H), 7.41-7.46 (m, 2H), 7.50-7.54 (m, 1H), 7.76-7.81 (m, 2H), 8.42 (d, J = 8.0 Hz, 1H), 8.61 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 160.3, 147.7, 139.2, 135.8, 134.4, 132.1, 128.6, 127.5, 127.0, 126.8, 126.6, 123.0, 121.5, 119.5, 117.3, 49.3, 44.8, 25.2. HRMS (ESI) calcd for C₁₉H₁₇N₂O m/z [M+H]⁺: 289.1335, found: 289.1336.

6-methyl-6-(2-oxo-2-phenylethyl)indolo[2,1-b]quinazolin-12(6H)-one (17)

White solid. $R_f = 0.20$ (PE:EtOAc = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 1.68 (s, 3H), 3.96-4.12 (m, 2H), 7.26 (dd, J = 1.2, 7.2 Hz, 1H), 7.32 (dd, J = 1.6, 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.44 (dt, J = 1.6, 7.6 Hz, 1H), 7.47-7.53 (m, 2H), 7.67 (dd, J = 1.6, 8.0 Hz, 1H), 7.73 (dt, J = 1.6, 6.8 Hz, 1H), 7.81 (dd, J = 1.2, 8.0 Hz, 2H), 8.46 (dd, J = 1.6, 8.0 Hz, 1H), 8.69 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 164.2, 160.4, 147.7, 139.9, 136.2, 136.0, 134.2, 133.5, 128.7 (2), 128.1, 127.2, 127.1, 126.6, 126.4, 121.8, 121.6, 117.5, 48.1, 46.3, 27.5. HRMS (ESI) calcd for C₂₄H₁₉N₂O₂ m/z [M+H]⁺: 367.1441, found: 367.1443.

6-((2-isopropyl-5-methylcyclohexyl)oxy)-6-methylindolo[2,1-b]quinazolin-12(6H) -one (18)

White solid. $R_f = 0.30$ (PE:EtOAc = 20:1);¹H NMR (400 MHz, CDCl₃) δ 0.50 (d, J = 6.4 Hz, 3H), 0.61 (d, J = 6.8 Hz, 3H), 0.64-0.88 (m, 4H), 0.91 (d, J = 7.2 Hz, 3H), 1.07-1.12 (m, 1H), 1.28-1.35 (m, 1H), 1.41-1.45 (m, 1H), 1.50-1.54 (m, 1H), 1.82 (s, 3H), 2.36-2.45 (m, 1H), 3.06-3.12 (m, 1H), 7.39 (dt, J = 1.2, 7.6 Hz, 1H), 7.48-7.57 (m, 3H), 7.80 (dt, J = 1.6, 7.6 Hz, 1H), 7.89 (dd, J = 1.6, 8.4 Hz, 1H), 8.43 (dd, J = 1.2, 8.0 Hz, 1H), 8.63 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 160.0, 147.4, 139.1, 134.7, 131.1, 130.5, 128.1, 127.5, 127.0, 126.8, 124.7, 121.9, 117.6, 79.2, 75.8, 48.3, 42.6, 34.0, 31.3, 27.4, 25.1, 22.9, 22.3, 21.5, 16.3. HRMS (ESI) calcd for C₂₆H₃₁N₂O₂ m/z [M+H]⁺: 403.2380, found: 403.2386.

(E)-6-((3,7-dimethylocta-2,6-dien-1-yl)oxy)-6-methylindolo[2,1-b]quinazolin-12(6 H)-one (19)

White solid. $R_f = 0.30$ (PE:EtOAc = 15:1); ¹H NMR (400 MHz, CDCl₃) δ 1.30 (s, 3H), 1.50 (s, 3H), 1.62 (s, 3H), 1.77-1.91 (m, 7H), 3.60-3.70 (m, 2H), 4.92-4.95 (m, 1H), 5.22 (dt, J = 1.2, 7.2 Hz, 1H), 7.41 (dt, J = 1.2, 7.6 Hz, 1H), 7.51 (dt, J = 1.2, 7.6 Hz,

1H), 7.56-7.59 (m, 2H), 7.81 (dt, J = 1.6, 7.2 Hz, 1H), 7.90 (dd, J = 1.2, 8.0 Hz, 1H), 8.42 (dd, J = 1.6, 8.0 Hz, 1H), 8.60 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 159.8, 147.4, 141.2, 139.3, 134.7, 131.7 (2), 130.6, 128.2, 127.6, 127.1, 127.0, 124.1, 124.0, 122.1, 120.1, 117.5, 80.6, 62.5, 39.5, 26.6, 26.2, 25.8, 17.8, 16.4. HRMS (ESI) calcd for C₂₆H₂₉N₂O₂ m/z [M+H]⁺: 401.2224, found: 401.2225.

6-((3,7-dimethyloct-6-en-1-yl)oxy)-6-methylindolo[2,1-b]quinazolin-12(6H)-one (20)

White solid. $R_f = 0.50$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 0.73 (d, J = 6.4 Hz, 3H), 0.95-1.07 (m, 1H), 1.12-1.37 (m, 2H), 1.45-1.62 (m, 5H), 1.63 (s, 3H), 1.82 (s, 3H), 1.84-1.94 (m, 2H), 2.92-3.13 (m, 2H), 4.97-5.03 (m, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.50-7.58 (m, 3H), 7.81 (dt, J = 1.6, 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 8.43 (dd, J = 1.6, 8.0 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 159.5 (2), 147.4, 139.2 (2), 134.7, 131.9, 131.2, 130.5, 128.2 (2), 127.6, 127.1, 127.0, 124.9 (2), 123.9, 122.1, 117.4, 80.9 (2), 63.6, 63.5, 37.2, 37.0 (2), 36.9, 29.3 (2), 26.4, 25.8, 25.5, 19.6, 19.4, 17.7. HRMS (ESI) calcd for C₂₆H₃₁N₂O₂ m/z [M+H]⁺: 403.2380, found: 403.2386.

6-methyl-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl 2-(4-isobutylphenyl)propanoate (21)

White solid. $R_f = 0.30$ (PE:DCM = 1:2); ¹H NMR (400 MHz, CDCl₃) δ 0.89 (s, 3H), 0.91 (s, 3H), 1.43 (d, J = 7.2 Hz, 3H), 1.80-1.90 (m, 4H), 2.45 (d, J = 7.2 Hz, 2H), 3.73 (q, J = 7.2 Hz, 1H), 7.06-7.12 (m, 4H), 7.30 (dd, J = 1.2, 7.2 Hz, 1H), 7.33 (dd, J = 1.6, 7.2 Hz, 1H), 7.46-7.54 (m, 2H), 7.67 (dd, J = 1.2, 8.0 Hz, 1H), 7.75 (dt, J = 1.6, 6.8 Hz, 1H), 8.40 (dd, J = 1.2, 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 159.8, 158.5, 147.3, 140.7, 139.4, 136.9, 134.4, 131.4, 130.6, 129.4, 127.8, 127.4 (2), 127.2, 126.7, 122.3, 122.1, 117.4, 79.5, 45.2, 44.9, 30.3, 25.2,

22.5, 18.6. HRMS (ESI) calcd for $C_{29}H_{29}N_2O_3 m/z [M+H]^+$: 453.2173, found: 453.2177.

6-methyl-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl 2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoate (22)

White solid. $R_f = 0.20$ (PE:DCM = 1:3); ¹H NMR (400 MHz, CDCl₃) δ 1.29 (d, J = 6.8 Hz, 3H), 1.78 (s, 3H), 3.80-3.86 (m, 1H), 4.32-4.38 (m, 2H), 6.88 (dd, J = 1.6, 7.6 Hz, 1H), 6.96 (dd, J = 2.0, 8.0 Hz, 1H), 7.15-7.19 (m, 2H), 7.35 (dt, J = 1.2, 8.0 Hz, 1H), 7.44-7.49 (m, 2H), 7.52-7.56 (m, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.63 (dd, J = 1.2, 8.0 Hz, 1H), 7.77-7.79 (m, 2H), 8.25 (dd, J = 1.6, 8.0 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 171.9, 159.7, 158.7, 147.2, 142.4, 140.3, 139.3, 138.2, 136.3, 134.5, 133.6, 132.8, 131.7 (2), 131.0, 130.7, 128.5, 127.8, 127.5, 127.3, 127.1, 126.8, 126.5, 122.3, 122.1, 117.3, 79.8, 51.1, 44.8, 25.2, 18.2. HRMS (ESI) calcd for C₃₃H₂₅N₂O₄S m/z [M+H]⁺: 545.1530, found: 545.1533.

6-((13R,14R)-3-hydroxy-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-2-yl)-6-methylindolo[2,1-b]quinazolin-12(6H)-one (23)

White solid. $R_f = 0.30$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 0.93 (s, 3H), 1.27-1.63 (m, 6H), 1.86-2.13 (m, 6H), 2.16 (s, 3H), 2.45-2.52 (m, 1H), 2.83-2.87 (m, 2H), 6.84 (s, 1H), 6.89 (s, 1H), 7.52-7.61 (m, 4H), 7.74-7.81 (m, 2H), 8.40 (dd, J = 1.6, 8.0 Hz, 1H), 8.70 (d, J = 7.6 Hz, 1H), 11.37 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.6, 154.6, 145.6, 139.0, 138.6, 134.9, 134.5, 131.5, 129.5, 127.5, 127.2, 126.8, 126.6, 126.0, 125.3, 124.0, 121.4, 120.9, 117.9, 53.8, 50.4, 48.1, 44.3, 38.6, 36.0, 31.7, 29.3, 26.6, 25.9, 24.6, 21.7, 14.0. HRMS (ESI) calcd for C₃₄H₃₃N₂O₃ m/z [M+H]⁺: 517.2486, found: 517.2488.

methyl 2-(6-hydroxy-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)acetate (24)²

White solid. $R_f = 0.20$ (PE:EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 2.14 (s, 3H), 3.41 (d, J = 17.6 Hz, 1H), 3.55 (d, J = 17.6 Hz, 1H), 4.92 (s, 1H), 7.16 (dd, J = 1.2, 7.6 Hz, 1H), 7.23-7.28 (m, 1H), 7.47-7.51 (m, 2H), 7.71-7.76 (m, 2H), 8.24 (d, J = 7.6 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 206.9, 159.8, 159.7, 147.3, 139.2, 134.6, 132.2, 130.6, 127.9, 127.6, 127.2, 127.1, 123.6, 122.0, 117.1, 75.9, 50.9, 31.2.

methyl 2-(6-hydroxy-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)acetate (25)³

Pale yellow solid. $R_f = 0.20$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, DMSO-d6) δ 3.32 (m, 3H), 3.44-3.54 (m, 2H), 6.67 (s, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.53 (dt, J = 1.2, 8.0 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.90 (dt, J = 1.6, 8.4 Hz, 1H), 8.33 (dd, J = 1.6, 8.0 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 169.9, 161.3, 159.3, 147.5, 139.7, 135.3, 133.7, 130.5, 128.0 (2), 127.1, 126.9, 124.5, 121.8, 116.4, 75.1, 51.8, 43.1. HRMS (ESI) calcd for C₁₈H₁₅N₂O₄ m/z [M+H]⁺: 323.1026, found: 323.1027.

2-(6-hydroxy-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)acetic acid (26)⁴ White solid. $R_f = 0.20$ (DCM:MeOH = 10:1); ¹H NMR (400 MHz, CD₃OD) δ 3.35-3.49 (m, 2H), 7.40 (dt, J = 1.2, 7.6 Hz, 1H), 7.50 (dt, J = 1.2, 7.6 Hz, 1H), 7.60 (dt, J = 1.6, 8.0 Hz, 1H), 7.67 (dd, J = 1.6, 7.6 Hz, 1H), 7.81-7.88 (m, 2H), 8.36 (dd, J = 1.6, 8.0 Hz, 1H), 8.50 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 163.1, 161.3, 148.7, 141.0, 135.9, 135.0, 131.1, 128.5, 128.4, 128.0, 127.7, 124.8, 123.1, 117.9, 76.6, 44.9.

11b-hydroxy-2a1,11b-dihydro-7H-2a,7a-diazabenzo[b]cyclopenta[lm]fluorene-2, 7(1H)-dione (27)³

White solid. $R_f = 0.40$ (PE:EtOAc = 1:1); ¹H NMR (400 MHz, DMSO-d6) δ 3.05 (d, J = 18.4 Hz, 1H), 3.15 (d, J = 18.4 Hz, 1H), 5.80 (s, 1H), 6.72 (s, 1H), 7.23 (dt, J = 1.2, 7.6 Hz, 1H), 7.41 (dt, J = 1.2, 7.6 Hz, 1H), 7.46 (dt, J = 2.0, 7.6 Hz, 1H), 7.54 (dd, J = 1.2, 7.6 Hz, 1H), 7.70-7.76 (m, 2H), 7.93 (d, J = 8.0 Hz, 1H), 8.04 (dd, J = 1.6, 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 175.8, 164.0, 145.7, 141.8, 140.7, 138.9, 135.2, 133.8, 131.4, 130.3, 130.0, 128.8, 127.4, 120.2, 87.9, 82.9, 51.2.

methyl 2-((1,3-dimethyl-1H-indol-2-yl)amino)benzoate (29)

White solid. $R_f = 0.60$ (PE:EtOAc = 7:1); ¹H NMR (400 MHz, CDCl₃) δ 2.17 (s, 3H), 3.56 (s, 3H), 3.96 (s, 3H), 6.42 (dd, J = 1.2, 8.8 Hz, 1H), 6.73 (dt, J = 1.2, 8.0 Hz, 1H), 7.15 (dt, J = 1.2, 8.0 Hz, 1H), 7.22-7.31 (m, 3H), 7.58 (d, J = 8.0 Hz, 1H), 7.99 (dd, J = 1.6, 8.0 Hz, 1H), 9.18 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 150.2, 134.9, 134.8, 132.1, 131.4, 127.5, 121.7, 119.1, 118.9, 117.2, 114.1, 111.0, 109.3, 105.1, 52.0, 28.7, 8.5. HRMS (ESI) calcd for C₁₈H₁₉N₂O₂ m/z [M+H]⁺: 295.1441, found: 295.1441.

methyl(Z)-2-((3-((2-(methoxycarbonyl)phenyl)amino)-1,3-dimethylindolin-2-ylid ene)amino)benzoate (30)

Brown oil. $R_f = 0.20$ (PE:EtOAc = 7:1); ¹H NMR (400 MHz, CDCl₃) δ 1.63 (s, 3H), 3.40 (s, 3H), 3.69 (s, 3H), 3.77 (s, 3H), 5.83 (d, J = 8.0 Hz, 1H), 6.20 (d, J = 8.0 Hz, 1H), 6.58 (dt, J = 1.2, 7.2 Hz, 1H), 6.84-6.93 (m, 3H), 7.02 (dd, J = 1.6, 7.6 Hz, 1H), 7.05-7.10 (m, 2H), 7.25-7.29 (m, 1H), 7.84 (dd, J = 1.6, 8.0 Hz, 1H), 7.88 (dd, J = 1.6, 8.0 Hz, 1H), 7.96 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 166.9, 157.9, 149.2, 148.6, 143.9, 134.2, 132.1, 131.6, 130.8, 129.1, 122.7, 122.0, 121.7, 121.4, 120.5,

115.8, 113.1, 111.6, 107.4, 62.0, 51.7, 51.5, 29.2, 28.3. HRMS (ESI) calcd for $C_{26}H_{26}N_{3}O_{4} m/z$ [M+H]⁺: 444.1918, found: 444.1918.

(I) References

1. Vaidya. S.; Argade, N. Org. Lett. 2013, 15, 4006-4009.

2. Jiao, C-W.; Lin, W.-C.; Wu, Y.-T.; Wu, P.-L. J. Nat. Prod. 2008, 71, 1275–1279.

3. Vaidya, S. D.; Argade, N. P. Org. Lett. 2013, 15, 4006-4009.

4. Reddy, U. V. S.; Chennapuram, M.; Seki, K.; Seki, C.; Anusha, B.; Kwon, E.; Okuyama, Y.; Uwai, K.; Tokiwa, M.; Takeshita, M.; Nakano, H. *Eur. J. Org. Chem.* **2017**. 3874–3885.

(J) NMR Spectra

Restance of the second second

8.584 8.415

8 434 8 434 8 434 8 434 8 434 8 435 8

122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 ppm

S36

-105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 ppm

8 554 8 4127 8 8 4120

-112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -166 -166

 84580

 78580

 78580

 78580

 7863

 7863

 7863

 7863

 7863

 7863

 7863

 7863

 7863

 7863

 7863

 7863

 7864

 7863

 7864

 7864

 7864

 7865

 7865

 7865

 7866

 7745

 7867

 7867

 7867

 78666

 77458

 7867

 7867

 7867

 7867

 7867

 7867

 7867

 7867

 7868

 73150

 73151

 73152

 73152

 73152

 73161

 73161

 73172

 7318

- 2.133

(168.219)
 (168.219)
 (155.379)
 (155.379)
 (155.379)
 (147.085)
 (147.085)
 (147.086)
 (147.086)
 (147.198)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (128.248)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)
 (117.548)

^{-138.6 -138.8 -139.0 -139.2 -139.4 -139.6 -139.8 -140.0 -140.2 -140.4 -140.6 -140.8 -141.0 -141.2 -141.4 -141.6 -14}

-148.039 -148.093 -148.147 -148.147

-8.765 8.360 8.390 7.882 7.382 7.782 7.382 7.782 7.782 7.782 7.782 7.782 7.782 7.782 7.782 7.782 7.782 7.782 7.753 7.782 7.753 7.754 7.7557 7.754 7.7547 7.75

 \sim 2.075 \sim 2.024

3.101 3.057 3.057 3.057 3.057 3.057 3.057 3.057 3.057 3.057 3.035 1.385 1.385 1.385 1.715 681 1.715 681 1.715 681 1.750 1.550 1.550 1.5511

135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165 -167 -169 -171 -1 ppm

∠ 2.065 ~ 2.014

8.543 8.522 8.179 8.179 8.1777 8.1777 7.610 7.7556 7.75567 7.75567 7

-95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 ррш

∕_ 2.085 ∕_ 2.033

∠ 2.067 2.015

3af

S77

- 1.868

180 170 160 150 140 130 120 110

S80

ppm

50 40

-72.777 -72.792 -72.802 -72.818 -72.818 -72.818 -72.853 -72.853 -73.3386 -73.338 -73.3

A 8615 A 8615 A 8433 B 4333 B 4333 B 4333 A 77795 A 77795 A 77795 A 77795 A 77759

8 804 8 81384 8 84135 8 8415 8 845 8 8

88,806 88,806 88,806 88,357 88,837 88,835 84,855

8004 7.588 7.728 7.588 7.728 7.7 --- 9.181 Me NH `Ме, MeO₂C 29 0.93.T 1.08-I 0.97- 5.41-<u>T</u> 1.09-<u>∓</u> 2.94<u>=</u> 1.00-3.01₌ 2.94<u>-</u> 1.00-I 10.0 8.0 7.5 6.5 5.0 ppm 9.5 9.0 8.5 7.0 6.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 5.5 4.5

7,385 7,385 7,388 7,388 7,388 7,388 7,388 7,388 7,388 7,388 7,388 7,388 7,229 7,229 7,229 7,229 7,229 7,229 7,229 7,229 7,229 7,209 7,229 7,209 7,229 7,209 7,225 7,255 7,225

