Asymmetric iminium ion-catalyzed conjugate addition of 2-hydroxycinnamaldehydes and 2-oxocarboxylic esters: synthesis of chiral polysubstituted bridged bicyclic ketals

Yong-Chao Ming,^a Xue-Jiao Lv,^a Ying-Han Chen,^a Yan-Kai Liu*ab

^aMolecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.

^bLaboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

Email: liuyankai@ouc.edu.cn (Y.-K. Liu)

Supporting Information

Contents

A. General information	3
B. General procedure for the synthesis of α-Ketoes	ters 24
C. Optimization of the reaction conditions	5
D. Scope of the reaction	7
E. Other reactions	21
E1. Synthesis of 8E2. Synthesis of 12	
F. Synthetic transformation	23
G. 1 mmol scale reaction	32
H. DFT calculation	34
H1. Computational methodsH2. Computational resultsH3. Coordinates and energies of stationary points	35
I. NMR spectra and HPLC traces	43
J. Single crystal X-Ray diffraction data	127
K. Proposed reaction mechanism	128

A. General information

The 1 H and 13 C NMR spectra were recorded at600 MHz, 500 MHz or 400 MHz for 1 H and at 150 MHz, 125 MHz or 100 MHz for 13 C. The chemical shifts (δ) for 1 H and 13 C are given in ppm relative to residual signals of the solvents (CDCl $_3$ at 7.26 ppm 1 H NMR, 77.16 ppm 13 C NMR. d_6 -DMSO at 2.50 ppm 1 H NMR, 39.52 ppm 13 C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: $[\alpha]_D^{20}$ (c in g per 100 mL, solvent: CHCl $_3$, MeOH).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR, and in d_6 -DMSO at 3.33 ppm ¹H NMR; Ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; CH_2Cl_2 in CDCl₃ at 5.30 (s) ppm ¹H NMR; Grease in CDCl₃ at 0.86 (m), 1.26 (br, s) ppm 1H NMR.

All the reactions were set up under air and using commercial solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the benchtop. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and a phosphomolybdic acid or basic aqueous potassium permanganate (KMnO $_4$) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on a Hitachi Chromaster. Daicel Chiralpak IA, IB, IC, ID, OD-H or AD-H columns with n-hexane/i-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (S) and (R) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. The 2-hydroxyinnamaldehyde **1** were prepared according to literature procedures. [1]

B. General procedure for the synthesis of α -Ketoesters 2

The synthesis of α -Ketoesters 2b-2s:

$$R^{1} \cap Br$$
 + Mg $\xrightarrow{I_2}$ $R^{1} \cap MgBr$ + $R^{2} \cap QR^{2}$ \xrightarrow{THF} $R^{1} \cap QR^{2}$

The α -Ketoesters **2** were prepared according to literature procedures. [2]

Step 1: To a stirred suspension of magnesium turnings (2.2 mmol, 1.1 equiv.) in anhydrous THF (2 mL) was added a crystal of I_2 as an activator. Then bromide (2.4 mmol, 1.2 equiv.) in anhydrous THF (2 mL) was added dropwise. The suspension was stirred until magnesium was disappeared at room temperature, and the resulting Grignard reagent was used directly for the next step.

Step 2: To a solution of diethyl oxalate (2 mmol, 1.0 equiv.) in anhydrous THF (4 mL) at -78 °C was added dropwise the Grignard reagents (commercially available or prepared as shown above). After stirring for 1 h at -78 °C, the mixture was warmed to room temperature, quenched with a saturated solution of NH₄Cl (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in a rotary evaporator under vacuum. The residue was purified by silica gel column chromatography.

S4

^[1] Chen, Y.-H.; Sun, X.-L.; Guan, H.-S.; Liu, Y.-K., J. Org. Chem. 2017, 82, 4774.

^[2] Zhu, J.; Yuan, Y.; Wang, S.; Yao, Z.-J., ACS Omega 2017, 2(8), 4665.

C. Optimization of the reaction conditions

Table S1: Optimization of the Reaction Catalyst, Solvent and Additive

entry ^[a]	catalys t	solvent	additive	<i>t</i> (h) ^[b]	yield (%) ^[c]	ee (%) ^[d]	<i>dr</i> (%) ^[e]
1	3a	DCE	NaOAc	3	69	99	7:1
2	3b	DCE	NaOAc	48	47	99	4:1
3	3 c	DCE	NaOAc	4	58	99	9:1
4	3d	DCE	NaOAc	5	47	99	7:1
5	3a	DCE	BA	4.5	76	99	9:1
7	3a	DCE	DABCO	3	62	99	7:1
8	3a	DCE	DBU	2	47	99	4:1
9	3a	toluene	NaOAc	3	76	99	11:1
10	3a	THF	NaOAc	>5.5	62	99	7:1
11	3a	$CHCl_3$	NaOAc	3	54	99	11:1
12	3a	EA	NaOAc	5.5	58	99	9:1
13	3a	Et ₂ O	NaOAc	>5.5	47	99	4:1

[a] Unless otherwise specified, all reactions were carried out in solvent (0.2 mL) with cat. (20 mol %), additive (20 mol%) at 25 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford **4a**. Compound **4a** was respectively dissolved in CH₂Cl₂ (0.1 mmol in 0.5 mL) at 0 °C. TEA (3.0 equiv.), MsCl (2.0 equiv.) and DMAP (0.2 equiv.) were added in order, then transferred to 25 °C. After full conversion of the second step, the residue was purified by flash chromatography on gel to give product **6a**. [b] For the first step. [c] Isolated yield of **6a** over two steps. [d] Determined by HPLC analyses of isolated compound **6a** on chiral stationary phases. [e] Determined by ¹H NMR analyses of isolated compound **6a**.

Table S2: Optimization of the Reaction Temperature

entry ^[a]	catalyst	additive	<i>T</i> (°C)	t (h) [b]	yield	ee	dr
					(%) ^[c]	(%) ^[d]	(%) ^[e]
1	3a	NaOAc	0	40	43	99	10:1
2 M	3a	NaOAc	0	6	62	99	5:1
31/1	3a	NaOAc	25	2.5	51	99	4:1
4	3a	NaOAc	40	2.5	53	99	5:1

[a] Unless otherwise specified, all reactions were carried out in solvent (0.2 mL) with cat. (20 mol %), additive (20 mol%) at 25 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford $\mathbf{4a}$. Compound $\mathbf{4a}$ was dissolved in $\mathrm{CH_2Cl_2}$ (0.1 mmol in 0.5 mL) at 0 °C. TEA (3.0 equiv.), MsCl (2.0 equiv.) and DMAP (0.2 equiv.) were added in order, then transferred to 25 °C. After full conversion of the second step, the residue was purified by flash chromatography on silica gel to give product $\mathbf{6a}$. [b] For the first step. [c] Isolated yield of $\mathbf{6a}$ over two steps. [d] Determined by HPLC analyses of isolated compound $\mathbf{6a}$ on chiral stationary phases. [e] Determined by 1 H NMR analyses of isolated compound $\mathbf{6a}$. [f] The reaction was carried out with $\mathbf{3e}$ (20 mol%).

DCE= dichloroethane EA = ethyl acetate

THF = tetrahydrofuran BA = benzoic acid

TEA = triethylamine MsCl = methylsufonyl chloride

DBU = 1,8-diazabicyclo[5,4,0]undec-7-ene DMAP = 4-dimethylaminopyridine

DABCO = triethylenediamine

D. Scope of the reaction

$$R^{1} \stackrel{\text{OH}}{\underset{\parallel}{\text{U}}} O + \\ R^{2} \qquad \text{coor}^{3} \qquad \text{toluene, 25 °C} \qquad R^{1} \stackrel{\text{II}}{\underset{\parallel}{\text{U}}} R^{2} \stackrel{\text{COOR}^{3}}{\underset{\parallel}{\text{OH}}} CH_{2}CI_{2}, 25 °C \qquad R^{1} \stackrel{\text{II}}{\underset{\parallel}{\text{U}}} R^{2} \stackrel{\text{COOR}^{3}}{\underset{\parallel}{\text{OH}}}$$

General procedure of oxidation: A glass vial equipped with a magnetic stirring bar was charged with catalyst **3a** (0.02 mmol, 6.5 mg, 20 mol%) in toluene (0.2 mL), then 2-hydroxycinnamaldehyde **1** (0.1 mmol, 1.0 equiv.), NaOAc (0.02 mmol, 1.6 mg, 20 mol%) and 2-oxocarboxylic ester **2** (0.12 mmol, 1.2 equiv.) was added. The reaction mixture was stirred at 25 °C for 3 h until the material **1** disappeared. After completion of the reaction, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford **4**. Then the product **4** (1.0 equiv.) was dissolved in CH₂Cl₂ (0.2 mmol in 1 mL). Dess-Martin Periodinane (DMP, 1.5 equiv.) was added to the reaction mixture. After full conversion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to give product **5a**, **5b** and **5i** for NMR and HPLC analysis.

5a was obtained as a white solid 21 mg in 76% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.3 (dd, J = 6.9, 1.5 Hz, 1H), 7.1 (dd, J = 7.6, 1.8 Hz, 1H), 7.1 (td, J = 8.0, 7.4, 1.2 Hz, 3H), 4.4 (ddd, J = 10.5, 7.1, 3.5 Hz, 2H), 3.1 – 3.0 (m, 2H), 2.9 – 2.8 (m, 1H), 2.8 (qd, J = 6.9, 1.7 Hz, 1H), 1.4 (t, J = 7.1 Hz, 4H), 1.0 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ δ 166.9, 164.6, 148.5, 129.5, 129.5, 123.5, 121.9, 117.9, 100.7, 63.0, 40.5, 34.7, 31.7, 14.1, 13.5 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₅H₁₇O₅⁺ 277.1071, found 277.1072. [α]_D²⁰ -52.13 (c = 0.5 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 14.15 min, t_{minor} = 10.85 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, d**r** = **11:1**.

5b was obtained as a yellow solid 14 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.0 (dd, J = 8.4, 2.2 Hz, 1H), 7.0 (d, J = 8.4 Hz, 1H), 6.9 (d, J = 2.2 Hz, 1H), 4.4 (dtt, J = 14.3, 7.1, 3.6 Hz, 2H), 3.0 – 2.9 (m, 2H), 2.9 (dd, J = 19.4, 3.7 Hz, 1H), 2.8 – 2.7 (m, 1H), 2.3 (s, 3H), 1.4 (t, J = 7.2 Hz, 4H), 1.0 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 167.1, 164.7, 146.2, 133.0, 130.1, 129.7, 121.5, 117.6, 100.8, 63.0, 40.6, 34.7, 31.8, 20.6, 14.1, 13.5 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₆H₁₉O₅⁺ 291.1227, found 291.1222. [α]_D²⁰ -86 (c = 0.8 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 24.31 min, t_{minor} = 9.96 min, **ee** = **97**%. The diastereomeric ratio was determined by ¹H NMR, dr >**20:1**.

5i was obtained as a white solid 15 mg in 39% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.2 (d, J = 1.1 Hz, 1H), 7.1 (t, J = 8.1 Hz, 1H), 6.9 (dd, J = 8.3, 1.1 Hz, 1H), 4.4 (qd, J = 7.2, 2.6 Hz, 2H), 3.4 (ddd, J = 5.6, 3.6, 1.6 Hz, 1H), 3.0 (dd, J = 18.7, 5.8 Hz, 1H), 2.8 (dt, J = 19.0, 1.4 Hz, 1H), 2.7 (qd, J = 7.0, 3.6 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.3 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 164.8, 150.1, 130.2, 126.7, 124.7, 123.2, 116.9, 101.2, 63.1, 33.4, 31.2, 30.6, 14.1, 12.5 ppm. **HRMS**: [M+H]⁺ *calcd.* for C₁₅H₁₆⁷⁹BrO₅⁺ 355.0176, found 355.0179; *calcd.* for C₁₅H₁₆⁸¹BrO₅⁺ 357.0155, found 357.0157. [α]_D²⁰ - 71.62 (c = 0.7 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ID column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 21.61 min, t_{minor} = 23.84 min, **ee** = **91**%. The diastereomeric ratio was determined by ¹H NMR, d**r** = **7:1**.

5' was obtained as a colorless oil 15 mg in 41% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1). ¹H NMR (400 MHz, CDCl₃) δ 7.2 (td, J = 7.8, 1.6 Hz, 1H), 7.1 (dd, J = 7.6, 1.6 Hz, 1H), 7.0 (td, J = 7.5, 1.2 Hz, 1H), 6.9 (dd, J = 8.1, 1.1 Hz, 1H), 4.2 (q, J = 7.2 Hz, 2H), 3.7 (dq, J = 8.6, 7.0 Hz, 1H), 3.3 (ddd, J = 8.8, 5.5, 3.5 Hz, 1H), 2.8 (dd, J = 5.8, 4.5 Hz, 2H), 1.6 (s, 9H), 1.2 (t, J = 7.1 Hz, 3H) 1.2 (d, J = 7.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 167.7, 160.4, 151.4, 136.9, 128.7, 128.1, 126.7, 124.4, 117.6, 85.2, 62.5, 44.2, 38.0, 34.5, 27.7, 13.9, 12.6 ppm. HRMS: [M+H]⁺ calcd. for C₂₀H₂₆NO₆⁺ 376.1755, found 376.1756. [α]_D²⁰ +24.72 (c = 1.0 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 35.62 min, t_{minor} = 23.18 min, ee = 98%. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

General procedure of dehydration: The method for obtaining product **4** has been described above. Then the product **4** (1.0 equiv.) was dissolved in CH_2Cl_2 (0.2 mmol in 1 mL) at 0 °C in the ice bath. TEA (3.0 equiv.), MsCl (2.0 equiv.), DMAP (0.2 equiv.) were added to the reaction mixtures in order. After full conversion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 to 10/1) to give product **6** for NMR and HPLC analysis.

6a was obtained as a white solid 19 mg in 76% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz,

CDCl₃) δ 7.2 (ddd, J = 8.1, 7.2, 1.7 Hz, 1H), 7.1 (ddd, J = 11.4, 7.8, 1.5 Hz, 2H), 6.9 (td, J = 7.3, 1.3 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.1, 5.8 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.2 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 1.4 (t, J = 7.2 Hz, 3H), 0.9 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 150.9, 140.6, 128.0, 127.7, 124.3, 121.9, 116.6, 108.0, 98.3, 62.4, 33.6, 30.5, 14.1, 13.1 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₅H₁₇O₄⁺ 261.1121, found 261.1125. [α]_D²⁰ -228.93 (c = 0.50 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 210 nm, t_{major} = 8.47 min, t_{minor} = 6.05 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr = **11:1**.

6b was obtained as a yellow solid 17 mg in 62% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.0 – 6.9 (m, 2H), 6.8 (d, J = 1.9 Hz, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.2, 5.8 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.1 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 7.0, 2.9 Hz, 1H), 2.3 (s, 3H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.7, 148.6, 140.7, 131.2, 128.4, 128.2, 124.0, 116.3, 108.0, 98.3, 62.4, 33.6, 30.5, 20.6, 14.1, 13.1 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₆H₁₉O₄⁺ 275.1278, found 275.1273. [α]_D²⁰ -67.64 (c = 0.75 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR, dr = 9:1.

6c was obtained as a white solid 15 mg in 54% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.0 – 6.9 (m, 1H), 6.9 – 6.8 (m, 2H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.1, 5.8 Hz, 1H), 4.5 – 4.3 (m, 2H), 3.2 (ddd, J = 7.2, 3.0, 1.3 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.1, 152.1, 149.6,

140.9, 127.1, 122.9 (d, J = 3.6 Hz), 121.8 (d, J = 6.7 Hz), 114.8 (d, J = 17.9 Hz), 107.5, 98.1, 62.6, 33.3 (d, J = 2.7 Hz), 30.4, 14.1, 13.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -134.1 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₅H₁₆FO₄⁺ 279.1027, found 279.1025. [α]_D²⁰ -52.27 (c = 0.75 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 5.16 min, t_{minor} = 5.51 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, dr >**20:1**.

6d was obtained as a yellow solid 17 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, CDCl₃) δ 6.9 (d, J = 8.3 Hz, 1H), 6.7 (d, J = 2.5 Hz, 1H), 6.5 (dd, J = 8.3, 2.5 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.1, 5.8 Hz, 1H), 4.5 – 4.3 (m, 2H), 3.8 (s, 3H), 3.1 (dd, J = 7.1, 3.0 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 6.9 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 159.3, 151.6, 140.3, 128.3, 116.5, 108.5, 108.4, 101.9, 98.3, 62.4, 55.4, 32.8, 30.7, 14.1, 13.1 ppm. HRMS: [M+H]⁺ calcd. for C₁₆H₁₉O₅⁺ 291.1227, found 291.1224 [α]_D²⁰ -101.80 (c = 0.85 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 15.90 min, t_{minor} = 32.61 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

6e was obtained as a white solid 16 mg in 54% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate =40/1). **1H NMR** (400 MHz, CDCl₃) δ 7.1 (d, J = 2.0 Hz, 1H), 7.0 (d, J = 8.0 Hz, 1H), 6.9 (dd, J = 8.0, 2.0 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.1, 5.8 Hz, 1H), 4.4 (qq, J = 10.8, 7.1 Hz, 2H), 3.1 (dd, J = 7.1, 3.0 Hz, 1H), 2.6 (qd, J = 7.0, 3.0 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.2, 151.6, 140.7, 132.8, 128.7, 123.0, 122.0, 117.0, 107.7, 98.3,

62.5, 33.1, 30.3, 14.1, 13.0 ppm. **HRMS**: [M+H]⁺ *calcd*. for $C_{15}H_{16}^{35}ClO_4^+$ 295.0732, found 295.0730; *calcd*. for $C_{15}H_{16}^{37}ClO_4^+$ 297.0301, found 297.0303. [α]_D²⁰ -167.90 (c = 0.70 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak Id column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 7.15 min, t_{minor} = 6.51 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr >**20:1**.

6f was obtained as a white solid 17 mg in 53% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1). ¹H NMR (400 MHz, CDCl₃) δ 7.8 (dd, J = 8.5, 2.2 Hz, 1H), 7.7 (d, J = 2.1 Hz, 1H), 7.0 (d, J = 8.5 Hz, 1H), 6.3 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.1, 5.8 Hz, 1H), 4.4 – 4.2 (m, 2H), 3.8 (s, 3H), 3.2 (dd, J = 7.1, 3.0 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 1.3 (t, J = 7.1 Hz, 3H), 0.8 (d, J = 7.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 166.1, 155.0, 140.6, 129.9, 129.7, 124.5, 123.8, 116.5, 107.7, 98.5, 62.6, 52.0, 33.4, 30.3, 14.1, 13.0 ppm. HRMS: [M+H]⁺ calcd. for C₁₇H₁₉O₆⁺ 319.1176, found 319.1176. [α]_D²⁰ -121.18 (c = 0.85 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ID column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 12.22 min, t_{minor} = 11.21 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

6g was obtained as a white solid 17 mg in 47% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate =50/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.5 – 7.5 (m, 2H), 7.3 (t, J = 7.7 Hz, 3H), 7.3 – 7.2 (m, 2H), 7.1 (d, J = 8.5 Hz, 1H), 7.0 (d, J = 5.1 Hz, 2H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.2, 5.7 Hz, 1H), 4.5 – 4.3 (m, 2H), 3.2 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 150.6, 140.7, 137.5, 131.4, 128.7, 127.9, 127.4, 127.3, 126.3, 126.1, 126.0, 124.6, 116.9, 107.9, 62.5, 33.7, 30.5, 14.2, 13.1 ppm.

HRMS: [M+H]⁺ *calcd*. for $C_{23}H_{23}O_4^+$ 363.1591, found 363.1591. [α]_D²⁰ -206.12 (c = 0.85 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 13.05 min, t_{minor} = 9.30 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr = **14:1**.

6h was obtained as a white solid 16 mg in 54% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.1 (dd, J = 8.6, 2.5 Hz, 1H), 7.1 – 7.0 (m, 2H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.2, 5.7 Hz, 1H), 4.5 – 4.3 (m, 2H), 3.1 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 7.0, 2.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.3, 149.6, 141.0, 127.7, 127.6, 126.5, 126.0, 117.9, 107.4, 98.3, 62.5, 33.5, 30.2, 14.1, 13.0 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₅H₁₆³⁵ClO₄⁺ 295.0732, found 295.0733; *calcd*. C₁₅H₁₆³⁷ClO₄⁺ 297.0703, found 297.0702. [α]_D²⁰ -148.36 (c = 0.75 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 19.75 min, t_{minor} = 11.13 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, dr > **20:1**.

6i was obtained as a white solid 15 mg in 34% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.1 (dd, J = 7.9, 1.3 Hz, 1H), 7.0 (t, J = 8.0 Hz, 1H), 6.9 (dt, J = 8.1, 1.0 Hz, 1H), 6.5 (d, J = 5.8 Hz, 1H), 5.1 (td, J = 6.2, 1.6 Hz, 1H), 4.4 (qq, J = 10.8, 7.2 Hz, 2H), 3.6 (dd, J = 6.6, 2.2 Hz, 1H), 2.4 (qt, J = 6.8, 1.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.1 (d, J = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 152.7, 140.9, 128.7, 128.2, 125.1, 121.1, 115.6, 101.9, 98.1, 62.5, 33.3, 30.2, 14.1, 12.6 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₅H₁₆⁷⁹BrO₄⁺ 339.0227,

found 339.0225; *calcd.* for $C_{15}H_{16}^{81}BrO_{4}^{+}$ 341.0207, found 341.0209. [α] $_{D}^{20}$ -106.86 (c = 0.35 in CHCl $_{3}$). The diastereomeric ratio was determined by ^{1}H NMR, dr = 5:1.

6j was obtained as a yellow oil 12 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 75/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.2 (td, J = 7.8, 1.7 Hz, 1H), 7.1 – 7.0 (m, 2H), 6.9 (td, J = 7.3, 1.3 Hz, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.2, 5.7 Hz, 1H), 4.5 – 4.3 (m, 3H), 3.3 (dd, J = 7.3, 2.9 Hz, 1H), 2.5 (dt, J = 10.6, 3.1 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.3 – 1.3 (m, 1H), 1.2 (ddt, J = 15.7, 9.5, 2.8 Hz, 2H), 1.1 – 1.0 (m, 1H), 0.8 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 151.1, 140.8, 127.9, 127.7, 124.2, 121.8, 116.6, 107.7, 98.4, 62.4, 35.2, 30.3, 28.4, 19.8, 14.1, 13.8 ppm. **HRMS**: [M+H]+ *calcd*. for C₁₇H₂₁O₄+ 289.1434, found 289.1431. [α]_D²⁰ - 56.00 (c = 0.60 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ID column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 21.63 min, t_{minor} = 48.50 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr = **8:1**.

6k was obtained as a colorless oil 14 mg in 44% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 75/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.1 (td, J = 7.8, 7.3, 1.7 Hz, 1H), 7.1 – 7.0 (m, 2H), 6.9 (td, J = 7.3, 1.2 Hz, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.2, 5.7 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.3 (dd, J = 7.3, 2.9 Hz, 1H), 2.4 (dt, J = 10.5, 2.9 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.3 – 1.1 (m, 8H), 0.8 (t, J = 6.7 Hz, 3H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 166.8, 151.2, 140.9, 127.9, 127.7, 124.3, 121.9, 116.7, 107.7, 98.5, 62.4, 35.5, 31.4, 30.4, 26.3, 26.2, 22.4, 14.2, 14.0 ppm. **HRMS**: [M+H]+ *calcd*. for $C_{19}H_{25}O_4$ + 317.1747, found 317.1747. [α]_D²⁰ -53.68 (c = 1.00 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column

[n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 4.67 min, t_{minor} = 6.6 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

61 was obtained as a colorless oil 12 mg in 34% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.2 (d, J = 7.5 Hz, 2H), 7.2 – 7.1 (m, 2H), 7.1 – 7.0 (m, 4H), 7.0 – 6.9 (m, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.2, 5.7 Hz, 1H), 4.3 (dddd, J = 14.9, 10.7, 7.1, 3.6 Hz, 2H), 3.3 (dd, J = 7.3, 2.9 Hz, 1H), 2.6 (ddd, J = 14.7, 9.4, 5.6 Hz, 1H), 2.6 – 2.5 (m, 1H), 2.5 (dd, J = 10.5, 3.1 Hz, 1H), 1.6 (ddt, J = 13.3, 6.3, 3.2 Hz, 1H), 1.3 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 151.2, 140.9, 140.8, 128.5, 128.3, 128.2, 127.9, 127.8, 126.1, 124.0, 122.0, 116.7, 107.5, 98.2, 62.5, 35.0, 32.9, 30.4, 27.9, 14.1 ppm. HRMS: [M+H]+ calcd. for $C_{22}H_{23}O_4$ + 351.1591, found 351.1588. [α] $_{\bf D}^{20}$ -118.00 (c = 0.60 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 6.02 min, t_{minor} = 8.79 min, **ee** = 97%. The diastereomeric ratio was determined by ¹H NMR, d = 8:1.

6m was obtained as a yellow solid 14 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.2 – 7.2 (m, 2H), 7.1 – 7.1 (m, 3H), 7.1 (dd, J = 6.9, 3.0 Hz, 2H), 6.9 – 6.8 (m, 2H), 6.5 (d, J = 5.8 Hz, 1H), 5.4 (dd, J = 7.0, 5.8 Hz, 1H), 4.3 – 4.1 (m, 2H), 3.9 (d, J = 2.8 Hz, 1H), 3.5 (dd, J = 7.1, 2.8 Hz, 1H), 1.0 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.1, 151.9, 140.6, 136.5, 128.4, 127.9, 127.8, 127.3, 123.9, 122.2, 116.5, 108.8, 97.4, 62.3, 42.3, 35.5, 13.7 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₂₀H₁₉O₄⁺ 323.1278, found 323.1277. [α]_D²⁰ - 23.67 (c = 0.69 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} =

7.88 min, t_{minor} = 7.38 min, **ee** = **92%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

6n was obtained as a white solid 13 mg in 45% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.2 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.1 (dd, J = 8.2, 1.3 Hz, 1H), 7.0 (dd, J = 7.5, 1.7 Hz, 1H), 6.9 (td, J = 7.3, 1.3 Hz, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.7 (dddd, J = 17.0, 10.1, 8.3, 5.8 Hz, 1H), 5.3 – 5.3 (m, 1H), 5.0 (d, J = 10.1 Hz, 1H), 4.8 (dq, J = 17.0, 1.6 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.3 (dd, J = 7.3, 2.9 Hz, 1H), 2.5 – 2.5 (m, 1H), 2.2 – 2.1 (m, 1H), 1.7 – 1.7 (m, 1H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 151.1, 140.8, 134.3, 128.0, 127.8, 123.9, 122.0, 117.8, 116.6, 107.7, 97.9, 62.5, 35.1, 31.1, 30.1, 14.1 ppm. HRMS: [M+H]⁺ calcd. for C₁₇H₁₉O₄⁺ 287.1278, found 287.1274. [α]_D²⁰ -126.46 (c = 0.65 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 4.98 min, t_{minor} = 5.99 min, **ee** = 99%. The diastereomeric ratio was determined by ¹H NMR, dr = 8:1.

60 was obtained as a colorless oil 12 mg in 34% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.2 – 7.1 (m, 1H), 7.1 – 7.0 (m, 2H), 6.9 (td, J = 7.4, 1.2 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.3, 5.7 Hz, 1H), 4.4 – 4.3 (m, 2H), 4.1 (q, J = 7.1 Hz, 2H), 3.4 (dd, J = 7.3, 2.9 Hz, 1H), 3.0 (ddd, J = 9.5, 3.9, 2.9 Hz, 1H), 2.4 (dd, J = 17.0, 3.9 Hz, 1H), 2.0 (dd, J = 16.9, 9.5 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.2 (t, J = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.2, 166.3, 150.8, 140.7, 128.2, 128.0, 123.8, 122.2, 116.8, 107.6, 97.2, 62.7, 60.8, 32.3, 32.2, 31.4, 14.1, 14.1 ppm. **HRMS**: [M+H]+ *calcd*. for C₁₈H₂₁O₆+ 333.1333, found 333.1333. [α]_D²⁰ -118.22 (c = 0.60 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 220

nm, $t_{major} = 7.24$ min, $t_{minor} = 14.75$ min, **ee >99%**. The diastereomeric ratio was determined by ¹H NMR, $d\mathbf{r} = 7:1$.

6p was obtained as a yellow oil 7.5 mg in 23% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.1 (ddd, J = 8.2, 7.2, 1.7 Hz, 1H), 7.1 – 7.0 (m, 2H), 6.9 – 6.9 (m, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.3, 5.7 Hz, 1H), 4.9 (t, J = 4.7 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.9 – 3.9 (m, 2H), 3.8 – 3.8 (m, 2H), 3.5 (dd, J = 7.3, 3.0 Hz, 1H), 2.7 (dt, J = 9.8, 3.0 Hz, 1H), 1.6 (ddd, J = 14.5, 4.7, 3.0 Hz, 1H), 1.4 – 1.4 (m, 1H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 151.0, 140.7, 128.2, 127.7, 124.3, 122.0, 116.7, 107.6, 102.9, 97.9, 64.9, 64.7, 62.5, 31.7, 31.3, 30.8, 14.1 ppm. **HRMS**: [M+H]+ *calcd*. for C₁₈H₂₁O₆+ 333.1333, found 333.1335. [α]_D²⁰ +23.96 (c = 0.37 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 80/20, 1 mL/min], λ = 205 nm, t_{major} = 6.56 min, t_{minor} = 7.71 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

6q was obtained as a colorless oil 15 mg in 44% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.2 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 7.1 – 7.0 (m, 2H), 6.9 (td, J = 7.3, 1.3 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 6.0 (ddt, J = 17.2, 10.4, 5.8 Hz, 1H), 5.4 (dq, J = 17.2, 1.5 Hz, 1H), 5.4 – 5.3 (m, 2H), 4.8 – 4.7 (m, 2H), 3.2 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 0.9 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 150.8, 140.6, 131.2, 128.0, 127.7, 124.2, 121.9, 119.4, 116.6, 108.0, 98.4, 66.7, 33.5, 30.5, 13.1ppm. **HRMS**: [M+H]⁺ calcd. for C₁₆H₁₇O₄⁺ 273.1121, found 273.1120. [α]_D²⁰ -154.58 (c = 0.75 in CHCl₃). The

enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 95/5, 1 mL/min], λ = 205 nm, t_{major} = 8.23 min, t_{minor} = 12.45 min, **ee** = **99%**. The diastereomeric ratio was determined by 1 H NMR, dr > 20:1

6r was obtained as a white solid 18 mg in 62% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.1 (td, J = 7.7, 7.2, 1.7 Hz, 1H), 7.0 (ddd, J = 12.5, 7.8, 1.5 Hz, 2H), 6.9 (td, J = 7.3, 1.3 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 5.3 (dd, J = 7.1, 5.8 Hz, 1H), 3.1 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 6.9, 2.9 Hz, 1H), 1.6 (s, 9H), 0.9 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 165.6, 151.1, 140.8, 127.9, 127.6, 124.4, 121.7, 116.6, 107.8, 98.1, 83.2, 33.7, 30.5, 27.9, 13.0 ppm. **HRMS**: [M+H]⁺ *calcd*. for C₁₇H₂₁O₄⁺ 289.1434, found 289.1430. [α]_D²⁰ - 171.73 (c = 0.50 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 8.82 min, t_{minor} = 4.49 min, **ee** = **97**%. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

6s was obtained as a yellow oil 19 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.5 – 7.3 (m, 5H), 7.1 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.1 (ddd, J = 13.9, 7.8, 1.5 Hz, 2H), 6.9 (td, J = 7.3, 1.3 Hz, 1H), 6.4 (d, J = 5.8 Hz, 1H), 5.4 (d, J = 12.3 Hz, 1H), 5.3 – 5.3 (m, 2H), 3.1 (dd, J = 7.1, 2.9 Hz, 1H), 2.6 (qd, J = 7.0, 2.9 Hz, 1H), 0.8 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 150.9, 140.6, 135.1, 128.7, 128.6, 128.4, 128.0, 127.7, 124.2, 121.9, 116.6, 108.0, 98.4, 67.8, 33.5, 30.5, 13.0 ppm. **HRMS**: [M+H]⁺ *calcd.* for

 $C_{20}H_{19}O_4^+$ 323.1278, found 323.1276. **[\alpha]** $_{\mathbf{D}}^{20}$ -149.16 (c = 0.75 in CHCl $_3$). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 10.03 min, t_{minor} = 8.74 min, **ee** = **98%**. The diastereomeric ratio was determined by 1 H NMR, dr >**20:1**.

Detailed method: A glass vial equipped with a magnetic stirring bar was charged with methyl (*E*)-2-oxo-4-phenylbut-3-enoate **10** (0.13 mmol, 25 mg, 1.3 equiv.) in toluene (0.2 mL), then Hantzsch ester (HE) (0.14 mmol, 35 mg, 1.4 equiv.) was added and the resulting solution was stirred for about 12 h at 25 °C until the material 10 disappeared. After completion of the reaction, the crude product was directly put into the next step without column chromatography separation. Then the catalyst **3a** (0.02 mmol, 6.5 mg, 20 mol%), 2-hydroxycinnamaldehyde 1a (0.1 mmol, 14.8 mg, 1.0 equiv.) and NaOAc (0.02 mmol, 1.6 mg, 20 mol%) was added in one portion and the resulting solution was stirred for about 3 h at 25 °C until the material **1a** disappeared. The reaction mixtures were diluted by 0.5 mL dichloromethane. Then TEA (0.3 mmol, 30.3 mg, 3.0 equiv.), MsCl (0.2 mmol, 22.9 mg, 2.0 equiv.), DMAP (0.02 mmol, 2.4 mg, 0.2 equiv.) were added to the reaction mixtures at 0 °C in the ice bath. After full conversion of the reaction about 8 h at 25 °C, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30/1) to give product 6t as a yellow oil 15 mg in 47% yield for two steps. ¹H **NMR** (400 MHz, CDCl₃) δ 7.3 – 7.3 (m, 1H), 7.3 (s, 1H), 7.2 (dt, J = 5.4, 1.2 Hz, 1H), 7.2 – 7.2 (m, 2H), 7.1 (d, J = 8.1 Hz, 1H), 7.0 - 7.0 (m, 4H), 6.4 (d, J = 5.7 Hz, 1H), 5.2 (dd, J = 7.3, 5.7)Hz, 1H), 3.9 (s, 3H), 3.0 (dd, I = 7.3, 2.6 Hz, 1H), 2.8 – 2.7 (m, 2H), 2.2 (dd, I = 14.6, 12.3 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 151.0, 140.7, 138.1, 129.1, 128.5, 128.2, 127.9, 126.6, 124.0, 122.2, 116.8, 107.8, 98.1, 53.3, 37.5, 32.9, 29.7 ppm. **HRMS**: [M+Na]⁺ *calcd.* for $C_{20}H_{18}O_4Na^+$ 345.1097, found 345.1100. $[\alpha]_D^{20}$ -107.17 (c = 0.40 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [nhexane/i-PrOH = 90/10, 1 mL/min], λ = 220 nm, t_{major} = 6.21 min, t_{minor} = 8.08 min, **ee** = **94%**. The diastereomeric ratio was determined by ¹H NMR, $d\mathbf{r}$ = **7:1**.

E. Other reactions

E1. Synthesis of 8

Detailed method: A glass vial equipped with a magnetic stirring bar was charged with catalyst 3a (0.02 mmol, 6.5 mg, 20 mol%) in toluene (0.2 mL), then 2hydroxycinnamaldehyde 1a (0.1 mmol, 14.8 mg, 1.0 equiv.), NaOAc (0.02 mmol, 1.6 mg, 20 mol%) and the 2-oxocarboxylic amide 7 (0.12 mmol, 18.9 mg, 1.2 equiv.) was added. The reaction mixture was stirred at 25 °C for 8 h. until the material 1a disappeared. After completion of the reaction, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford **4'a**. Then the product **4'a** (0.1 mmol, 30.5 mg, 1.0 equiv.) was respectively dissolved in CH₂Cl₂ (0.2 mmol in 1 mL) at 0 °C in the ice bath. TEA (0.3 mmol, 30.3 mg, 3.0 equiv.), MsCl (0.2 mmol, 22.8 mg, 2.0 equiv.), DMAP (0.02 mmol, 2.4 mg, 0.2 equiv.) were added to the reaction mixtures in order. After full conversion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give product 8 as a yellow solid 13 mg in 43% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.2 – 7.0 (m, 2H), 7.0 – 6.8 (m, 2H), 6.0 (q, J = 2.0 Hz, 1H), 3.4 (dq, J = 14.2, 7.1 Hz, 1H), 3.3 (dq, J = 14.2, 7.2 Hz, 1H),3.1 - 3.1 (m, 2H), 3.0 (dq, J = 14.3, 7.1 Hz, 1H), 2.3 (ddd, J = 12.9, 3.4, 2.0 Hz, 1H), 2.0 (dt, J = 12.9), 3.4, 3.4, 3.50 Hz, 3.40 Hz, 3.41 Hz, 3.41 Hz, 3.42 Hz, 3.43 Hz, 3.44 Hz, 3.45 Hz, 3.45 Hz, 3.47 Hz, 3.47 Hz, 3.49 Hz, = 13.0, 2.6 Hz, 1H), 1.7 (s, 3H), 1.1 (t, I = 7.1 Hz, 3H), 0.9 (t, I = 7.1 Hz, 3H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 164.6, 152.1, 140.1, 127.8, 126.9, 126.2, 120.8, 115.8, 112.0, 91.7, 42.6,$ 39.2, 31.6, 25.4, 16.0, 13.9, 12.8 ppm. **HRMS**: [M+H]⁺ calcd. for C₁₇H₂₂NO₃⁺ 288.1594, found 288.1594. $[\alpha]_{D}^{20}$ +83.28 (c = 0.65 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 7.17 min, t_{minor} = 9.01 min, **ee** = **98%**.

.

E2. Synthesis of 12

Detailed method: A glass vial equipped with a magnetic stirring bar was charged with catalyst **3a** (0.02 mmol, 6.5 mg, 20 mol%) in toluene (0.2 mL), then 2-hydroxycinnamaldehyde **1a** (0.1 mmol, 14.8 mg, 1.0 equiv.), NaOAc (0.02 mmol, 1.6 mg, 20 mol%) and the indan-1,2-dione **11** (0.12 mmol, 17.5mg, 1.2 equiv.) was added. The reaction mixture was stirred at 25 °C for 1 h until the material **1a** disappeared. After completion of the reaction, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 7/1) to afford **12** as a yellow solid 22 mg in 78% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.9 (d, J = 7.6 Hz, 1H), 7.8 – 7.7 (m, 1H), 7.7 – 7.7 (m, 1H), 7.5 (t, J = 7.5 Hz, 1H), 7.3 – 7.3 (m, 2H), 7.0 – 7.0 (m, 1H), 7.0 (d, J = 8.1 Hz, 1H), 5.6 (s, 1H), 3.7 (s, 1H), 3.7 – 3.6 (m, 1H), 3.6 (s, 1H), 1.8 (q, J = 2.6 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 198.1, 152.2, 150.4, 136.2, 133.3, 129.0, 129.0, 128.1, 125.9, 124.9, 124.2, 121.4, 116.6, 94.9, 91.8, 49.7, 28.5, 22.5 ppm. **HRMS**: [M+NH₄]+ *calcd*. for C₁₈H₁₈O₄N+ 312.1230, found 312.1231. [α]_D²⁰-90.27 (c = 0.65 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 80/20, 1 mL/min], λ = 205 nm, t_{major} = 24.69 min, t_{minor} = 18.95 min, **ee** = **95%**.

F. Synthetic transformation

NMR, *dr* >20:1.

A solution of **6a** (18.2 mg, 0.07 mmol) and 20% Pd/C (3.6 mg) in absolute MeOH (1 mL) was placed under an atmosphere of hydrogen. After stirring for 18 h at 60 °C, the reaction mixture was filtered through a short pad of silica gel and concentrated in vacuo. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 20/1) to afford the desired product 13 as a colorless oil (19 mg, 99%).

ethyl (2S,6R,11R)-11-methyl-5,6-dihydro-4*H*-2,6-methanobenzo[*d*][1,3]dioxocine-

ethyl (2*S*,6*R*,11*R*)-11-methyl-5,6-dihydro-4*H*-2,6-methanobenzo[*d*][1,3]dioxocine-

2-carboxylate (13): ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.2 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 7.1 (ddd, J = 9.3, 7.8, 1.5 Hz, 2H), 7.0 (td, J = 7.4, 1.2 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.9 (dd, J = 12.0, 5.5 Hz, 1H), 3.6 (td, J = 12.5, 3.2 Hz, 1H), 3.0 (q, J = 3.2 Hz, 1H), 2.5 (qd, J = 6.9, 2.4 Hz, 1H), 2.3 (ddd, J = 13.0, 5.8, 3.5 Hz, 1H), 1.7 (td, J = 3.4, 1.1 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.8 (d, J = 7.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 154.2, 129.1, 128.2, 122.5, 121.7, 115.3, 98.9, 62.2, 59.8, 36.2, 33.8, 33.1, 14.3, 14.2 ppm. HRMS: [M+H]+ *calcd*. for C₁₅H₁₉O₄+ 263.1278, found 263.1280. [α] _{ρ} ²⁰ -59.78 (c = 0.90 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n -hexane/ i -PrOH = 95/5, 1 mL/min], λ = 220 nm, t _{major} = 14.14 min, t _{minor} = 7.67 min, e e = 98%. The diastereomeric ratio was determined by ¹H

To a solution of 6a (26 mg, 0.1 mmol) in CH₂Cl₂ (0.5mL) was added a solution of 3chloroperbenzoic acid (26 mg, 0.15 mmol) at 25 °C. The reaction mixture was stirred at room temperature for 0.5 h. After completion of the reaction, the product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 4/1) to afford the desired product 14 as a white solid (36 mg, 83%)

ethyl (2*R*,4*S*,5*S*,6*R*,11*R*)-5-((3-chlorobenzoyl)oxy)-4-hydroxy-11-methyl-5,6-dihydro-4*H*-2,6-methanobenzo[*d*][1,3]dioxocine-2-carboxylate (14): 1 H NMR (400 MHz, CDCl₃) δ 7.4 (ddd, *J* = 7.9, 2.1,

1.2 Hz, 1H), 7.4 – 7.3 (m, 1H), 7.3 (dt, J = 7.8, 1.4 Hz, 1H), 7.2 (dd, J = 7.7, 1.7 Hz, 2H), 7.2 (t, J = 7.9 Hz, 2H), 7.1 (ddt, J = 7.5, 3.8, 1.9 Hz, 2H), 7.0 (t, J = 1.9 Hz, 1H), 6.3 (d, J = 0.9 Hz, 1H), 4.4 – 4.3 (m, 2H), 4.1 (d, J = 3.3 Hz, 1H), 3.1 – 3.1 (m, 2H), 1.4 (t, J = 7.1 Hz, 3H), 0.9 (d, J = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.3, 163.4, 152.0, 134.2, 133.4, 130.6, 129.6, 129.5, 129.4, 129.3, 128.1, 122.2, 119.8, 116.6, 98.2, 93.6, 71.7, 62.7, 40.4, 25.7, 14.1, 13.5 ppm. **HRMS**: [M+H]⁺ *calcd*. for $C_{22}H_{22}ClO_7$ + 433.1049, found 433.1048. [α]_D²⁰ -78.29 (c = 1.75 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 210 nm, t_{major} = 11.31 min, t_{minor} = 13.00 min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

6a (26 mg, 0.1 mmol) and methyl (*E*)-2-oxo-4-phenylbut-3-enoate **10** (28.6 mg, 0.15 mmol) was dissolved in 1.0 mL toluene under argon atmosphere, and the resulting mixture was cooled to 0 °C. SnCl₄ (26 mg, 0.1 mmol) was then added and the reaction mixture was stirred vigorously at 0 °C. When substrate **6a** was disappeared on TLC, the crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1 to 4/1) to afford pure product *exo-***15** (10 mg, 22% yield) as a white solid and *endo-***15** (15 mg, 33% yield) as a white solid.

exo-6-ethyl 3-methyl (1*R*,6*R*,12*R*,13*R*)-13-methyl-1-phenyl-4a,12a-dihydro-1*H*,12*H*-6,12-methanobenzo[*d*]pyrano[3,2-g][1,3]dioxocine-3,6-dicarboxylate (*exo*-15): ¹H NMR (400 MHz, CDCl₃) δ 7.5 – 7.4 (m, 2H), 7.4 – 7.4 (m, 1H), 7.4 – 7.3 (m, 2H), 7.1

(ddd, J = 8.8, 7.4, 1.7 Hz, 1H), 7.0 (dd, J = 8.2, 1.2 Hz, 1H), 6.7 (td, J = 7.4, 1.2 Hz, 1H), 6.4 (d, J = 8.8, 7.4, 1.7 Hz, 1Hz)

J = 2.6 Hz, 1H), 5.8 (dd, J = 7.6, 1.6 Hz, 1H), 5.7 (d, J = 4.9 Hz, 1H), 4.4 – 4.3 (m, 2H), 4.2 (dd, J = 6.8, 3.1 Hz, 1H), 3.9 (s, 3H), 2.6 (t, J = 2.7 Hz, 1H), 2.6 (td, J = 6.7, 2.9 Hz, 1H), 2.5 – 2.4 (m, 1H), 1.4 (t, J = 7.1 Hz, 4H), 0.6 (d, J = 6.7 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 162.4, 150.2, 143.9, 139.0, 129.0, 129.0, 128.1, 127.7, 125.6, 122.1, 116.8, 110.5, 98.6, 92.7, 62.2, 52.5, 44.6, 39.7, 33.8, 27.2, 14.1, 13.6 ppm. HRMS: [M+NH₄]⁺ calcd. for $C_{26}H_{30}NO_7$ ⁺ 468.2017, found 468.2014. [α]_D²⁰ -33.73 (c = 0.50 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], $\lambda = 205$ nm, $t_{major} = 33.95$ min, $t_{minor} = 23.15$ min, ee = 99%. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

endo-6-ethyl 3-methyl (1R,6R,12R,13R)-13-methyl-1-phenyl-4a,12a-dihydro-1H,12H-6,12-methanobenzo[d]pyrano[3,2-g][1,3]dioxocine-3,6-dicarboxylate (endo-15): ¹H NMR (400 MHz, CDCl₃) δ 7.4 (dd, J = 8.1, 6.4 Hz, 2H), 7.4 – 7.4 (m, 1H), 7.2 (d, J

= 1.3 Hz, 2H), 7.2 (ddd, J = 8.3, 7.3, 1.7 Hz, 1H), 7.0 (dd, J = 8.3, 1.3 Hz, 1H), 6.9 (td, J = 7.4, 1.2 Hz, 1H), 6.8 (dd, J = 7.5, 1.7 Hz, 1H), 6.2 (d, J = 2.5 Hz, 1H), 5.5 (d, J = 3.1 Hz, 1H), 4.5 – 4.3 (m, 2H), 3.9 (dd, J = 11.3, 2.6 Hz, 1H), 3.8 (s, 3H), 3.1 (qd, J = 6.9, 2.5 Hz, 1H), 2.8 (t, J = 2.9 Hz, 1H), 2.1 (dt, J = 11.4, 3.1 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 0.8 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 162.5, 153.7, 141.5, 140.6, 129.2, 128.9, 128.8, 128.2, 127.7, 122.3, 122.2, 115.4, 114.3, 100.7, 92.6, 62.5, 52.3, 44.3, 38.1, 36.2, 28.1, 14.2, 12.9 ppm. HRMS: [M+NH₄]+ *calcd.* for C₂₆H₃₀NO₇+ 468.2017, found 468.2014. [α]_D²⁰ -57.78 (c = 0.30 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 25.90 min, t_{minor} = 6.59 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr >**20:1**.

6a (27.8 mg, 0.11 mmol) was dissolved in THF (0.2 mL), and sodium borohydride (8.3 mg, 0.22 mmol) was added portionwise to maintain a gentle evolution of gas. Then, the mixture was stirred for 6 h at room temperature. The reaction mixture was quenched

with saturated aqueous NH_4Cl and diluted with water. The aqueous portion was extracted with ethyl acetate. The organic parts were combined, dried over $MgSO_4$, filtered and concentrated under vacuum. The residue was purified by column chromatograph on a silica gel (petroleum ether/ethyl acetate = 10/1) to get compound alcohol **16** (24 mg, 99%) as a white solid.

((2*S*,6*R*,11*R*)-11-methyl-6*H*-2,6-methanobenzo[*d*][1,3]dioxocin-2-yl)methanol (16): ¹H NMR (400 MHz, CDCl₃) δ 7.2 – 7.1 (m, 1H), 7.0 (dd, J = 7.6, 1.7 Hz, 1H), 6.9 – 6.9 (m, 2H), 6.4 (d, J = 5.8 Hz, 1H), 5.2 (dd, J = 6.9, 5.8 Hz, 1H), 3.9 – 3.8 (m, 2H), 3.1 (dd, J = 6.9, 3.0 Hz, 1H), 2.4 (qd, J = 7.0, 3.0 Hz, 1H), 2.0 (s, 1H), 0.9 (d, J = 7.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 140.9, 128.1, 127.5, 125.1, 121.4, 115.8, 108.2, 100.7, 65.0, 34.3, 29.2, 13.2 ppm. HRMS: [M+H]⁺ calcd. for C₁₃H₁₅O₃⁺ 219.1016, found 219.1015. [α]_D²⁰ -156.22 (c = 1.20 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 7.61 min, t_{minor} = 9.97 min, ee >99%. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

To a solution of **6a** (26 mg, 0.1 mmol) in anhydrous THF (1 mL) at -78 °C was added dropwise the Grignard reagents (75 μ L, 2.9 M). After stirring for 1 h at -78 °C, the mixture was quenched with a saturated solution of NH₄Cl (1 mL), and extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and concentrated in a rotary evaporator under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50/1) to get compound alcohol **17** (40 mg, 99%) as a white solid.

((2*S*,6*R*,11*R*)-11-methyl-6*H*-2,6-methanobenzo[*d*][1,3]dioxocin-2-yl)diphenylmethanol (17): ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.8 – 7.8 (m, 2H), 7.7 (dd, J = 8.5, 1.5 Hz, 2H), 7.4 (dd, J = 8.3, 6.3 Hz, 2H), 7.3 – 7.3 (m, 2H), 7.3 (d, J = 1.7 Hz, 1H), 7.2 (ddd, J = 8.2, 7.3, 1.7 Hz, 1H), 7.1 (ddd, J = 9.3, 7.7, 1.4 Hz, 2H), 6.9

(td, J = 7.4, 1.2 Hz, 1H), 6.4 (d, J = 5.7 Hz, 1H), 5.3 (dd, J = 7.0, 5.7 Hz, 1H), 3.3 (s, 1H), 2.9 (dd, J = 7.0, 2.9 Hz, 1H), 2.1 (d, J = 7.7 Hz, 1H), 0.9 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 151.7, 144.8, 140.5, 129.1, 128.2, 127.7, 127.6, 127.5, 127.4, 127.2, 126.9, 125.3, 121.7, 115.9, 108.5, 104.2, 81.9, 36.0, 31.0, 15.0 ppm. **HRMS**: [M+H]⁺ *calcd*. for $C_{25}H_{23}O_3^+$ 371.1642, found 371.1640. [α] $_{\bf p}^{20}$ -107.00 (c = 2.00 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 220 nm, t_{major} = 7.52 min, t_{minor} = 5.97 min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

4a (27.8 mg, 0.1 mmol) and a stabilized ylide **18** (50.1 mg, 0.15 mmol) were dissolved in CH_2Cl_2 (0.5 mL), and the solution was stirring at room temperature for overnight. The crude product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate =15/1) to get product **19** as white solid (25 mg, 75%) and product **20** as white solid (7 mg, 21%).

ethyl (2*S*,3*R*,4*R*)-2-hydroxy-4-((*E*)-4-methoxy-4-oxobut-2-en-1-yl)-3-methylchromane-2-carboxylate (19): ¹H NMR (400 MHz, CDCl₃) δ 7.2 (d, J = 7.9 Hz, 1H), 7.1 (t, J = 7.6 Hz, 1H), 7.0 (t, J = 7.5 Hz, 1H), 6.8 (d, J = 8.1 Hz, 1H), 6.8 – 6.7 (m, 1H), 5.9 (d, J = 15.3 Hz, 1H), 4.5 (s, 1H), 4.4 – 4.3 (m, 2H), 3.7 (s, 3H), 3.1 – 3.0 (m, 2H), 2.8 – 2.7 (m, 1H), 2.2 (dq, J = 13.0, 6.6 Hz, 1H), 1.4 (t, J = 7.1 Hz, 3H), 1.0 (d, J = 6.5 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 166.6, 151.6, 145.2, 127.8, 126.7, 123.7, 123.6, 121.8, 117.6, 96.8, 63.2, 51.5, 35.4, 34.5, 32.1, 14.1, 13.6 ppm. HRMS: [M+NH₄]+ *calcd*. for C₁₈H₂₆O₆N+ 352.1755, found 352.1754. [α]_D²⁰ +16.94 (c = 1.20 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{mojor} = 7.59 min, t_{minor} = 6.29 min, t_{minor} = 8.1 Hz, 1H), 7.1 (t, t_{minor} = 6.29 min, t_{minor} = 9.9%. The diastereomeric ratio was determined by ¹H NMR, t_{minor} = 6.29 min, t_{minor} = 9.9%.

COOEt

ethyl (2S,3R,4R)-2-hydroxy-4-((Z)-4-methoxy-4-oxobut-2-en-1-yl)-3-methylchromane-2-carboxylate (20) : ¹H NMR (400 MHz, CDCl₃) δ 7.4 (dd, J = 8.1, 6.4 Hz, 2H), 7.2 (d, J = 7.9 Hz, 1H), 7.1 (t, J = 7.5 Hz, 1H), 7.0(td, J = 7.6, 1.2 Hz, 1H), 6.8 (dd, J = 8.1, 1.0 Hz, 1H), 6.0 (ddd, J = 11.7, 8.5,5.3 Hz, 1H), 5.8 (dt, J = 11.6, 1.8 Hz, 1H), 4.4 – 4.3 (m, 2H), 3.7 (s, 3H), 3.6 (dd, J = 15.3, 8.5 Hz, 1H), 3.3 - 3.2 (m, 1H), 3.1 (d, J = 11.8 Hz, 1H), 2.2 (dt, J = 12.6, 6.4 Hz, 1H), 1.4 (t, J = 7.1Hz, 3H), 1.0 (d, I = 6.6 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 166.9, 151.9, 146.6, 127.7, 127.1, 124.0, 121.8, 121.4, 117.5, 96.9, 63.2, 51.2, 35.6, 34.8, 28.3, 14.1, 13.7 ppm. **HRMS**: $[M+H]^+$ calcd. for $C_{18}H_{23}O_6^+$ 335.1489, found 335.1487. $[\alpha]_p^{20}$ +32.67 (c = 0.30 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 95/5, 1 mL/min], λ = 205 nm, t_{major} = 17.76 min, t_{minor} = 14.59 min, ee >99%. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

L-proline (0.02 mmol, 2.3 mg.) was added to a mixture of Et_3N (0.1 mmol, 10.1 mg), 4 (0.1 mmol, 27.8 mg), and nitroolefin 21 (0.12 mmol, 17.8 mg) in THF (0.2 mL) and stirred at room temperature. After completion of the reaction (as monitored by TLC), the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford 22.

22a was obtained as a white solid 15 mg in 35% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) ¹H NMR (400 MHz, CDCl₃) δ 7.6 (d, J = 7.9 Hz, 1H), 7.3 (s, 4H), 7.3 (dd, J = 5.5, 2.7 Hz, 1H), 7.2 (t, J = 7.6 Hz, 1H), 6.9 - 6.9 (m, 2H), 5.3 (d, J = 12.1 Hz, 1H), 4.9 (d, J = 1.9 Hz, 1H), 4.4 (q, J = 7.1 Hz, 2H), 3.6(d, J = 5.8 Hz, 1H), 3.6 (d, J = 12.3 Hz, 1H), 3.4 (s, 1H), 2.7 (dd, J = 7.3, 4.5 Hz, 1H), 2.3 (ddd, J = 1.8 Hz, 1H), 2.4 (ddd, J = 1.8 Hz, 1H), 2.4 (ddd, J = 1.8 Hz, 1H), 2.5 (ddd, J = 1.8 Hz, 1H), 2.6 (ddd, J = 1.8 Hz, 1H), 2.7 (ddd, J = 1.8 Hz, 1H), 2.8 (ddd, J = 1.8 Hz, 1H), 2.8 (ddd, J = 1.8 Hz, 1Hz, 1Hz), 2.8 (ddd, J = 1.8 Hz, 1Hz) J = 12.3, 4.8, 2.0 Hz, 1H), 1.6 (d, J = 7.3 Hz, 3H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 150.3, 137.4, 129.3, 129.0, 127.9, 127.7, 123.0, 120.9, 117.9, 93.6, 90.9, 79.0, 63.6, 44.2, 41.3, 39.9, 33.1, 16.6, 14.2 ppm. HRMS: [M+H]⁺ calcd. for C₂₃H₂₉N₂O₇⁺ 445.1969, found 445.1964. [α]_D²⁰ +72.17 (c = 0.40 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], $\lambda = 205$ nm, $t_{major} = 37.59$ min, $t_{minor} = 50.40$ min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20.1.

22b was obtained as a white solid 17 mg in 37% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.4 (s, 1H), 7.3 (d, J = 2.6 Hz, 4H), 7.3 (d, J = 8.4 Hz, 1H), 7.0 (dd, J = 8.1, 2.2 Hz, 1H), 6.8 (d, J = 8.2 Hz, 1H), 5.3 (d, J = 12.1 Hz, 1H), 4.8 (d, J = 2.3 Hz, 1H), 4.4 (q, J = 7.1 Hz, 2H), 3.6 – 3.6 (m, 2H), 3.4 (s, 1H), 2.8 (d, J = 3.1 Hz, 1H), 2.7 (qd, J = 7.2, 4.4 Hz, 1H), 2.3 (dd, J = 4.8, 2.1 Hz, 1H), 2.3 (s, 3H), 1.6 (d, J = 7.4 Hz, 3H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 148.0, 137.4, 130.0, 129.6, 129.0, 128.4, 127.9, 122.5, 117.7, 93.6, 90.8, 63.6, 44.2, 41.4, 39.9, 33.1, 21.2, 16.7, 14.2 ppm. HRMS: [M+H]+ calcd. for $C_{24}H_{27}NO_7$ + 442.1861, found 442.1860. [α]_D²⁰ +16.94 (c = 1.15 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 32.95 min, t_{minor} = 43.15 min, ee = 99%. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

22c was obtained as a white solid 15 mg in 32% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.6 (dd, J = 8.5, 1.1 Hz, 1H), 7.4 – 7.3 (m, 5H), 6.9 (d, J = 2.3 Hz, 1H), 6.9 (dd, J = 8.5, 2.4 Hz, 1H), 5.2 (d, J = 12.1 Hz, 1H), 4.8 (s, 1H), 4.4 (q, J = 7.1 Hz, 2H), 3.6 – 3.5 (m, 2H),

3.4 (d, J = 0.9 Hz, 1H), 3.0 (s, 1H), 2.7 (qd, J = 7.3, 3.8 Hz, 1H), 2.3 (ddd, J = 12.4, 4.8, 2.1 Hz, 1H), 1.6 (d, J = 7.3 Hz, 3H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 172.6, 151.1, 137.1, 132.6, 130.4, 129.1, 128.0, 121.6, 121.1, 118.0, 93.4, 91.0, 78.9, 63.7, 43.9, 41.1, 39.8, 32.8, 16.5, 14.1 ppm. **HRMS**: [M+H]⁺ *calcd.* for $C_{23}H_{25}^{35}CINO_7^+$ 462.1315, found 462.1318; *calcd.* for $C_{23}H_{25}^{37}CINO_7^+$ 464.1285, found 464.1286. [α]_D²⁰ +34.79 (c = 0.80 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ID column [n-hexane/i-PrOH = 80/20, 1 mL/min], λ = 205 nm, t_{major} = 18.78 min, t_{minor} = 22.76 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

22d was obtained as a white solid 25 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.6 (dd, J = 8.4, 1.6 Hz, 1H), 7.4 (dtd, J = 5.6, 3.6, 3.1, 2.0 Hz, 5H), 7.3 – 7.3 (m, 4H), 7.2 (ddt, J = 8.6, 7.7, 1.3 Hz, 1H), 6.9 (t, J = 7.5 Hz, 2H), 5.4 (d, J = 11.9 Hz, 1H), 5.3 (dd, J = 12.0, 1.6 Hz, 2H), 4.8 (t, J = 2.5 Hz, 1H), 3.6 – 3.6 (m, 2H), 3.4 (d, J = 0.9 Hz, 1H), 2.8 (d, J = 4.0 Hz, 1H), 2.7 (td, J = 7.4, 4.6 Hz, 1H), 2.3 (ddd, J = 12.4, 4.8, 2.1 Hz, 1H), 1.5 (d, J = 7.3 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 150.3, 137.4, 129.3, 129.1, 129.1, 129.0, 128.9, 127.9, 127.7, 127.0, 122.9, 120.9, 117.9, 93.5, 90.8, 79.2, 69.3, 44.1, 41.3, 39.9, 33.1, 16.5 ppm. HRMS: [M+H]⁺ calcd. for C₂₈H₂₈NO₇⁺ 490.1861, found 490.1860. [α]_D²⁰ +17.87 (c = 0.96 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 30.93 min, t_{minor} = 26.17 min, **ee** = **95%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

22e was obtained as a white solid 20 mg in 44% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (400 MHz,

CDCl₃) δ 7.6 (d, J = 8.0 Hz, 1H), 7.4 – 7.3 (m, 4H), 7.2 (t, J = 7.7 Hz, 1H), 6.9 – 6.9 (m, 2H), 5.2 (d, J = 12.0 Hz, 1H), 4.9 (dd, J = 3.3, 2.0 Hz, 1H), 4.4 (q, J = 7.1 Hz, 2H), 3.7 – 3.5 (m, 2H), 3.4 (d, J = 0.8 Hz, 1H), 2.8 (d, J = 3.3 Hz, 1H), 2.7 – 2.6 (m, 1H), 2.3 (ddd, J = 12.3, 4.8, 2.1 Hz, 1H), 1.6 (d, J = 7.3 Hz, 3H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 13C NMR (100 MHz, CDCl₃) δ 172.7, 150.2, 136.1, 133.8, 129.4, 129.3, 127.8, 122.9, 121.1, 118.0, 93.4, 90.8, 79.0, 63.8, 44.1, 41.4, 39.5, 33.1, 16.6, 14.2 ppm. **HRMS**: [M+H]+ *calcd*. for $C_{23}H_{25}^{35}CINO_7$ + 462.1315, found 462.1318; *calcd*. for $C_{23}H_{25}^{37}CINO_7$ + 464.1285, found 464.1286. [α] $_{\bf D}^{20}$ +15.84 (c = 0.80 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 70/30, 1 mL/min], λ = 205 nm, t_{major} = 11.02 min, t_{minor} = 8.89 min, **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr >**20:1**.

22f was obtained as a white solid 20 mg in 39% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.6 (dt, J = 7.9, 1.5 Hz, 1H), 7.5 (d, J = 8.7 Hz, 2H), 7.2 (d, J = 8.7 Hz, 3H), 7.2 (ddt, J = 8.2, 7.1, 1.2 Hz, 1H), 6.9 (ddd, J = 15.0, 7.8, 1.4 Hz, 2H), 5.2 (d, J = 12.1 Hz, 1H), 4.8 (s, 1H), 4.4 (q, J = 7.1 Hz, 2H), 3.6 (t, J = 4.6 Hz, 1H), 3.6 (t, J = 12.2 Hz, 1H), 3.4 (d, J = 0.8 Hz, 1H), 2.9 (s, 1H), 2.7 - 2.6 (m, 1H), 2.3 (ddd, J = 12.3, 4.8, 2.1 Hz, 1H), 1.6 (d, J = 7.3 Hz, 3H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 172.5, 150.2, 136.6, 132.2, 129.3, 127.7, 122.8, 121.9, 121.0, 117.9, 93.3, 90.7, 79.0, 63.7, 44.1, 41.3, 39.5, 33.0, 16.5, 14.1 ppm. **HRMS**: [M+H]* *calcd.* for $C_{23}H_{25}^{79}BrNO_7$ * 506.0809, found 506.0811; *calcd.* for $C_{23}H_{25}^{81}BrNO_7$ * 508.0789, found 508.0790. [α] $_D^{20}$ +62.22 (c = 1.10 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 29.65 min, t_{minor} = 12.23 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

22g was obtained as a white solid 20 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.6 (dt, J = 8.0, 1.4 Hz, 1H), 7.4 – 7.4 (m, 1H), 7.2 (t, J = 7.6 Hz, 1H), 6.9 – 6.9 (m, 2H), 6.3 (qd, J = 3.2, 1.3 Hz, 2H), 5.3 (d, J = 11.9 Hz, 1H), 5.0 (t, J = 2.6 Hz, 1H), 4.4 (qd, J = 7.1, 3.1 Hz, 2H), 3.7 (t, J = 12.1 Hz, 1H), 3.6 (t, J = 4.7 Hz, 1H), 3.4 (d, J = 0.9 Hz, 1H), 2.9 (d, J = 3.3 Hz, 1H), 2.7 – 2.6 (m, 1H), 2.5 (ddd, J = 12.3, 4.9, 2.1 Hz, 1H), 1.6 (d, J = 7.2 Hz, 3H), 1.4 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 172.6, 150.3, 150.1, 142.4, 129.3, 127.7, 122.8, 120.9, 118.0, 110.6, 110.1, 91.2, 91.1, 78.8, 63.6, 41.8, 41.1, 34.3, 32.7, 16.5, 14.1 ppm. **HRMS**: [M+H]+ *calcd*. for C₂₁H₂₄NO₈+ 418.1497, found 418.1496. [α] $_{D}$ ²⁰ -20.45 (c = 1.50 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 205 nm, t_{major} = 48.07 min, t_{minor} = 40.93 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, dr >20:1.

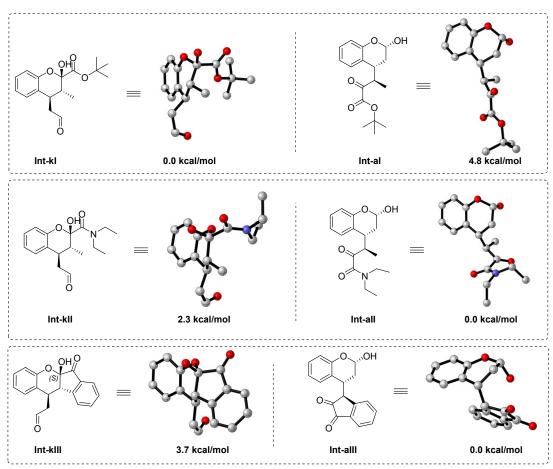
G. 1 mmol scale reaction

Detailed method: A glass vial equipped with a magnetic stirring bar was charged with catalyst **3a** (0.2 mmol, 65 mg, 20 mol%) in toluene (2 mL); then 2-hydroxycinnamaldehyde **1a** (1 mmol, 148 mg, 1.0 equiv.), NaOAc (0.2 mmol, 16 mg, 20 mol%) and the **2a** (1.2 mmol, 156 mg, 1.2 equiv.) was added in one portion and the resulting solution was stirred for about 6 h at 25 °C until the material **1a** disappeared. After completion of the reaction, the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford **4a**. Then the product **4a** (1 mmol, 278 mg, 1.0 equiv.) was respectively dissolved in CH_2Cl_2 (5 mL) at 0 °C in the ice

bath. Then Et₃N (3.0 equiv.), MsCl (2.0 equiv.), DMAP (0.2 equiv.) were added to the reaction mixtures in order. After full conversion of the reaction, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30/1) to give product **6a** as white solid 171 mg in 66% yield and **ee** = **99%**. The diastereomeric ratio was determined by ¹H NMR, dr = 11:1.

H. DFT calculation

H1. Computational methods


The DFT calculations were performed with Gaussian 09^1 . All geometry optimizations were carried out at the M062X level² of theory with the 6-31G(d) basis set. Vibrational frequencies were computed at the same level to verify that optimized structures are local minimums and to evaluate zero-point vibrational energies (ZPVE) and thermal corrections at 298 K. Then the energies of the optimized structures in toluene were computed at the more accurate M062X/6-311+G(d,p) level with the SMD model.

Reference

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian Inc.: Wallingford, CT, 2013.

[2] Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

H2. Computational results

Figure. DFT calculation of ΔG_{sol} (in kcal mol⁻¹) at the SMD (toluene)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d) level of theory and the computed transition-state.

There were two competitive reaction pathways for the formation of 1) desired hemiketal intermediates via the attack of the phenolic hydroxyl group onto the 2-oxo group and 2) undesired hemiacetal intermediates via the attack of the phenolic hydroxyl aldehyde carbonyl onto the group. During reaction hydroxycinnamaldehyde 1a and 2-oxocarboxylic ester, the desired hemiketal intermediate (Int-kI) is more favorable than the hemiacetal intermediate (Int-aI); while in the reaction of 2-hydroxycinnamaldehyde 1a with 2-oxocarboxylic amide 7 and indan-1,2-dione 11, respectively, both of the undesired hemiacetal intermediates Int-all and Int-aIII are more preferred than the corresponding hemiketal intermediates Int-kII and Int-kIII.

H3. Coordinates and energies of stationary points

Int-kI				
C	2.285375	2.750485	-0.317452	
C	2.231724	1.444003	0.155429	
C	1.393244	0.487124	-0.424620	
C	0.584384	0.894731	-1.489021	
C	0.630317	2.201001	-1.976853	
C	1.485347	3.126507	-1.395235	
Н	2.946227	3.470745	0.153807	
Н	2.837248	1.158625	1.010761	
Н	-0.014460	2.460642	2.810014	
Н	1.520563	4.141778	-1.778016	
O	-0.284523	0.049280	-2.126363	
C	1.335238	-0.935058	0.096787	
Н	0.906304	-0.896100	1.105459	
C	0.442083	-1.845373	-0.769516	
H	1.029411	-2.197060	-1.629563	
C	-0.727692	-1.114040	-1.423651	
O	-1.308422	-1.953269	-2.344480	
Н	-2.232537	-1.660006	-2.443508	
C	2.737292	-1.553690	0.225917	
Н	2.710300	-2.640413	0.056546	
C	3.385089	-1.366706	1.576148	
O	2.882896	-0.787010	2.507874	
Н	3.421807	-1.160037	-0.537992	
Н	4.390580	-1.825287	1.680647	
C	-0.069524	-3.047618	0.021748	
Н	0.757987	-3.615874	0.457328	
Н	-0.707761	-2.713025	0.848404	
Н	-0.647441	-3.715576	-0.619754	
C	-1.833681	-0.602031	-0.472861	
O	-1.324196	-0.050023	0.614301	
O	-3.001339	-0.655653	-0.786276	
C	-2.120424	0.784105	1.517127	
C	-3.177195	-0.072405	2.203280	
Н	-3.698400	0.529241	2.954461	
Н	-3.906111	-0.448133	1.483249	
Н	-2.703905	-0.918657	2.711281	
C	-1.074955	1.285078	2.505148	
H	-0.601849	0.445792	3.024047	
H	-0.297485	1.846933	1.977838	
H	-1.544831	1.936830	3.247552	

	2.720071	1.041.000	0.707722
C	-2.720951	1.941696	0.727732
Н	-3.476320	1.593117	0.021486
H	-3.188269	2.645744	1.423068
Н	-1.930422	2.467280	0.181830
Int-al			
C	-3.821314	2.621163	-0.098135
C	-2.646125	1.920388	-0.334628
C	-2.619100	0.522071	-0.401064
C	-3.832975	-0.155124	-0.222595
C	-5.020521	0.538055	0.016848
C	-5.016374	1.923235	0.073785
Н	-3.806709	3.705259	-0.055850
Н	-1.725654	2.475878	-0.494872
Н	-5.928246	-0.039981	0.154378
Н	-5.942902	2.458003	0.257946
O	-3.925086	-1.519172	-0.287068
C	-1.345079	-0.234613	-0.754243
Н	-1.117729	0.007842	-1.799522
C	-1.559013	-1.767674	-0.699308
Н	-1.729125	-2.137629	-1.714261
Н	-0.669809	-2.281171	-0.325127
C	-2.754511	-2.199648	0.140464
Н	-2.971203	-3.256579	-0.020390
O	-2.568546	-2.060474	1.518035
Н	-2.448368	-1.118399	1.714869
C	-0.124991	0.255045	0.050783
Н	-0.047318	1.346473	-0.034658
C	1.158524	-0.263198	-0.568229
C	2.456878	0.386053	-0.023574
O	1.221955	-1.064920	-1.465919
O	2.434532	1.443803	0.562419
O	3.516632	-0.344937	-0.317339
C	4.861857	0.109620	0.040860
C	-0.170657	-0.057807	1.553282
Н	-0.247392	-1.131908	1.744017
Н	0.717241	0.331421	2.056013
Н	-1.037326	0.444344	1.998521
C	5.746566	-1.019301	-0.471055
Н	5.611262	-1.150608	-1.548011
Н	6.796648	-0.787119	-0.272075
Н	5.493429	-1.958561	0.028442
C	5.169774	1.414999	-0.685555
Н	5.020993	1.289345	-1.762340

Н	4.536545	2.227876	-0.326851
Н	6.216704	1.682373	-0.512503
C	4.979821	0.246419	1.555912
Н	4.377030	1.074543	1.930972
Н	4.662268	-0.681076	2.042509
Н	6.027201	0.427179	1.816478
Int-k	II		
C	3.763714	2.014621	0.226621
C	3.351010	0.698544	0.025101
C	1.997657	0.374638	-0.033684
C	1.074136	1.413359	0.101555
C	1.463136	2.729843	0.101333
C	2.820783	3.028032	0.368611
Н	4.823188	2.244021	
			0.276319
Н	4.103898	-0.078111	-0.072479
Н	0.699056	3.494369	0.387519
H	3.140412	4.053443	0.525821
O	-0.266903	1.108227	0.076349
C	1.418375	-1.013508	-0.225061
H	1.037294	-1.351550	0.748536
C	0.254995	-0.946380	-1.242092
Н	0.709961	-0.766646	-2.222235
C	-0.655064	0.311851	-1.046155
O	-0.566585	1.047968	-2.213219
Н	-1.480751	1.304698	-2.444229
C	2.470416	-2.033527	-0.654744
Н	2.000633	-2.948872	-1.040417
C	3.369146	-2.487149	0.472176
O	3.170641	-2.248212	1.636867
Н	3.089061	-1.652515	-1.478396
Н	4.242294	-3.100251	0.164463
C	-0.560938	-2.239397	-1.336900
Н	0.036358	-3.056846	-1.748640
Н	-0.941695	-2.558633	-0.360991
Н	-1.415046	-2.098320	-2.007187
C	-2.175547	0.043824	-0.800166
O	-2.942551	0.351466	-1.711522
C	-4.081051	-0.595651	0.496794
Н	-4.262570	-1.265684	1.343080
Н	-4.458723	-1.079556	-0.408208
C	-1.814440	-0.821315	1.522771
Н	-2.112169	-1.830155	1.836331
Н	-0.773030	-0.868596	1.220054

\mathbf{C}	1.060017	0.162564	2 (7(5(9
С	-1.960917	0.163564	2.676568
Н	-2.987869	0.189880	3.053613
Н	-1.306438	-0.130016	3.502284
Н	-1.677625	1.164576	2.341482
C	-4.789953	0.740511	0.699715
Н	-4.616206	1.385848	-0.163308
Н	-5.867409	0.580196	0.801913
Н	-4.429547	1.247955	1.598452
N	-2.626093	-0.463715	0.364043
I4 -1	T		
Int-al	I		
C	-3.800643	2.356699	0.443117
C	-2.518772	1.825759	0.491326
\mathbf{C}	-2.207063	0.603332	-0.114276
\mathbf{C}	-3.235975	-0.074532	-0.779609
\mathbf{C}	-4.528496	0.448855	-0.833587
\mathbf{C}	-4.808932	1.664162	-0.228022
Н	-4.010596	3.309104	0.918576
Н	-1.730255	2.383418	0.990184
Н	-5.288660	-0.121025	-1.357257
Н	-5.814594	2.070106	-0.275333
O	-3.027878	-1.266135	-1.423411
C	-0.780275	0.078059	-0.140397
Н	-0.216072	0.783202	-0.763274
\mathbf{C}	-0.692517	-1.310110	-0.819625
Н	-0.379799	-1.183477	-1.861059
Н	0.051412	-1.948430	-0.328512
C	-2.015104	-2.071984	-0.843166
Н	-1.943172	-2.943531	-1.494988
O	-2.409689	-2.562989	0.400718
Н	-2.544253	-1.810900	0.998594
\mathbf{C}	-0.092379	0.125417	1.252972
Н	-0.082621	1.175976	1.564992
\mathbf{C}	1.365765	-0.242021	1.068926
\mathbf{C}	2.167107	0.731225	0.179617
O	1.901953	-1.173334	1.625874
O	1.884691	1.922627	0.258736
C	3.972637	1.247853	-1.302038
Н	4.513116	0.722139	-2.094653
Н	3.292724	1.966913	-1.768696
C	-0.735125	-0.736678	2.328275
Н	-0.690454	-1.798853	2.071258
Н	-0.213707	-0.611254	3.280183

Н	-1.778893	-0.436635	2.476821
C	3.475160	-1.163943	-0.797337
Н	2.606280	-1.763060	-0.526993
Н	3.644906	-1.306781	-1.870767
C	4.690712	-1.615626	0.002360
Н	4.884151	-2.678017	-0.172167
Н	5.585481	-1.056886	-0.289044
Н	4.504560	-1.463097	1.067857
C	4.938735	1.981317	-0.376836
Н	5.516243	2.716537	-0.944951
Н	4.380427	2.507554	0.400166
Н	5.636335	1.286038	0.098140
N	3.159403	0.250414	-0.600658
Int-k	III		

\mathbf{C}	4 202702	0.227026	0.511770
C	-4.302782	0.227926	-0.511770
C	-3.103216	0.930463	-0.406573
C	-1.926997	0.274009	-0.057737
C	-1.983552	-1.104071	0.162156
\mathbf{C}	-3.165134	-1.821662	0.064787
\mathbf{C}	-4.333795	-1.142465	-0.270373
Н	-5.213527	0.755740	-0.774988
Н	-3.099562	2.002241	-0.583746
Н	-3.148528	-2.889877	0.250668
Н	-5.268718	-1.688312	-0.348893
O	-0.831284	-1.751039	0.550697
C	-0.552322	0.891083	0.083983
Н	-0.258232	0.821344	1.141797
C	0.406050	-0.011217	-0.730325
Н	0.097927	0.023129	-1.782838
C	0.300922	-1.471960	-0.206946
O	0.330564	-2.407277	-1.258924
Н	1.079512	-2.197843	-1.837992
C	-0.484043	2.355617	-0.321012
Н	0.560135	2.696635	-0.355433
C	-1.181850	3.277173	0.654270
O	-1.601056	2.929748	1.728340
Н	-0.891518	2.522134	-1.328069
Н	-1.267484	4.335042	0.327744
C	1.552585	-1.661088	0.696360
O	1.713950	-2.540399	1.501550
C	2.506024	-0.594560	0.305455
C	1.879090	0.307137	-0.556983

C	3.848321	-0.479252	0.654313
C	2.626882	1.335545	-1.127234
C	4.581350	0.565205	0.104535
Н	4.293233	-1.203052	1.330752
C	3.973378	1.456650	-0.786836
Н	2.178822	2.026634	-1.836407
Н	5.631425	0.685818	0.350737
Н	4.563657	2.254899	-1.227040
Int-a	III		
C	-3.676176	0.581354	-1.411702
C	-2.583519	-0.253389	-1.610087
C	-1.806185	-0.702313	-0.540938
C	-2.169952	-0.322005	0.754248
C	-3.265877	0.515622	0.966783
C	-4.008132	0.972208	-0.113307
Н	-4.265565	0.921508	-2.256687
Н	-2.306008	-0.559811	-2.616814
Н	-3.513524	0.791725	1.986425
Н	-4.856933	1.626556	0.059842
O	-1.517012	-0.746337	1.880239
C	-0.559506	-1.521346	-0.745790
Н	-0.715895	-2.203612	-1.587932
C	-0.366127	-2.401059	0.496554
Н	-1.199703	-3.110161	0.538843
Н	0.561581	-2.975045	0.453328
C	-0.373375	-1.577722	1.764254
Н	-0.414284	-2.206806	2.660730
O	0.795832	-0.810742	1.750703
Н	0.741446	-0.145190	2.453485
C	0.837769	0.786267	-0.597661
C	2.146724	0.980866	-0.134724
C	-0.052434	1.857443	-0.552311
C	2.583056	2.191466	0.392690
C	0.379949	3.073949	-0.021626
Н	-1.067515	1.767043	-0.924050
C	1.682568	3.247567	0.453660

Η

Н

Н

C

C

C

3.607710

1.988393

1.988673

2.940535

0.639704

-0.315802

0.740788

0.016382

0.857132

-0.933786

-0.277120

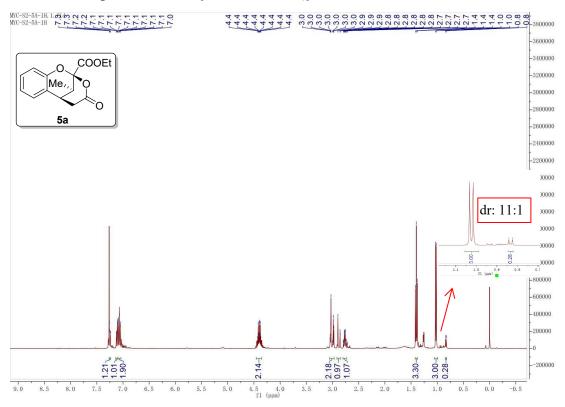
-1.182174

2.285459

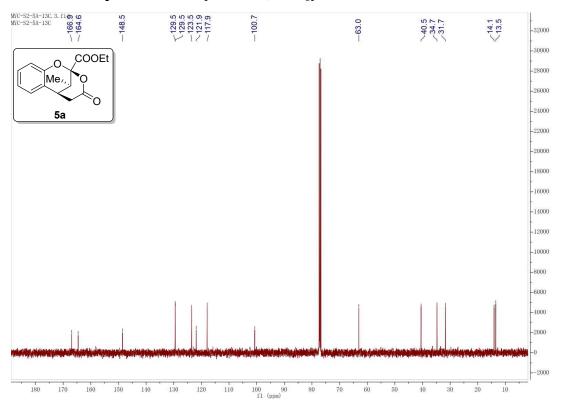
3.907118

4.207705

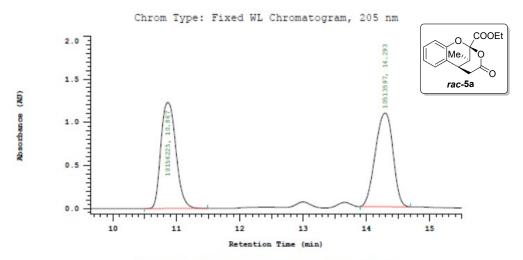
-1.282613


-0.252055

-0.610188

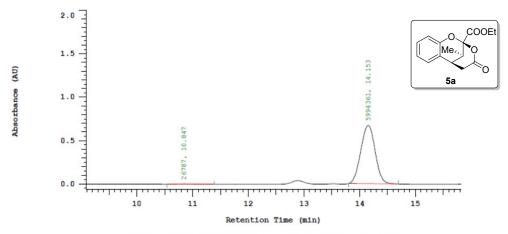

Н	0.535742	-0.497275	-2.270935
O	2.279751	-2.420589	-1.192024
O	4.090702	-0.461522	0.017041

I. NMR spectra and HPLC traces


The ¹H NMR spectrum of 5a (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 5a (100 MHz, CDCl₃)

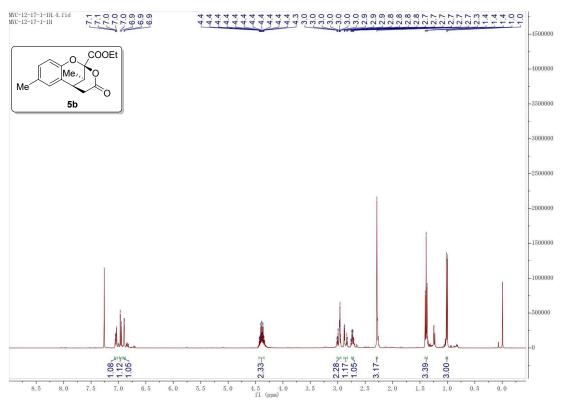
The HPLC of racemic 5a

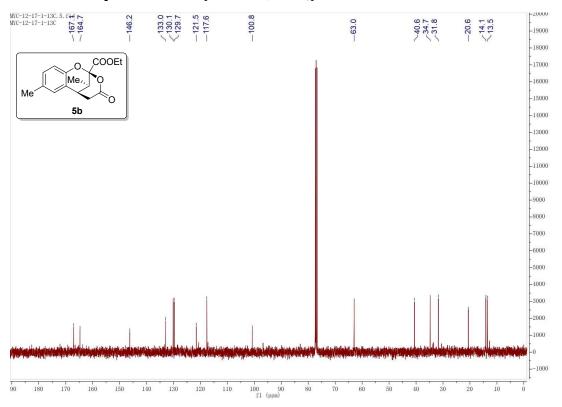

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	10.867	10156225	49.136	ВВ
2	14.293	10513597	50.864	BB
·		20669822	100.000	2:

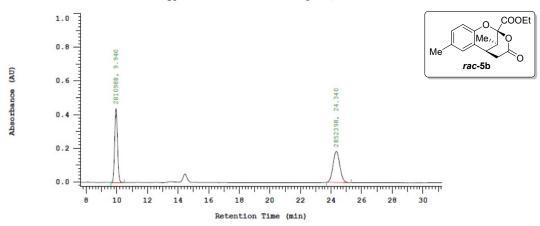
The HPLC of chiral 5a


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	10.847	26787	0.445	BB
2	14.153	5994361	99.555	BB
		6021148	100.000	

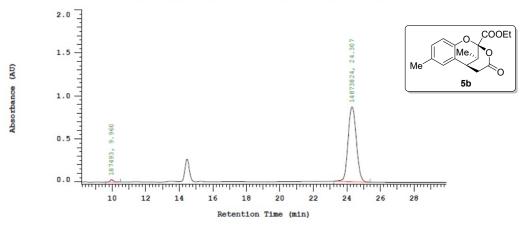
The ¹H NMR spectrum of 5b (400 MHz, CDCl₃)



The ¹³C NMR spectrum of 5b (100 MHz, CDCl₃)

The HPLC of racemic 5b

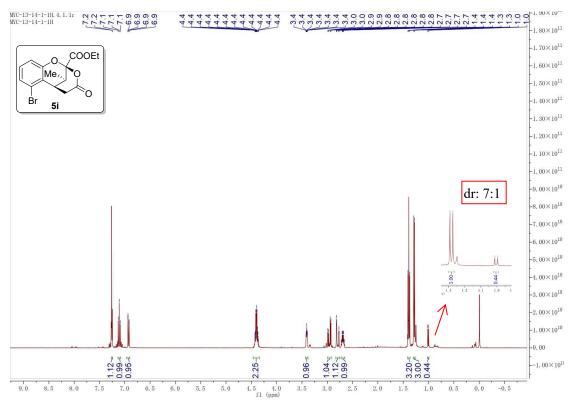
Chrom Type: Fixed WL Chromatogram, 205 nm

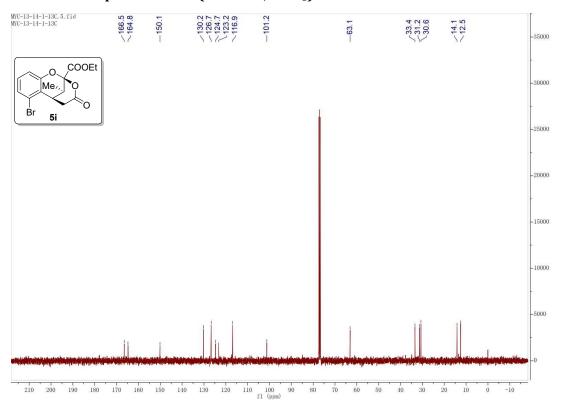

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.940	2810988	49.634	ВВ
2	24.340	2852398	50.366	BB
		5663386	100.000	

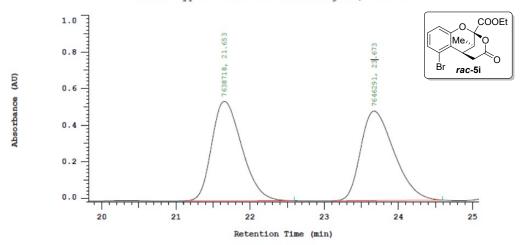
The HPLC of chiral 5b


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

BC	Area %	Area	RT	No.
BB	1.245	187493	9.960	1
BB	98.755	14873824	24.307	2
	100.000	15061317		

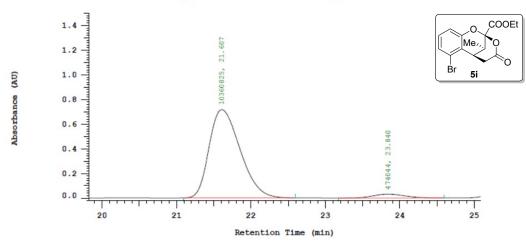
The ¹H NMR spectrum of 5i (400 MHz, CDCl₃)



The ¹³C NMR spectrum of 5i (100 MHz, CDCl₃)

The HPLC of racemic 5i

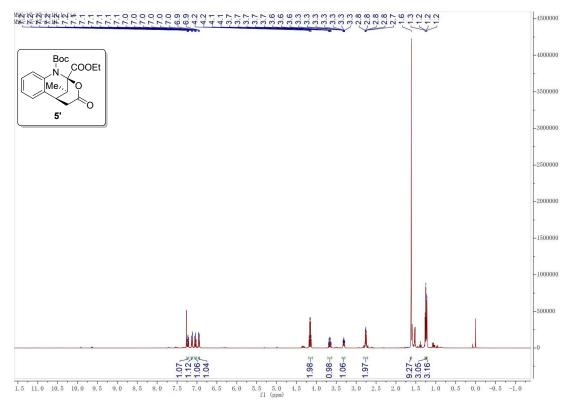
Chrom Type: Fixed WL Chromatogram, 205 nm

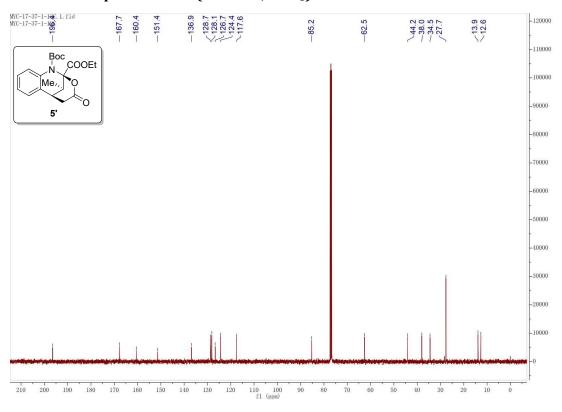

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	21.653	7638718	49.975	BB
2	23.673	7646291	50.025	BB
-		15285009	100.000	

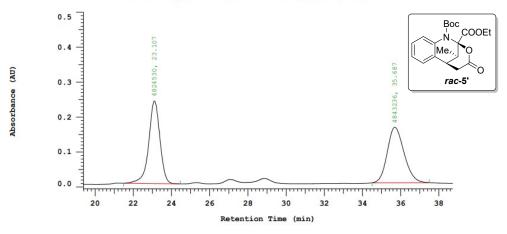
The HPLC of chiral 5i


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	21.607	10360825	95.625	BB
2	23.840	474044	4.375	BB
		10834869	100.000	

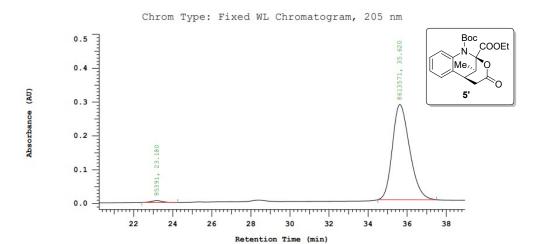
The ^1H NMR spectrum of 5' (400 MHz, CDCl $_3$)



The ¹³C NMR spectrum of 5' (100 MHz, CDCl₃)

The HPLC of racemic 5'

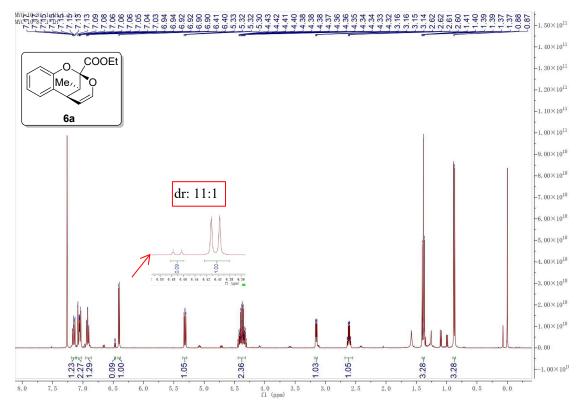
Chrom Type: Fixed WL Chromatogram, 205 nm

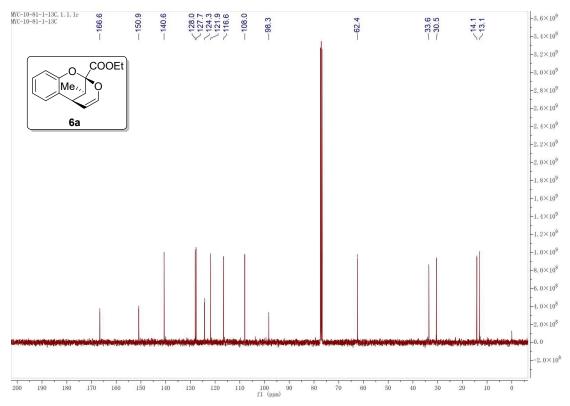


Chrom Type: Fixed WL Chromatogram, 205 nm

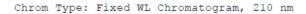
Peak Quantitation: AREA Calculation Method: AREA%

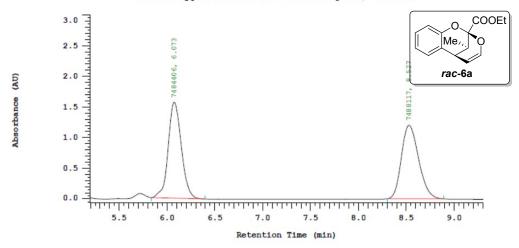
No.	RT	Area	Area %	BC
1	23.107	4824530	49.903	BB
2	35.687	4843236	50.097	BB
		9667766	100.000	


The HPLC of chiral 5'


Chrom Type: Fixed WL Chromatogram, 205 nm

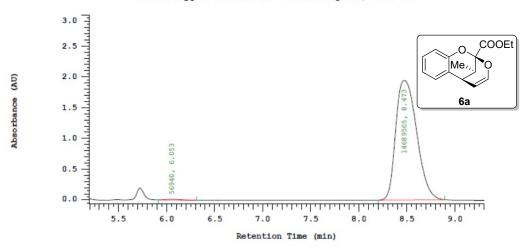
No.	RT	Area	Area %	BC
1	23.180	95391	1.095	BB
2	35.620	8613571	98.905	BB
		8708962	100.000	


The ¹H NMR spectrum of 6a (400 MHz, CDCl₃)



The 13 C NMR spectrum of 6a (100 MHz, CDCl $_3$)

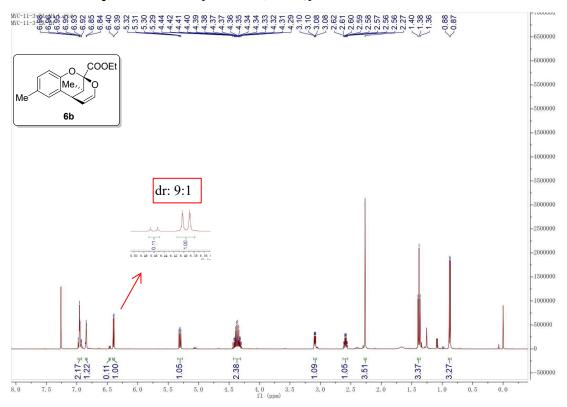
The HPLC of racemic 6a

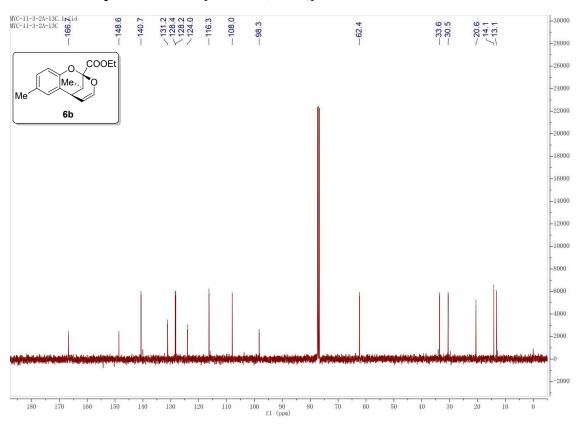

Chrom Type: Fixed WL Chromatogram, 210 nm

Peak Quantitation: AREA Calculation Method: AREA%

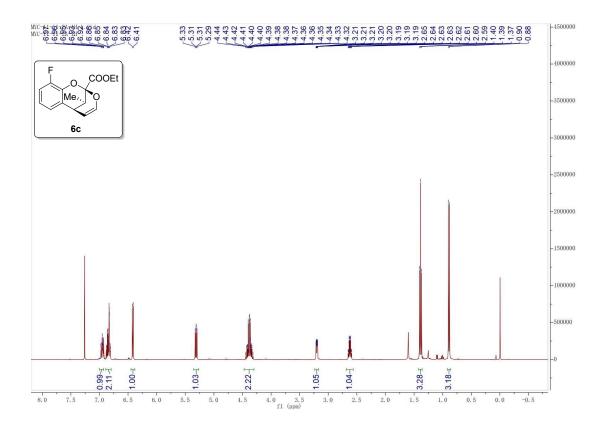
No.	RT	Area	Area %	BC
1	6.073	7484406	49.988	BB
2	8.527	7488117	50.012	BB
		14972523	100.000	

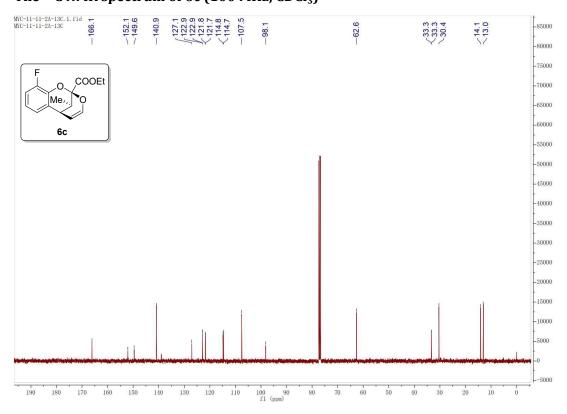
The HPLC of chiral 6a

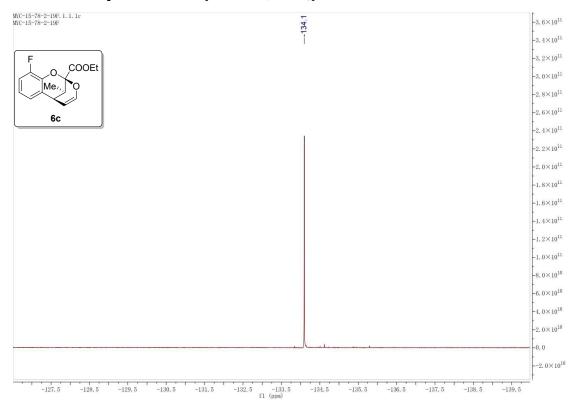

Chrom Type: Fixed WL Chromatogram, 210 nm


Chrom Type: Fixed WL Chromatogram, 210 nm

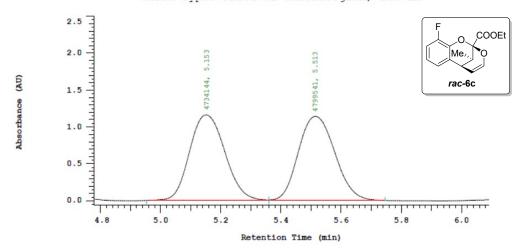
No.	RT	Area	Area %	BC
1	6.053	56940	0.386	BB
2	8.473	14689505	99.614	BB
		14746445	100.000	


The ¹H NMR spectrum of 6b (400 MHz, CDCl₃)


The ¹³C NMR spectrum of 6b (100 MHz, CDCl₃)


The ¹H NMR spectrum of 6c (400 MHz, CDCl₃)

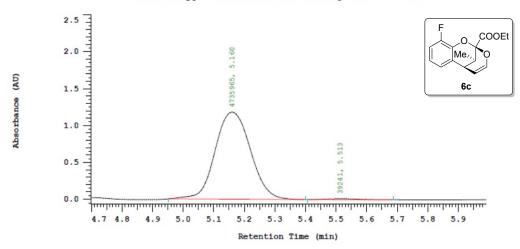
The ¹³C NMR spectrum of 6c (100 MHz, CDCl₃)



The ¹⁹F NMR spectrum of 6c (376 MHz, CDCl₃)

The HPLC of racemic 6c

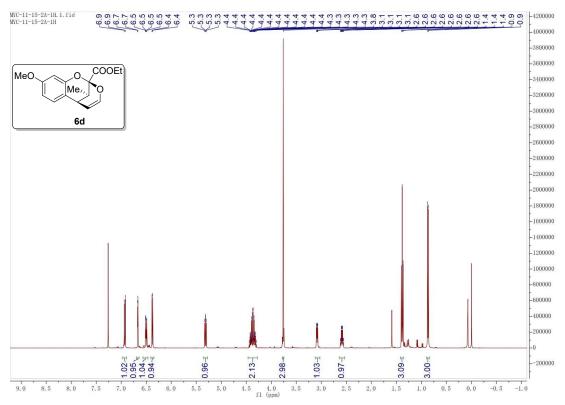
Chrom Type: Fixed WL Chromatogram, 205 nm

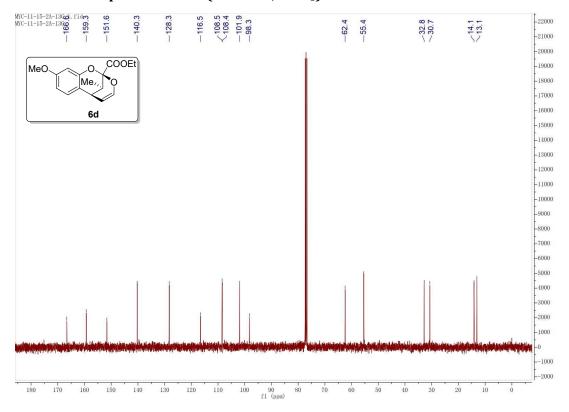


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	5.153	4734144	49.657	BV
2	5.513	4799541	50.343	VB
		9533685	100.000	

The HPLC of chiral 6c


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

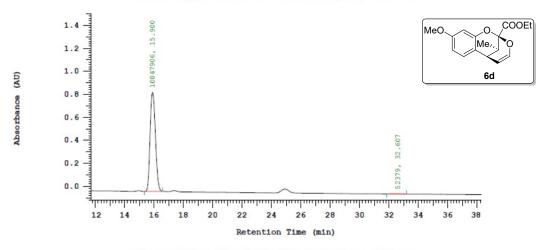
No.	RT	Area	Area %	BC
1	5.160	4735965	99.178	BB
2	5.513	39241	0.822	BB
		4775206	100.000	

The ¹H NMR spectrum of 6d (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6d (100 MHz, CDCl₃)

The HPLC of racemic 6d

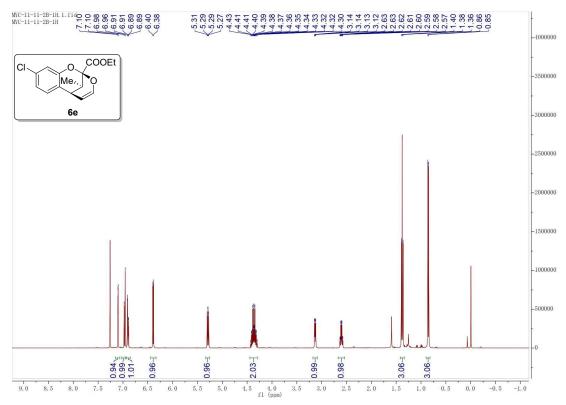
Chrom Type: Fixed WL Chromatogram, 205 nm

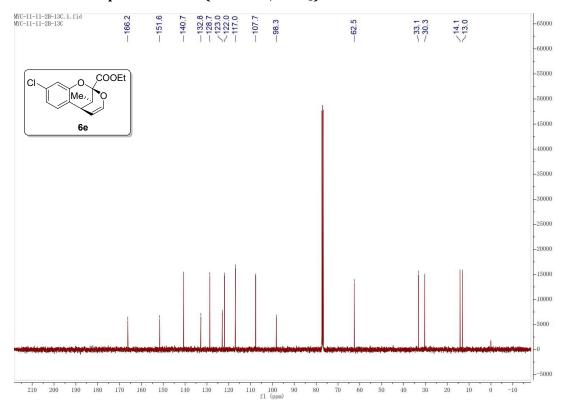

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	15.753	7885070	50.143	BB
2	32.220	7839988	49.857	BB
		15725058	100.000	

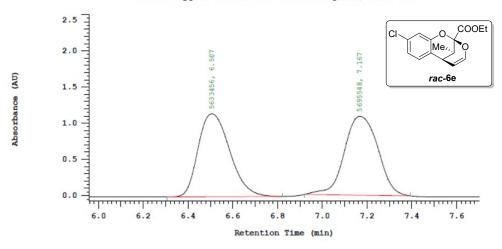
The HPLC of chiral 6d


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	15.900	10847906	99.519	BB
2	32.607	52379	0.481	BB
		10900285	100.000	

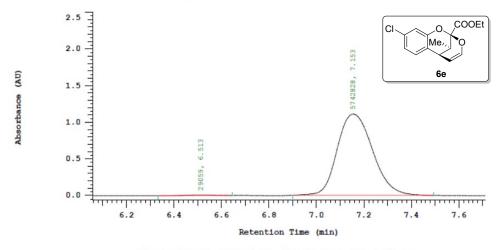
The ¹H NMR spectrum of 6e (400 MHz, CDCl₃)



The ¹³C NMR spectrum of 6e (100 MHz, CDCl₃)

The HPLC of racemic 6e

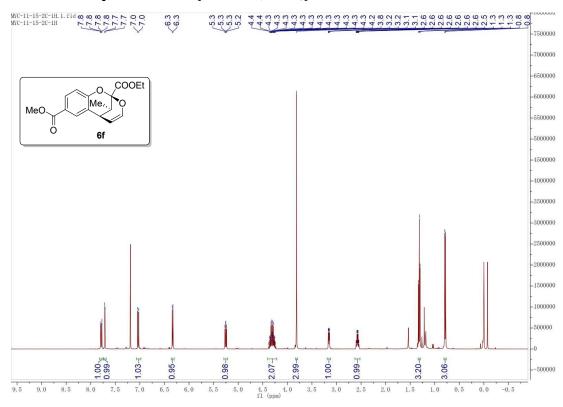
Chrom Type: Fixed WL Chromatogram, 205 nm

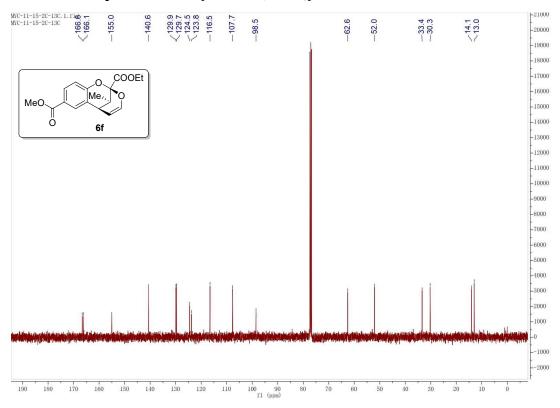

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	6.507	5633456	49.726	BB
2	7.167		BB	
		11329004	100.000	

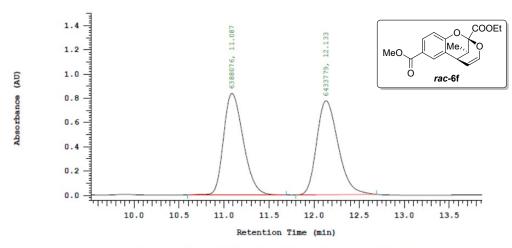
The HPLC of chiral 6e


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	6.513	29059	0.503	ВВ
2	7.153	5742828	99.497	BB
		5771887	100.000	

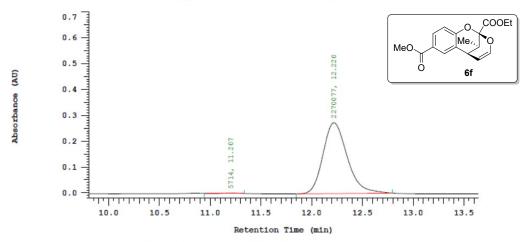
The ¹H NMR spectrum of 6f (400 MHz, CDCl₃)



The ¹³C NMR spectrum of 6f (100 MHz, CDCl₃)

The HPLC of racemic 6f

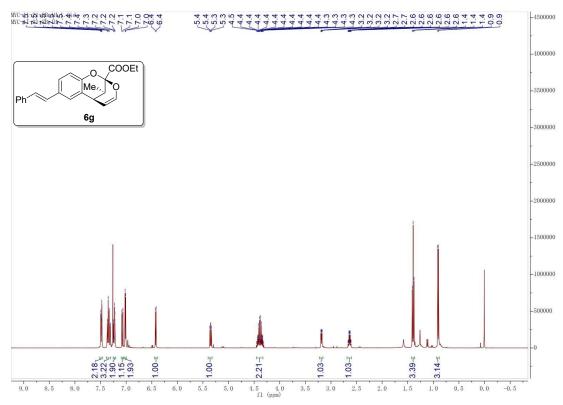
Chrom Type: Fixed WL Chromatogram, 205 nm

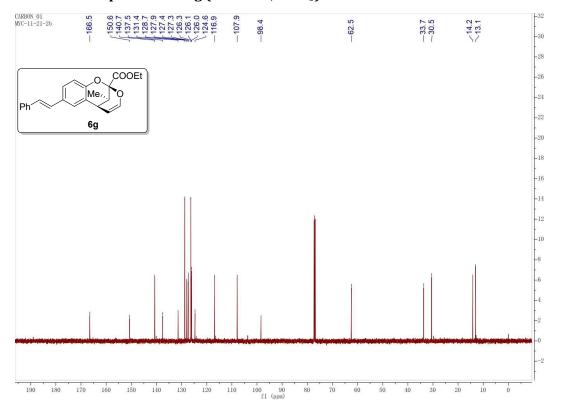

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	11.087	6388076	49.822	BB
2	12.133	6433779	50.178	BB
		12821855	100.000	

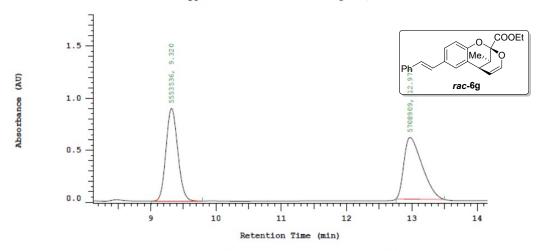
The HPLC of chiral 6f


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	11.207	5714	0.251	BB
2	12.220	2270077	99.749	BB
		2275791	100.000	

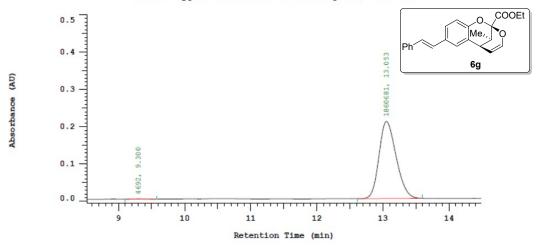
The ¹H NMR spectrum of 6g (400 MHz, CDCl₃)



The ^{13}C NMR spectrum of 6g (100 MHz, CDCl₃)

The HPLC of racemic 6g

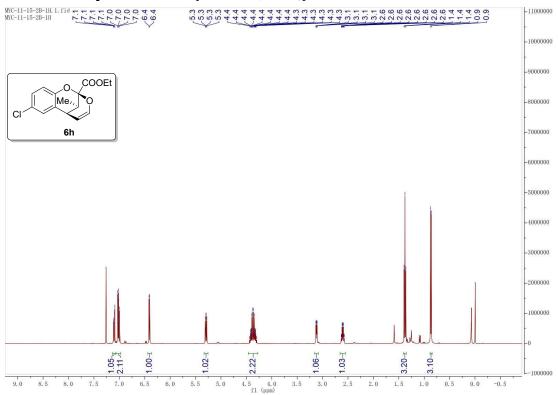
Chrom Type: Fixed WL Chromatogram, 205 nm

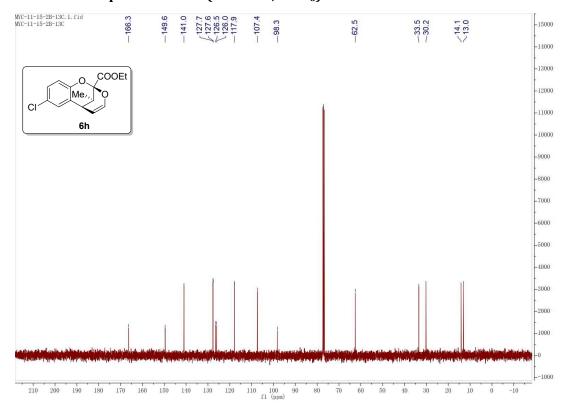

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.320	5553536	49.310	ВВ
2	12.973	5708909	50.690	BB
		11262445	100.000	-

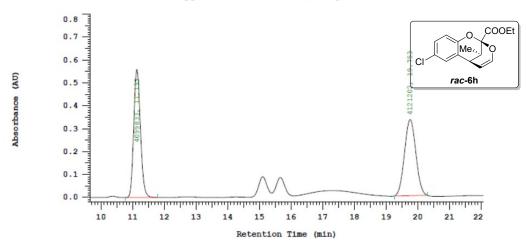
The HPLC of chiral 6g


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	9.300	4692	0.252	BB
2	13.053	1860681	99.748	BB
		1865373	100.000	8

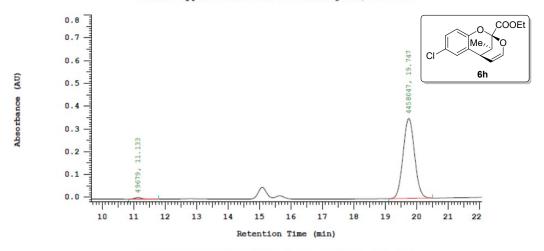
The ¹H NMR spectrum of 6h (400 MHz, CDCl₃)



The ¹³C NMR spectrum of 6h (100 MHz, CDCl₃)

The HPLC of racemic 6h

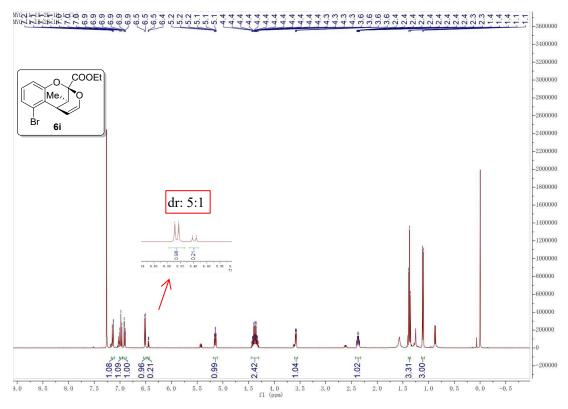
Chrom Type: Fixed WL Chromatogram, 205 nm

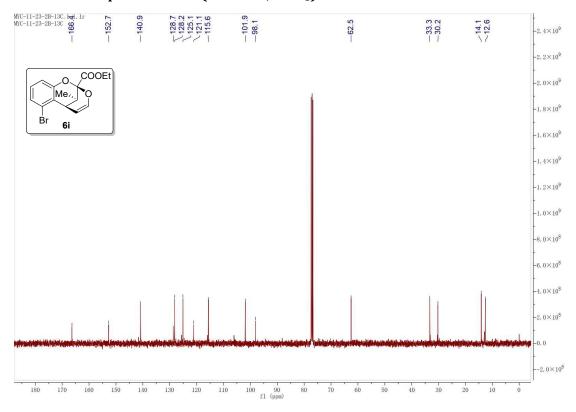

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

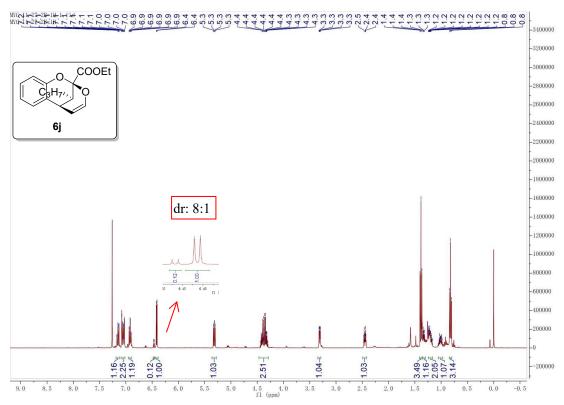
No.	RT	Area	Area %	BC
1	11.133	4099833	49.870	BB
2	19.753	4121202	50.130	BB
		8221035	100.000	

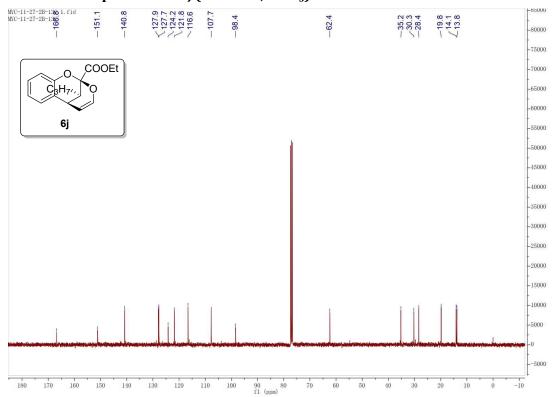
The HPLC of chiral 6h


Chrom Type: Fixed WL Chromatogram, 205 nm

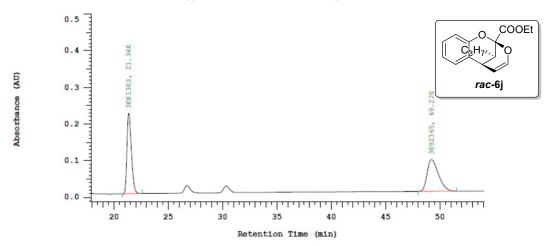

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	11.133	49679	1.102	ВВ
2	19.747	4458047	98.898	BB
		4507726	100.000	


The ¹H NMR spectrum of 6i (400 MHz, CDCl₃)


The ¹³C NMR spectrum of 6i (100 MHz, CDCl₃)

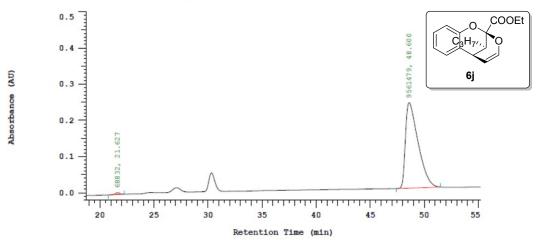
The ¹H NMR spectrum of 6j (400 MHz, CDCl₃)



The 13 C NMR spectrum of 6j (100 MHz, CDCl $_3$)

The HPLC of racemic 6j

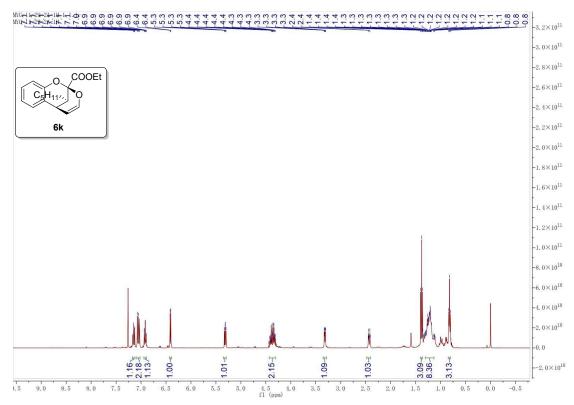
Chrom Type: Fixed WL Chromatogram, 205 nm

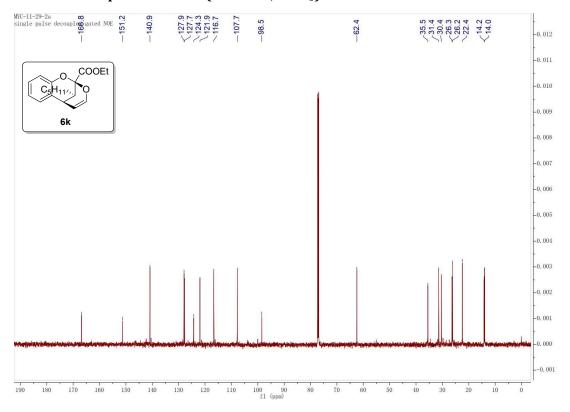

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

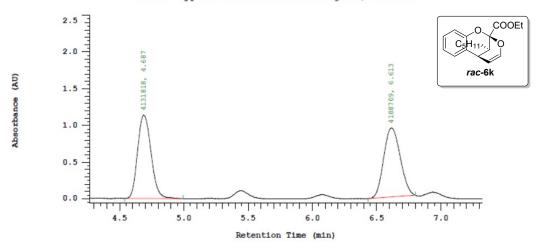
No.	RT	Area	Area %	BC
1	21.360	3081303	49.910	ВВ
2	49.220	3092365	50.090	BB
5		6173668	100.000	

The HPLC of chiral 6j


Chrom Type: Fixed WL Chromatogram, 205 nm

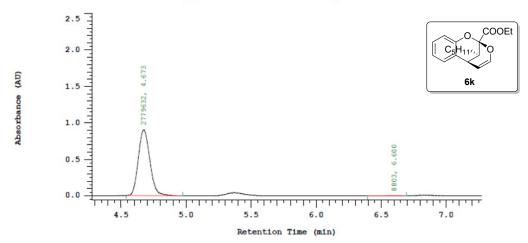

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	21.627	68832	0.715	BB
2	48.600	9561479	99.285	BB
		9630311	100.000	


The ¹H NMR spectrum of 6k (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6k (150 MHz, CDCl₃)

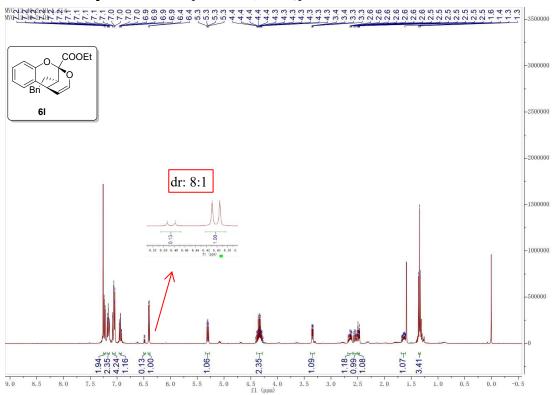
Chrom Type: Fixed WL Chromatogram, 205 nm

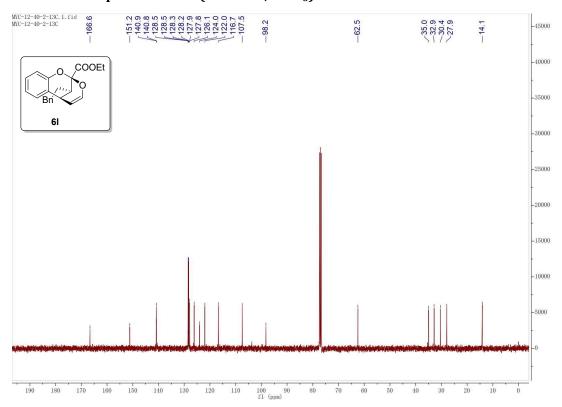

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

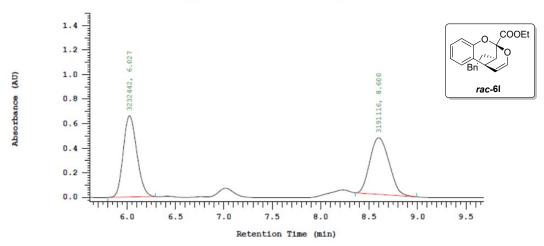
No.	RT	Area	Area %	BC
1	4.687	4131818	49.658	ВВ
2	6.613	4188709	50.342	BB
		8320527	100.000	

The HPLC of chiral 6k


Chrom Type: Fixed WL Chromatogram, 205 nm

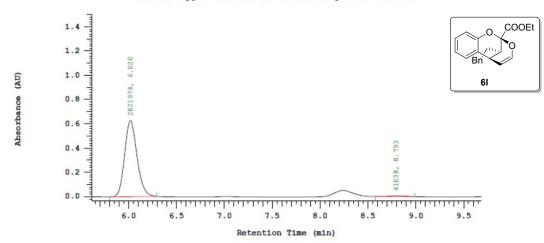

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	4.673	2779632	99.684	ВВ
2	6.600	8803	0.316	BB
\$ 		2788435	100.000	


The ¹H NMR spectrum of 6l (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6l (100 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 205 nm

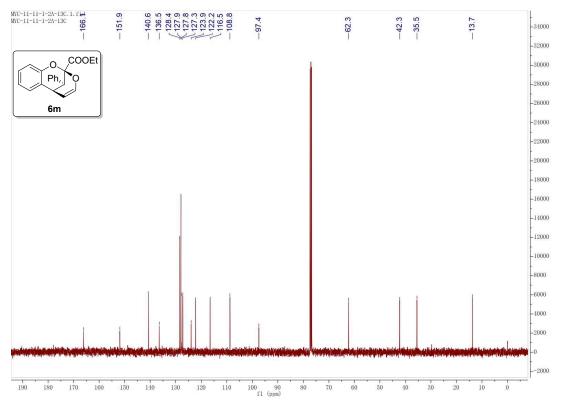

Chrom Type: Fixed WL Chromatogram, 205 nm

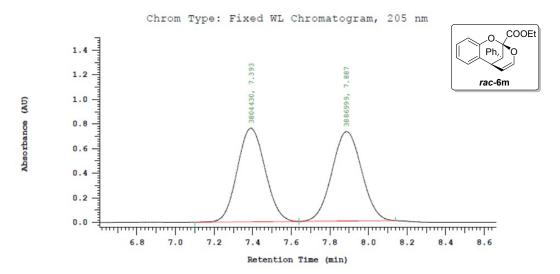
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	6.027	3232442	50.322	ВВ
2	8.600	3191116	49.678	BB
		6423558	100.000	

The HPLC of chiral 61

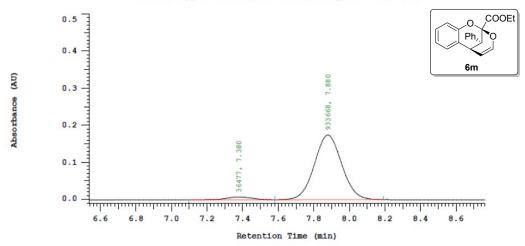
Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1	6.020	2821974	98.567	ВВ
2	8.793	41038	1.433	BB
		2863012	100.000	

The ¹H NMR spectrum of 6m (400 MHz, CDCl₃)

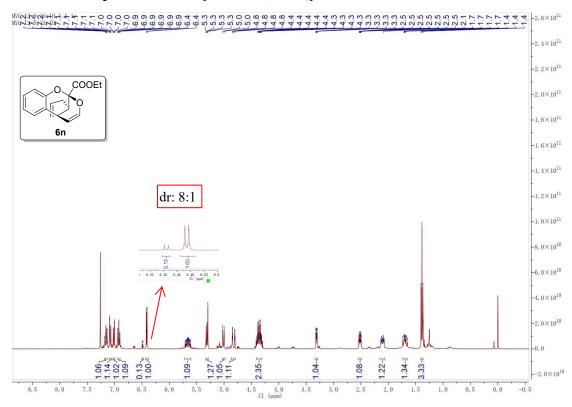
The ¹³C NMR spectrum of 6m (100 MHz, CDCl₃)

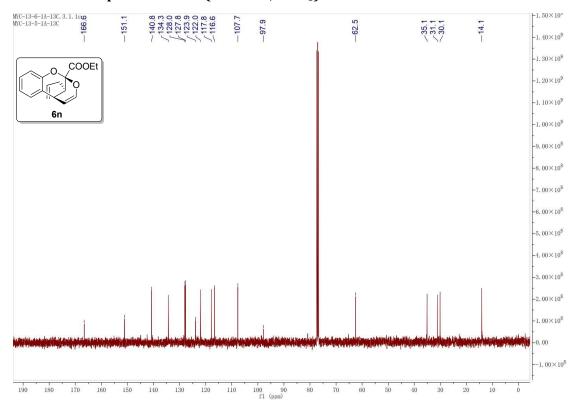

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

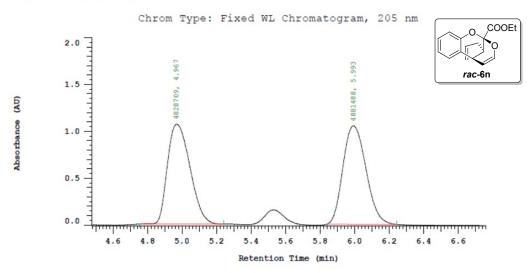
No.	RT	Area	Area %	BC
1	7.393	3804430	49.463	BB
2	7.393 3804430 49.463 7.887 3886999 50.537	BB		
		7691429	100.000	

The HPLC of chiral 6m


Chrom Type: Fixed WL Chromatogram, 205 nm

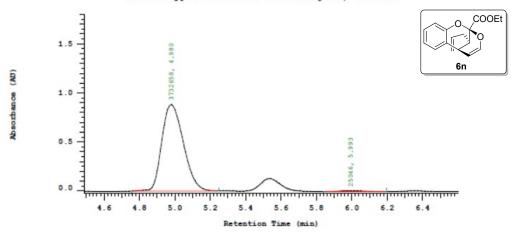

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	7.380	36477	3.760	BB
2	7.880	933668	96.240	BB
		970145	100.000	


The ¹H NMR spectrum of 6n (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6n (100 MHz, CDCl₃)

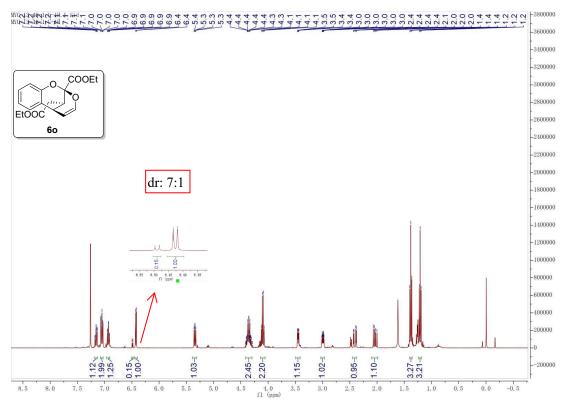
cumpro roccirporon.

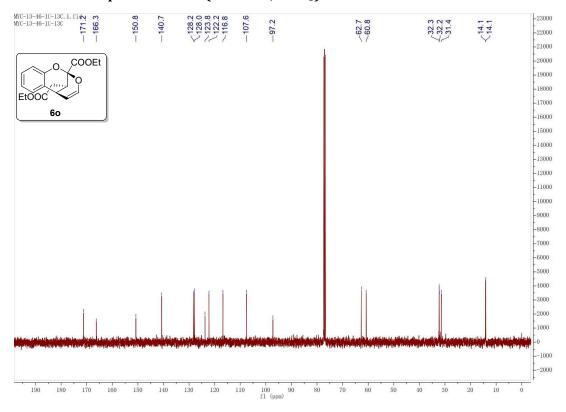

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

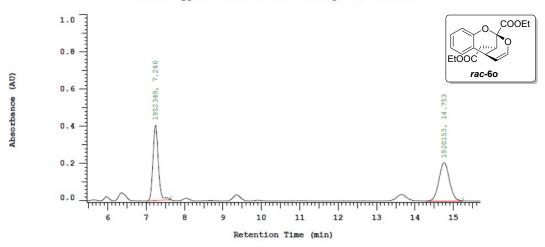
No.	RT	Area	Area %	BC
1	4.967	4828709	49.728	BB
2	5.993	4881488	49.728 50.272	BB
		9710197	100.000	

The HPLC of chiral 6n


Chrom Type: Fixed WL Chromatogram, 205 nm

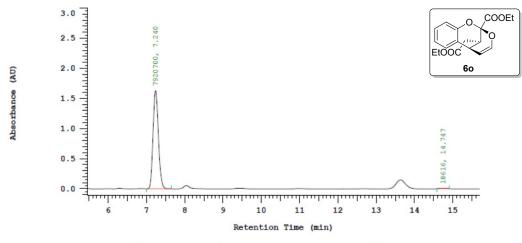

Chrom Type: Fixed WL Chromatogram, 205 nm Peak Quantitation: AREA Calculation Method: AREA*

No.	RT	Area	Area %	BC
1	4.980	3732658	99.333	ВВ
2	5.993	25046	0.667	BB
<u> </u>		3757704	100.000	


The ¹H NMR spectrum of 60 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 60 (100 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 220 nm

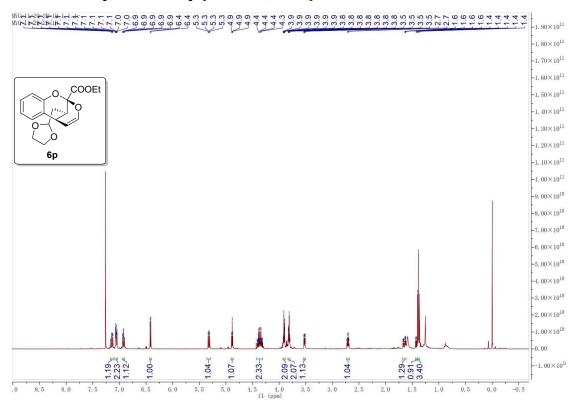

Chrom Type: Fixed WL Chromatogram, 220 nm

Peak Quantitation: AREA Calculation Method: AREA%

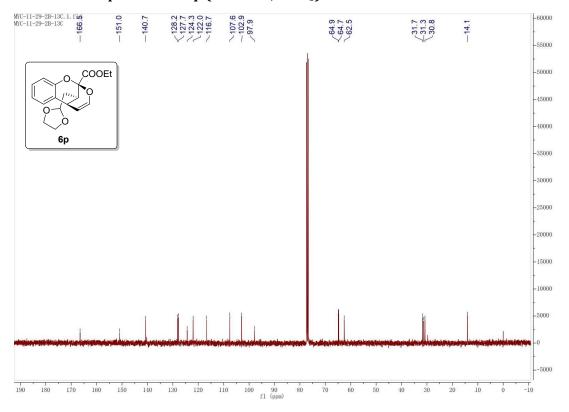
No.	RT	Area	Area %	BC
1	7.240	1952349	50.416	ВВ
2	14.753	1920153	49.584	BB
		3872502	100.000	

The HPLC of chiral 60

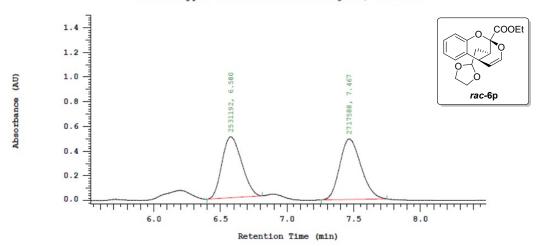
Chrom Type: Fixed WL Chromatogram, 220 nm



Chrom Type: Fixed WL Chromatogram, 220 nm

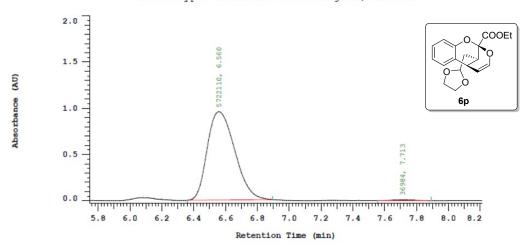

Peak Quantitation: AREA Calculation Method: AREA%

RT Area % BC No. Area 1 7.240 7920700 99.766 BB 2 14.747 18616 0.234 BB 7939316 100.000


The ¹H NMR spectrum of 6p (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6p (100 MHz, CDCl₃)

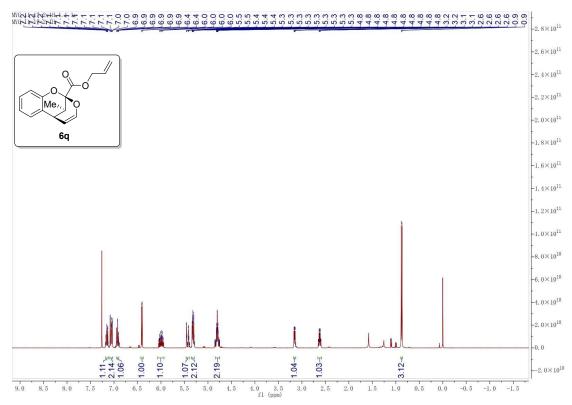
Chrom Type: Fixed WL Chromatogram, 205 nm

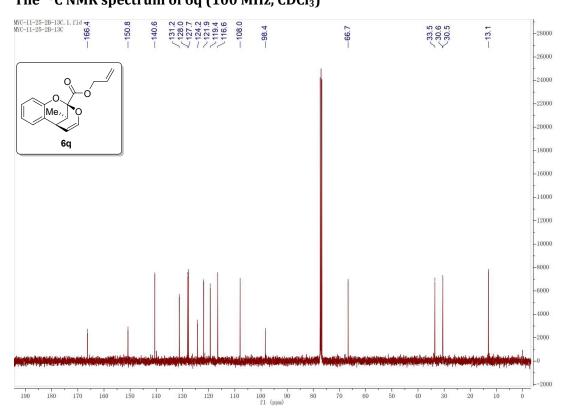

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

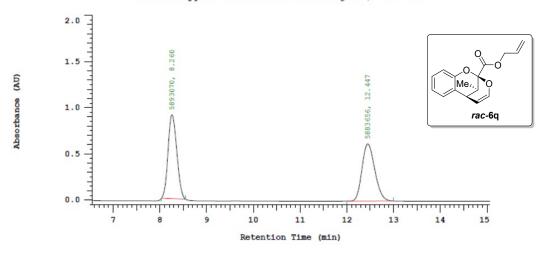
No.	RT	Area	Area %	BC
1	6.580	2531192	48.224	ВВ
2	7.467	2717588	51.776	BB
		5248780	100.000	

The HPLC of chiral 6p


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

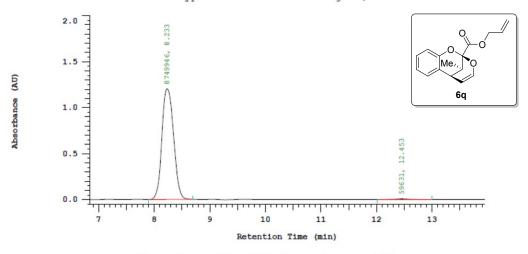
No.	RT	Area	Area %	BC
1	6.560	5722110	99.358	ВВ
2	7.713	36984	0.642	BB
		5759094	100.000	


The ¹H NMR spectrum of 6q (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6q (100 MHz, CDCl₃)

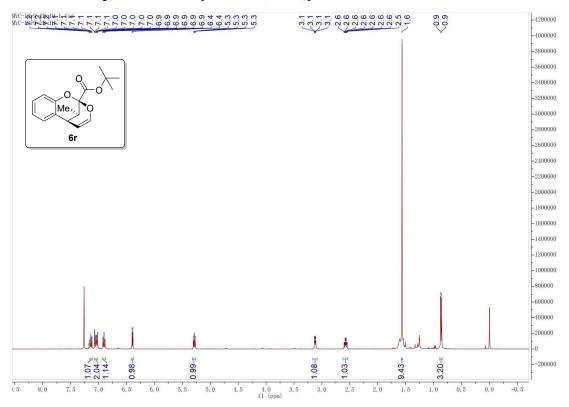
Chrom Type: Fixed WL Chromatogram, 205 nm

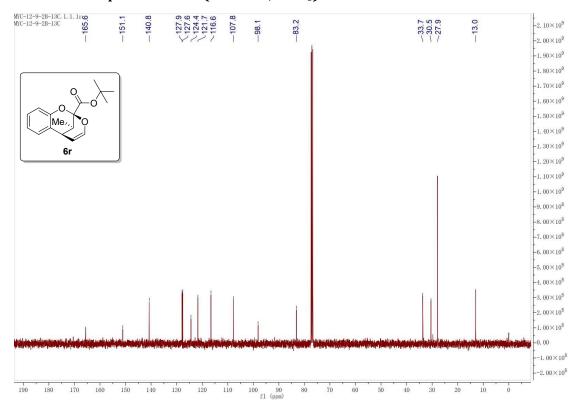
Chrom Type: Fixed WL Chromatogram, 205 nm

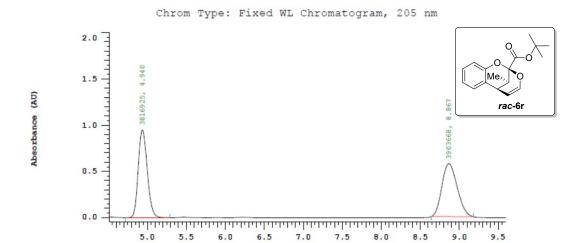

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	8.260	5893070	50.040	BB
2	12.447	5883656	49.960	BB
		11776726	100.000	2

The HPLC of chiral 6q


Chrom Type: Fixed WL Chromatogram, 205 nm

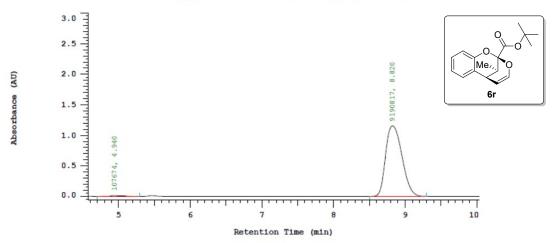

Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1	8.233	8749946	99.323	ВВ
2	12.453	59631	99.323 0.677	BB
		8809577	100.000	

The ¹H NMR spectrum of 6r (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6r (100 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 205 nm

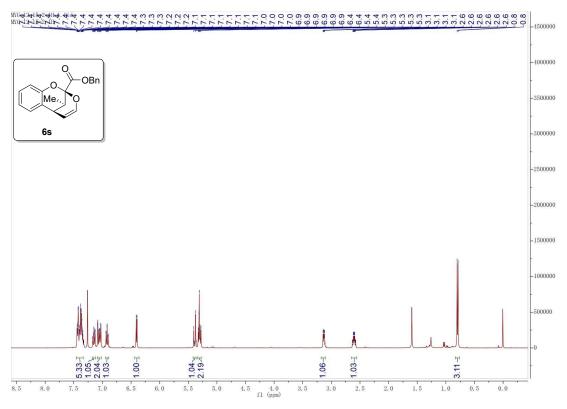

Retention Time (min)

Peak Quantitation: AREA Calculation Method: AREA%

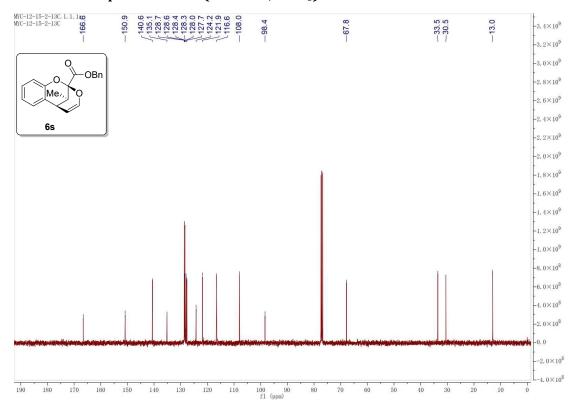
No.	RT	Area	Area %	BC
1	4.940	3816925	49.438	BB
2	8.867	3903668	49.438 50.562	BB
		7720593	100.000	

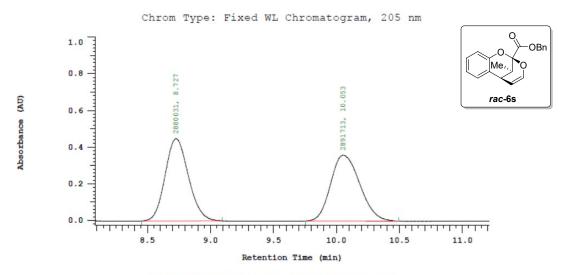
The HPLC of chiral 6r

Chrom Type: Fixed WL Chromatogram, 205 nm



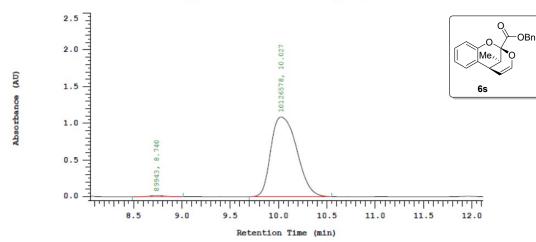
Chrom Type: Fixed WL Chromatogram, 205 nm Peak Quantitation: AREA


Calculation Method: AREA%


No.	RT	Area	Area %	BC
1	4.940	107674	1.158	ВВ
2	8.820	9190817	1.158 98.842	BB
		9298491	100.000	

The ¹H NMR spectrum of 6s (400 MHz, CDCl₃)

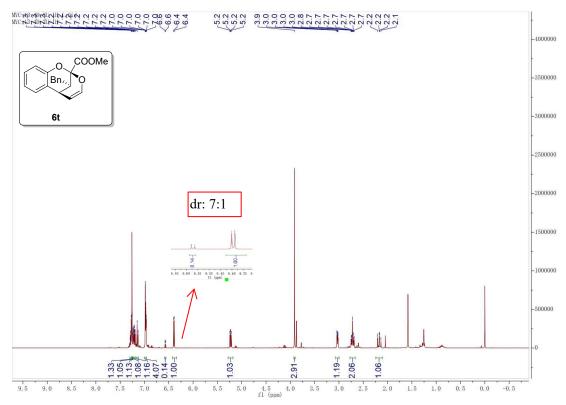
The ¹³C NMR spectrum of 6s (100 MHz, CDCl₃)

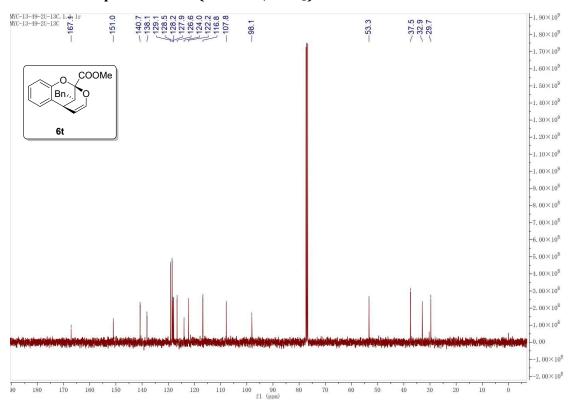

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

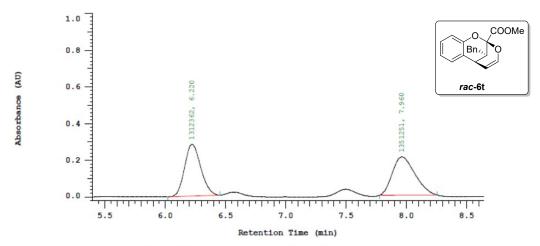
No.	RT	Area	Area %	BC
1	8.727	2880031	49.899	BB
2	10.053	2891713	49.899 50.101	BB
		5771744	100.000	

The HPLC of chiral 6s


Chrom Type: Fixed WL Chromatogram, 205 nm

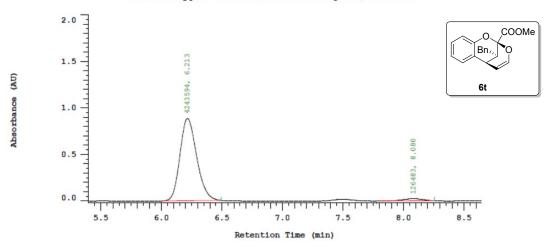

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	8.740	89943	0.880	BB
2	10.027	10126578 99.120	BB	
		10216521	100.000	


The ¹H NMR spectrum of 6t (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 6t (100 MHz, CDCl₃)

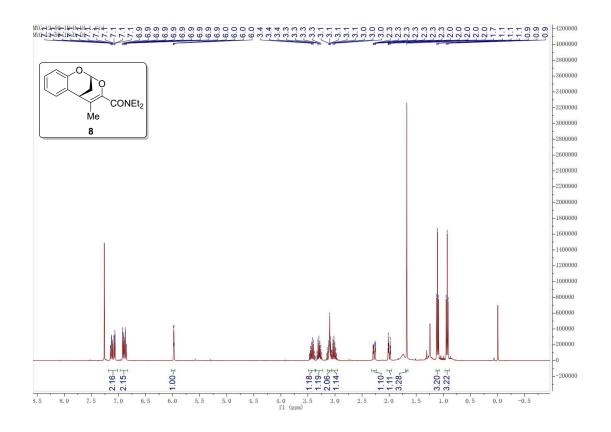
Chrom Type: Fixed WL Chromatogram, 220 nm

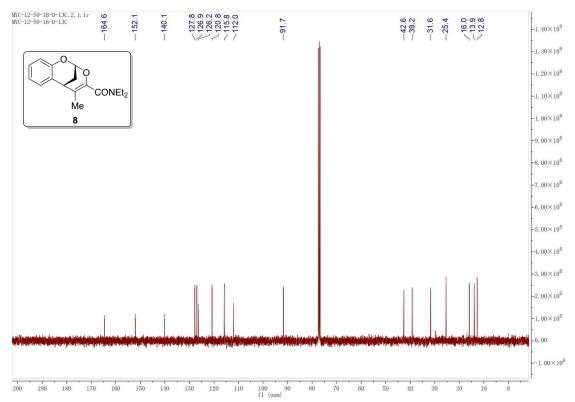

Chrom Type: Fixed WL Chromatogram, 220 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	6.220 7.960	1312362 1351251	49.270 50.730	BB BB
		2663613	100.000	

The HPLC of chiral 6t


Chrom Type: Fixed WL Chromatogram, 220 nm

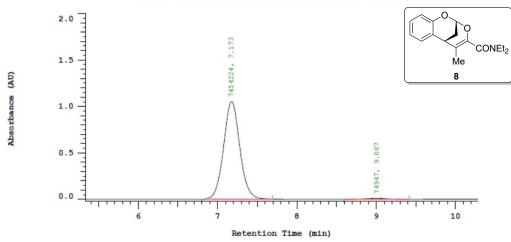

Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1	6.213	4243594	97.106	ВВ
2	8.080	126483	2.894	BB
-		4370077	100.000	

The ¹H NMR spectrum of 8 (400 MHz, CDCl₃)

The ^{13}C NMR spectrum of 8 (100 MHz, CDCl₃)

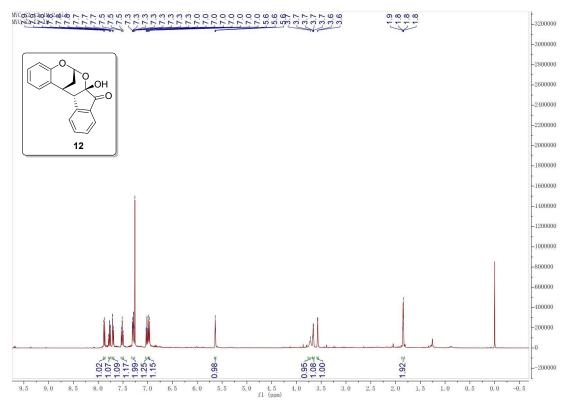
Chrom Type: Fixed WL Chromatogram, 205 nm

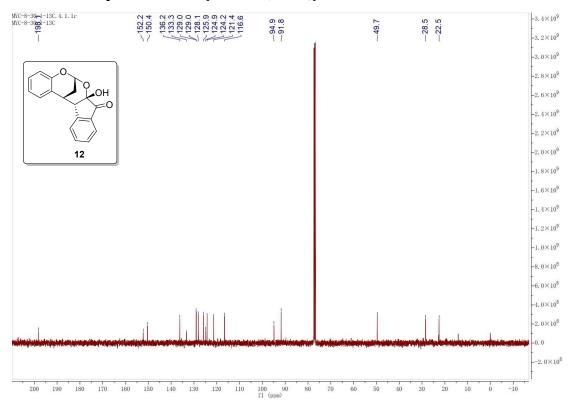

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

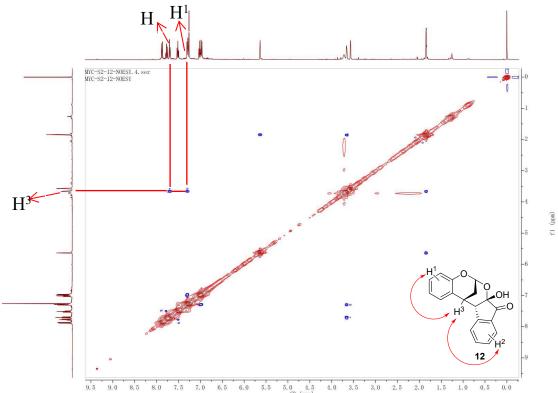
No.	RT	Area	Area %	BC
1	7.207	3743984	49.856	ВВ
2	9.013	3765542	50.144	BB
-		7509526	100.000	

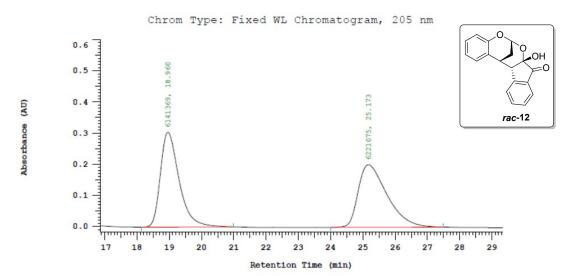
The HPLC of chiral 8


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

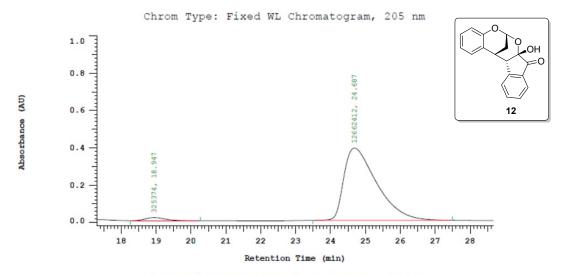
No.	RT	Area	Area %	BC
1	7.173	7454224	99.005	ВВ
2	9.007	74947	0.995	BB
		7529171	100.000	


The ¹H NMR spectrum of 12 (400 MHz, CDCl₃)



The ¹³C NMR spectrum of 12 (100 MHz, CDCl₃)

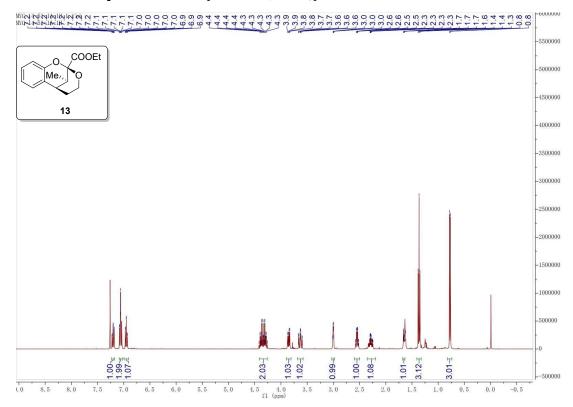
The NOSEY spectrum of 12 (400 MHz, $CDCl_3$)

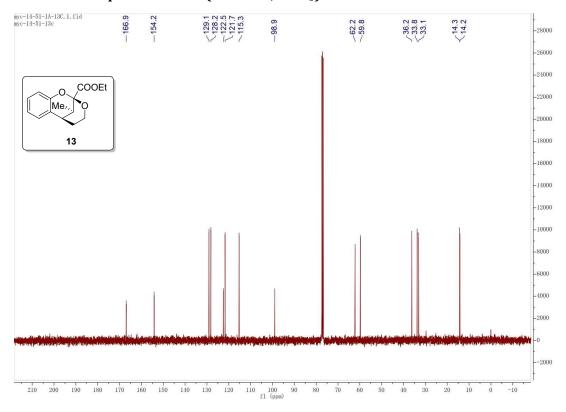


Chrom Type: Fixed WL Chromatogram, 205 nm

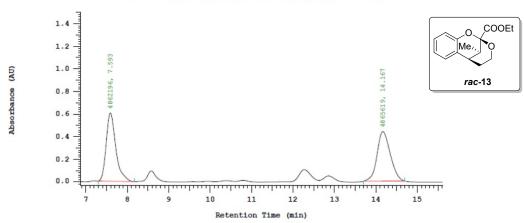
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	18.960	6141369	49.678	BB
2	25.173	6221075		BB
		12362444	100.000	


The HPLC of chiral 12

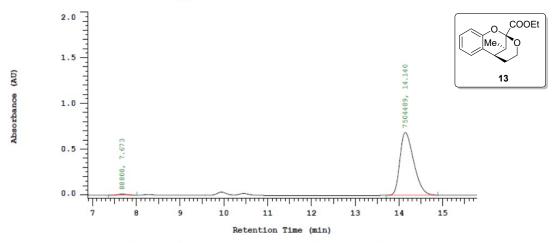

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	18.947	325374	2.505	BB
2	24.687	12662412	2.505 97.495	BB
		12987786	100.000	


The ¹H NMR spectrum of 13 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 13 (100 MHz, CDCl₃)

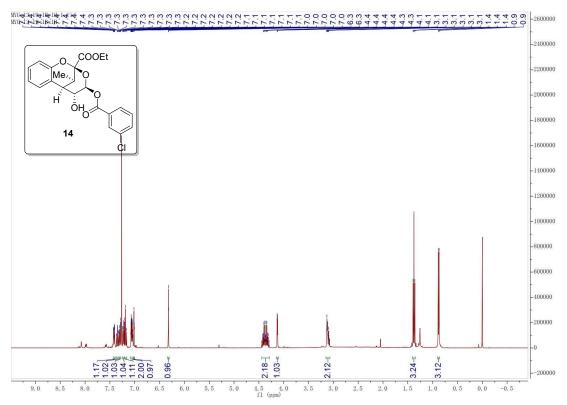
Chrom Type: Fixed WL Chromatogram, 220 nm

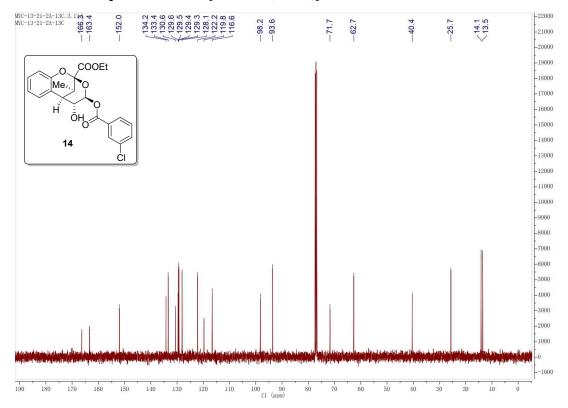

Chrom Type: Fixed WL Chromatogram, 220 nm

Peak Quantitation: AREA Calculation Method: AREA%

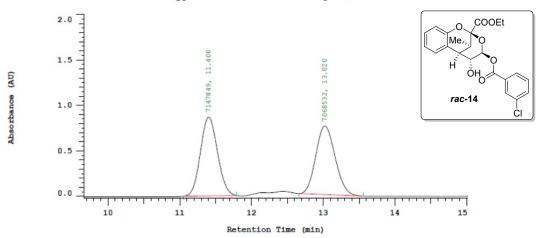
No.	RT	Area	Area %	BC
1	7.593	4862196	49.982	BB
2	14.167	4865619		BB
		9727815	100.000	-

The HPLC of chiral 13


Chrom Type: Fixed WL Chromatogram, 220 nm

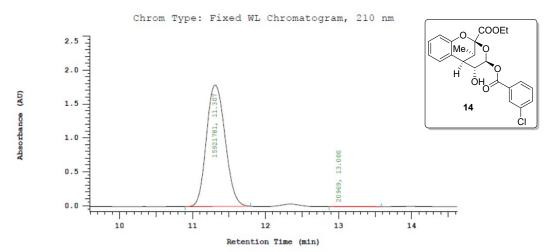

Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1	7.673	88808	1.170	ВВ
2	14.140	7504489	98.830	BB
§		7593297	100.000	


The ¹H NMR spectrum of 14 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 14 (100 MHz, CDCl₃)

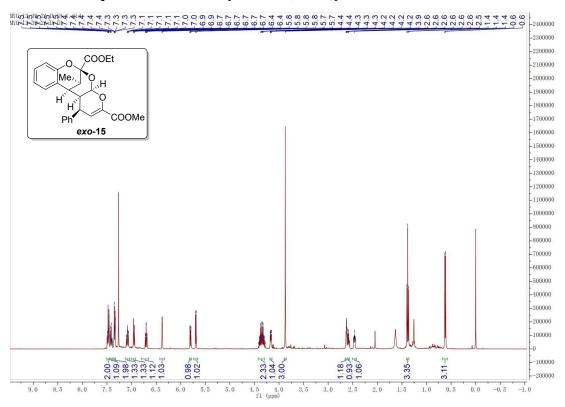
Chrom Type: Fixed WL Chromatogram, 210 nm

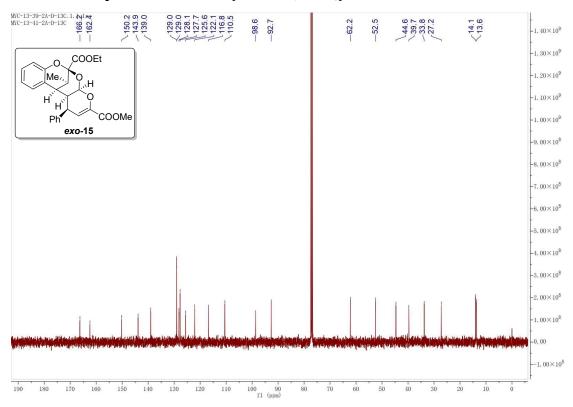


Chrom Type: Fixed WL Chromatogram, 210 nm

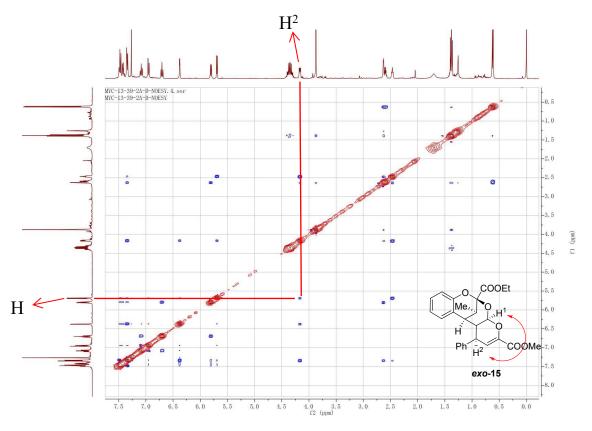
Peak Quantitation: AREA Calculation Method: AREA%

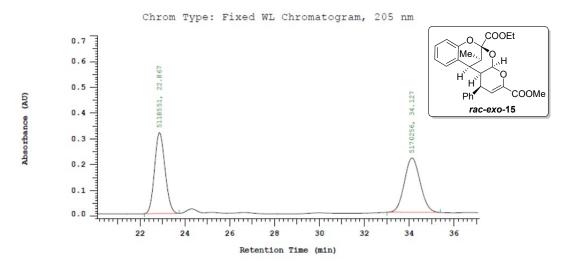
No.	RT	Area	Area %	BC
1	11.400	7147849	50.279	BB
2	13.020	7068532	49.721	BB
		14216381	100.000	


The HPLC of chiral 14

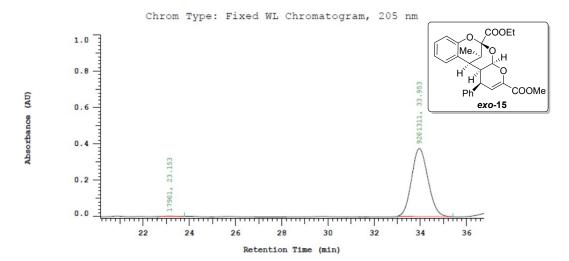

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	11.307	15921781	99.868	ВВ
2	13.000	20969	0.132	BB
		15942750	100.000	


The ¹H NMR spectrum of exo-15 (400 MHz, CDCl₃)

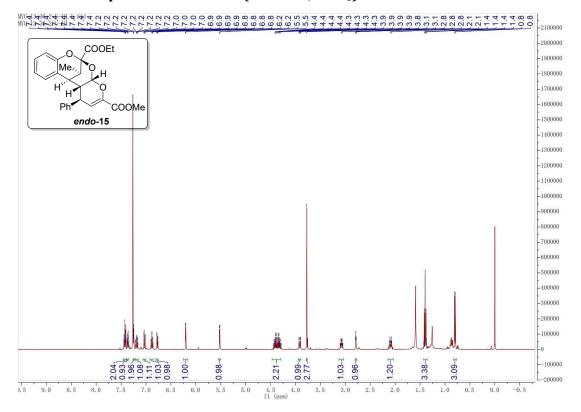

The ¹³C NMR spectrum of exo-15 (100 MHz, CDCl₃)

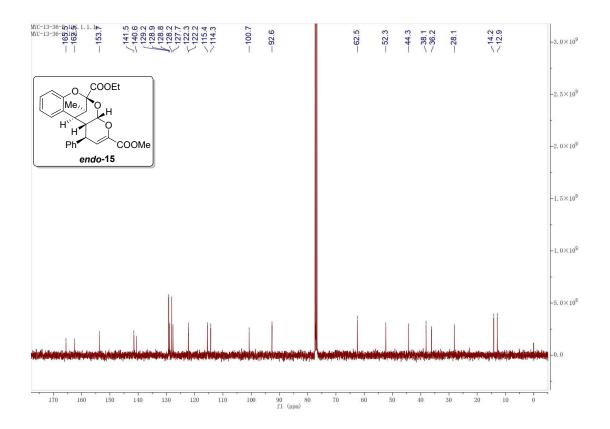
The NOSEY spectrum of exo-15 (400 MHz, CDCl₃)


The HPLC of racemic exo-15

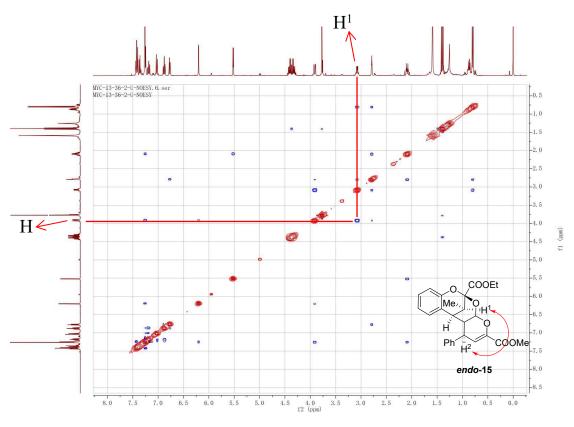
Chrom Type: Fixed WL Chromatogram, 205 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	22.867	5118551	49.749	BB
2	34.127	5170256	50.251	BB
		10288807	100.000	

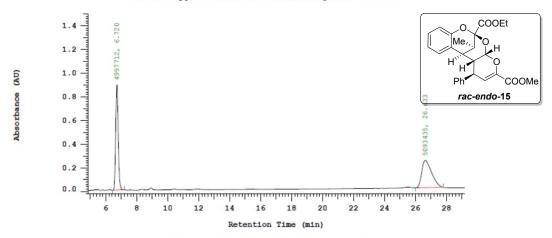

The HPLC of chiral exo-15


Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	23.153	17901	0.194	BB
2	33.953	9201311	99.806	BB
ês:		9219212	100.000	20


The ¹H NMR spectrum of endo-15 (400 MHz, CDCl₃)

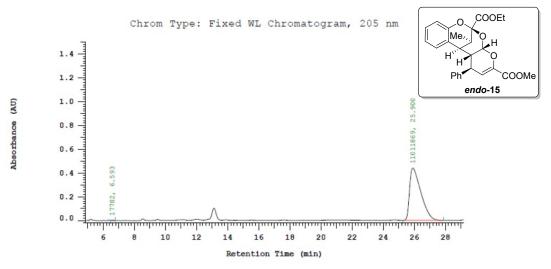
The ¹³C NMR spectrum of endo-15 (100 MHz, CDCl₃)



The NOSEY spectrum of endo-15 (400 MHz, CDCl₃)

The HPLC of racemic endo-15

Chrom Type: Fixed WL Chromatogram, 205 nm



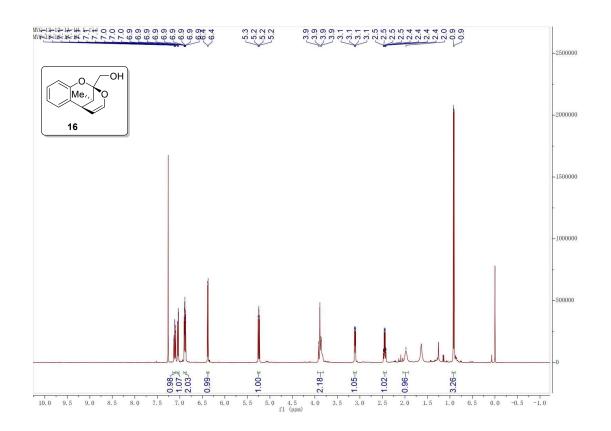
Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

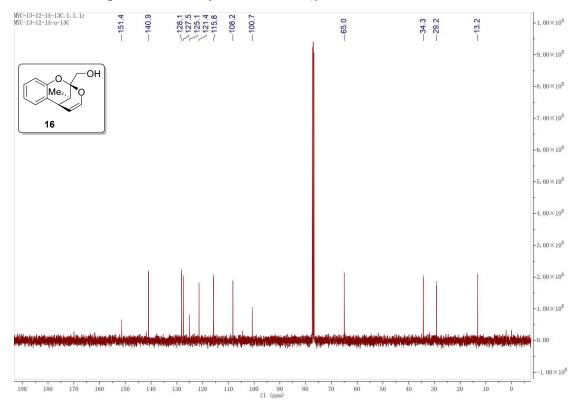
No.	RT	Area	Area %	BC
1	6.720	4997712	49.526	ВВ
2	26.633	5093435 50.474	BB	
		10091147	100.000	

The HPLC of chiral endo-15

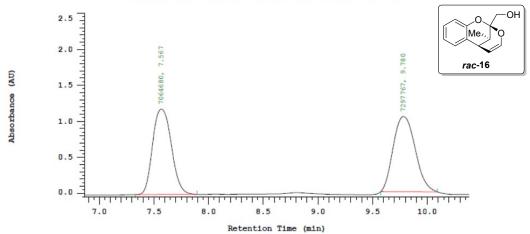
Chrom Type: Fixed WL Chromatogram, 205 nm


Peak Quantitation: AREA Calculation Method: AREA%

No. RT Area Area 8 BC

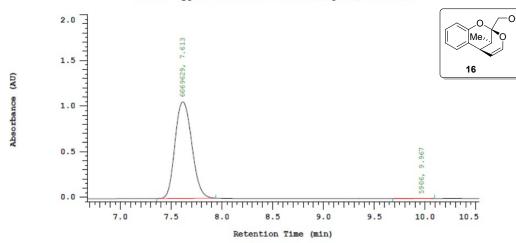

1 6.593 17782 0.161 BB
2 25.900 11011869 99.839 BB

11029651 100.000


The ¹H NMR spectrum of 16 (400 MHz, CDCl₃)

The ^{13}C NMR spectrum of 16 (100 MHz, CDCl₃)

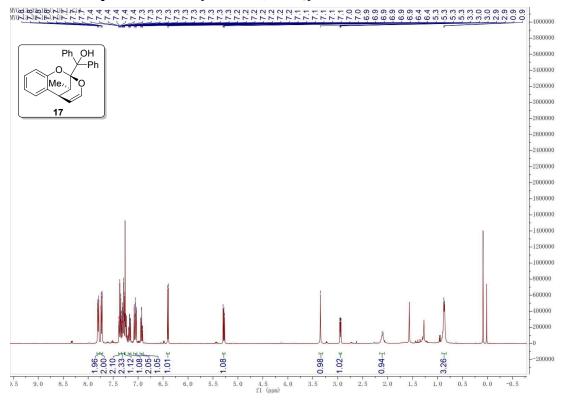
Chrom Type: Fixed WL Chromatogram, 205 nm

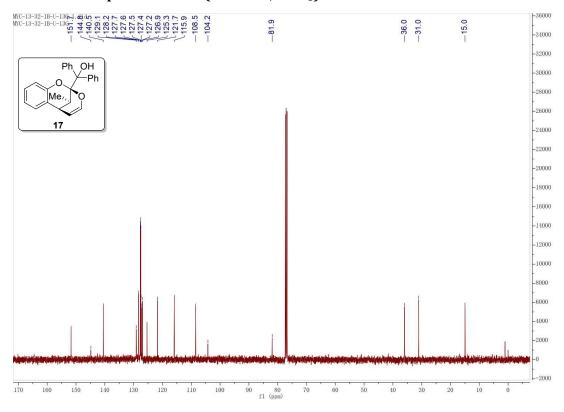

Chrom Type: Fixed WL Chromatogram, 205 nm

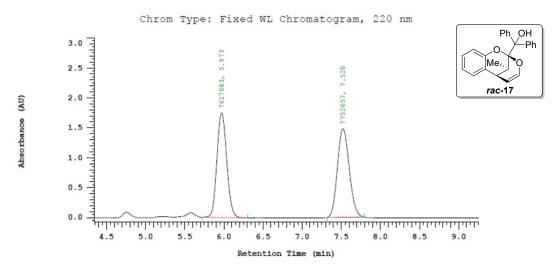
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.567	7064680	49.189	BB
2	9.780	7297767	50.811	BB
		14362447	100.000	

The HPLC of chiral 16

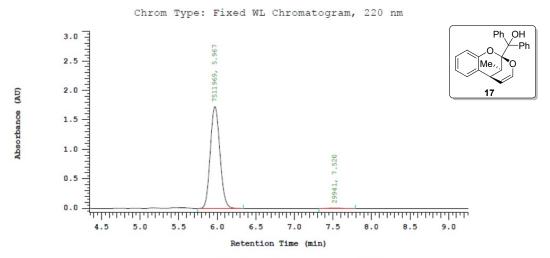

Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1	7.613	6069629	99.903	BB
2	9.967	5906	0.097	BB
		6075535	100.000	

The ¹H NMR spectrum of 17 (400 MHz, CDCl₃)

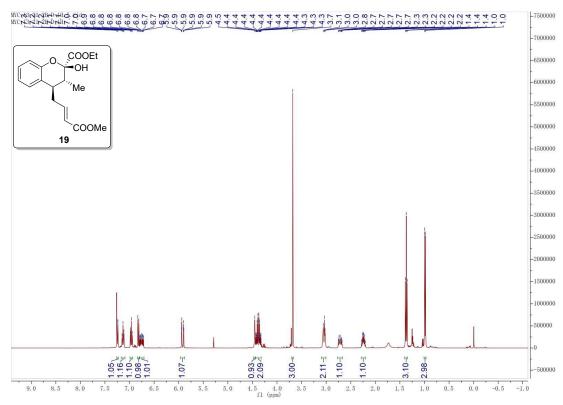
The ¹³C NMR spectrum of 17 (100 MHz, CDCl₃)

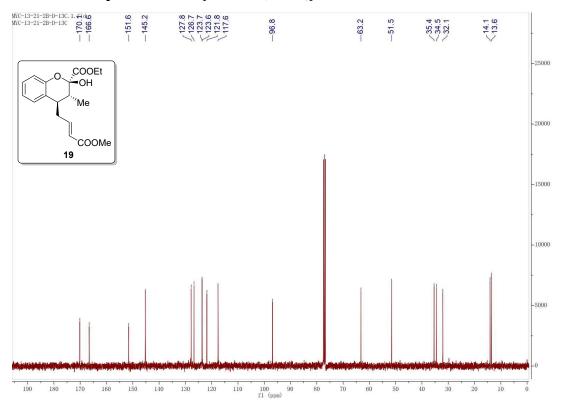


Chrom Type: Fixed WL Chromatogram, 220 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	5.973	7617083	49.559	ВВ
2	7.520	7752657	49.559 50.441	BB
		15369740	100.000	


The HPLC of chiral 17


Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1	5.967	7511969	99.603	ВВ
2	7.520	29941	0.397	BB
		7541910	100.000	

The ¹H NMR spectrum of 19 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 19(100 MHz, CDCl₃)

Absorbance (AU)

Chrom Type: Fixed WL Chromatogram, 205 nm

Retention Time (min)

7.0

7.5

8.0

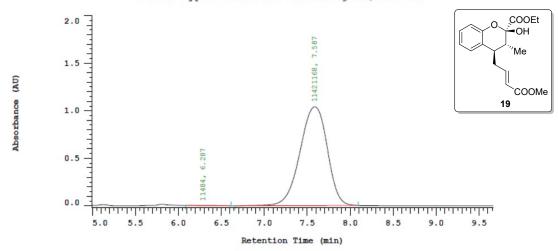
6.5

Peak Quantitation: AREA Calculation Method: AREA%

4.5

5.0

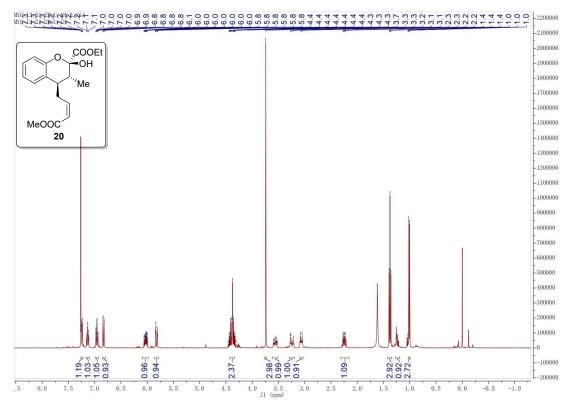
5.5

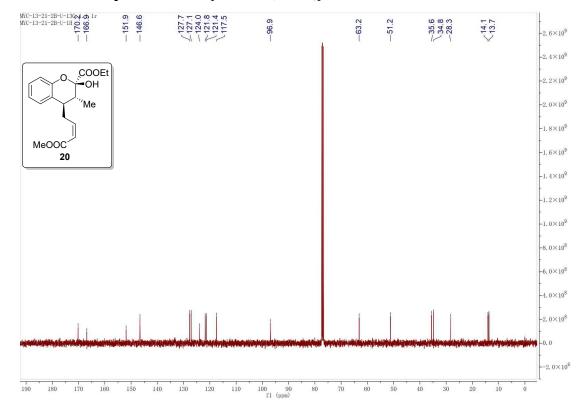

6.0

0.2

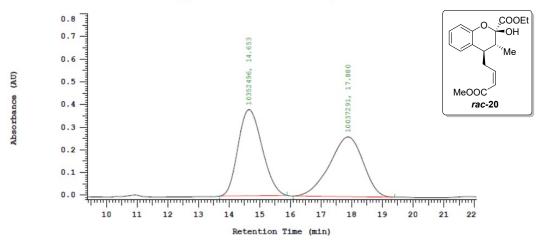
No.	RT	Area	Area %	BC
1	6.313	7452892	49.890	BV
2	7.627	7485835	50.110	VB
		14938727	100.000	

The HPLC of chiral 19


Chrom Type: Fixed WL Chromatogram, 205 nm

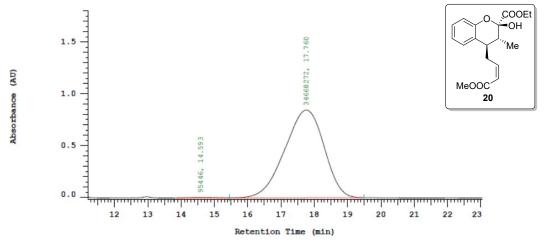

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	6.287	11484	0.100	BB
2	7.587	11421168		BB
-		11432652	100.000	


The ¹H NMR spectrum of 20 (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 20(100 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 205 nm

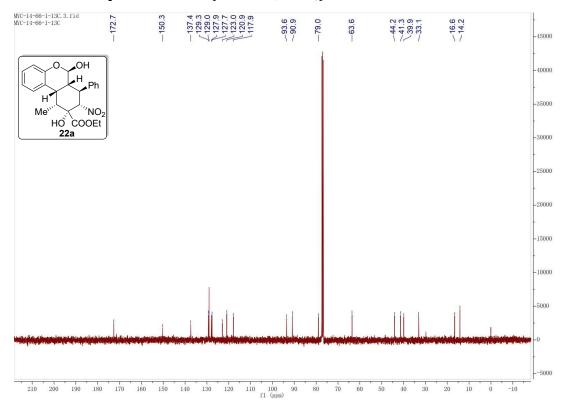

Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

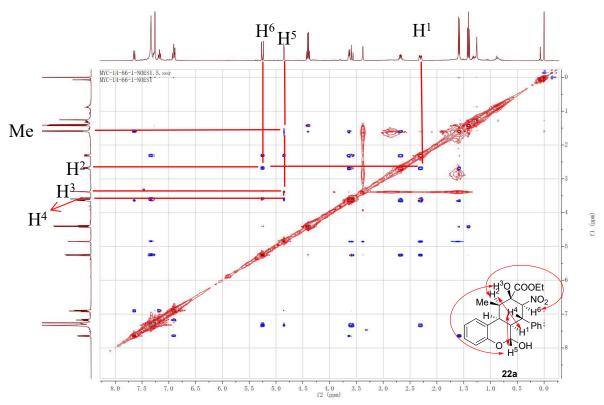
No.	RT	Area	Area %	BC
1	14.653	10352496	50.773	BB
2	17.880	10037291	49.227	BB
9		20389787	100.000	

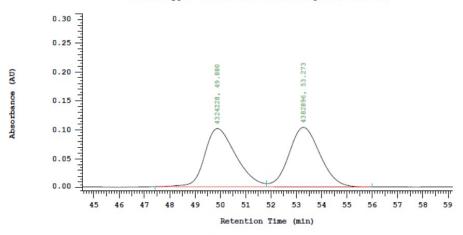
The HPLC of chiral 20


Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm

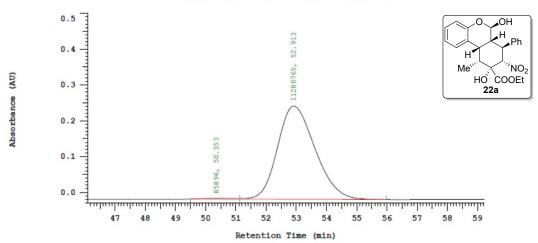
No.	RT	Area	Area %	BC
1	14.593	95446	0.275	BV
2	17.760	34668272	99.725	VB
07		34763718	100.000	


The ¹H NMR spectrum of 22a (400 MHz, CDCl₃)


The ¹³C NMR spectrum of 22a(100 MHz, CDCl₃)

The NOSEY spectrum of 22a (400 MHz, $CDCl_3$)

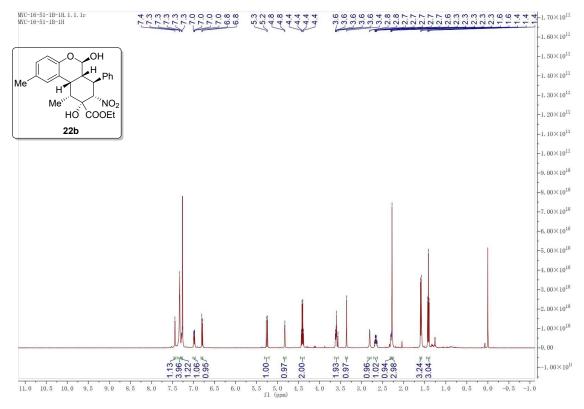
Chrom Type: Fixed WL Chromatogram, 205 nm

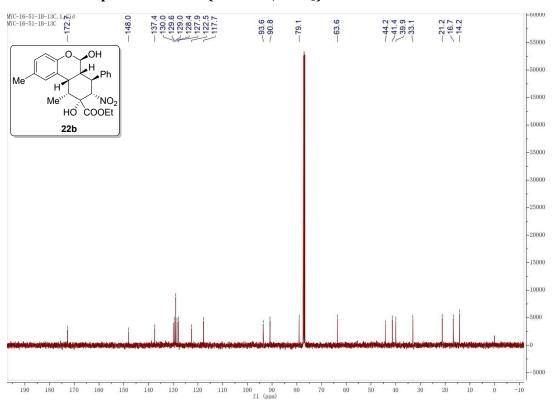

Chrom Type: Fixed WL Chromatogram, 205 nm

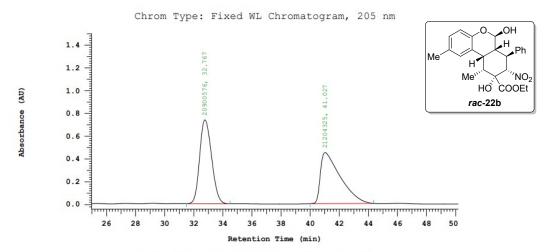
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	49.880	4324228	49.663	BV
2	53.273	4382896	50.337	VB
		8707124	100.000	

The HPLC of chiral 22a

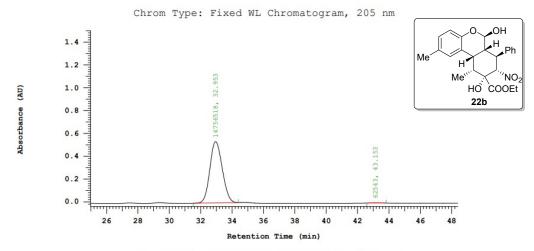

Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1	50.353	85896	0.756	BV
2	52.913	11280765	99.244	VB
		11366661	100.000	

The ¹H NMR spectrum of 22b (400 MHz, CDCl₃)

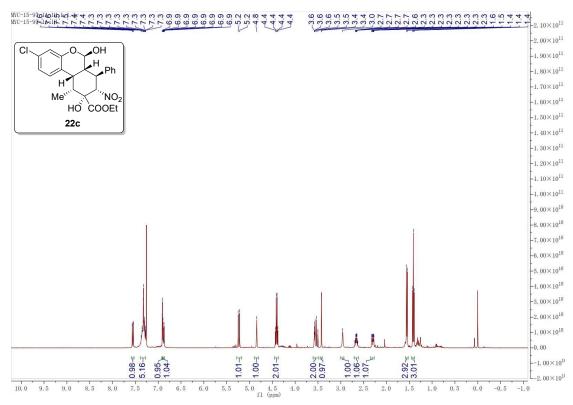
The ¹³C NMR spectrum of 22b (100 MHz, CDCl₃)

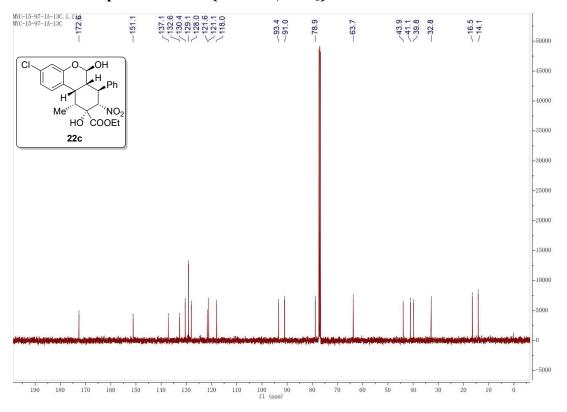


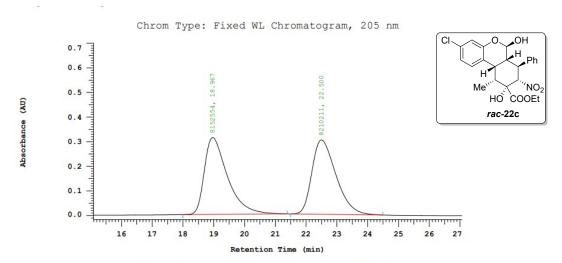
Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	32.767	20900576	49.639	ВВ
2	41.027	21204325	50.361	BB
		42104901	100.000	

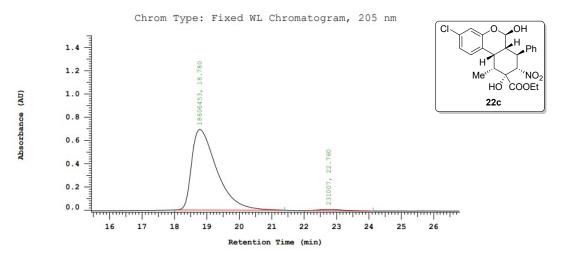

The HPLC of chiral 22b


Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1 2	32.953 43.153	14756518 62543	99.578 0.422	BB BB
		14819061	100.000	_

The ¹H NMR spectrum of 22c (400 MHz, CDCl₃)

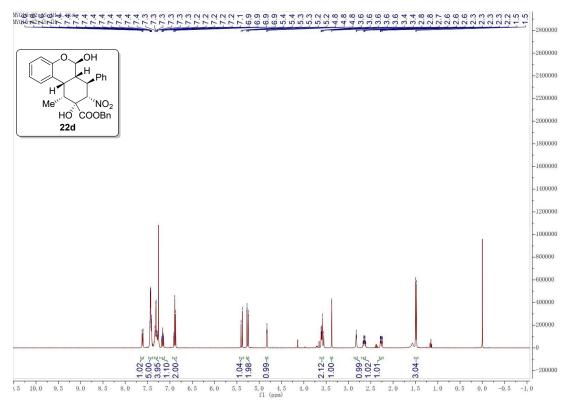
The ¹³C NMR spectrum of 22c (100 MHz, CDCl₃)

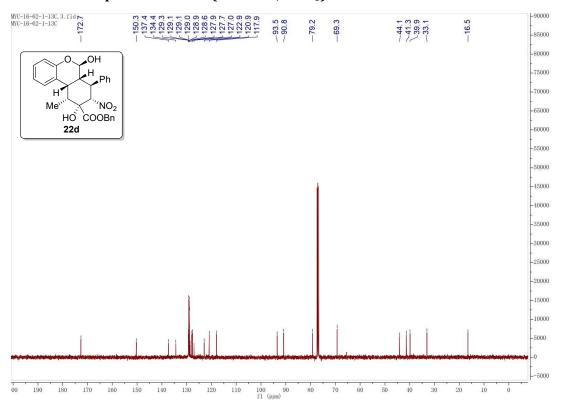


Chrom Type: Fixed WL Chromatogram, 205 nm

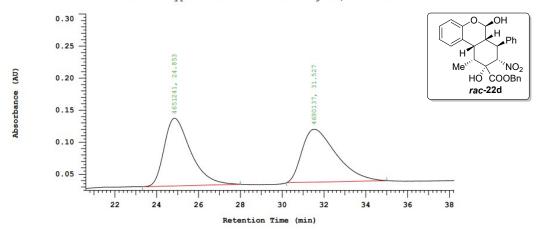
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	18.967	8152554	49.824	ВВ
2	22.500	8210211	50.176	BB
3		16362765	100.000	


The HPLC of chiral 22c

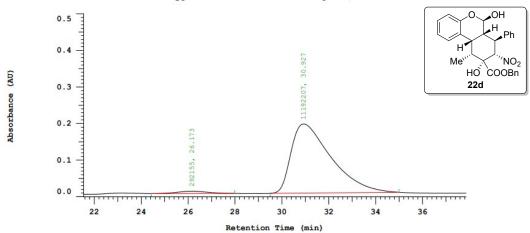

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	18.780	18606453	98.774	ВВ
2	22.760	231007	1.226	BB
		18837460	100.000	1-


The ¹H NMR spectrum of 22d (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 22d (100 MHz, CDCl₃)

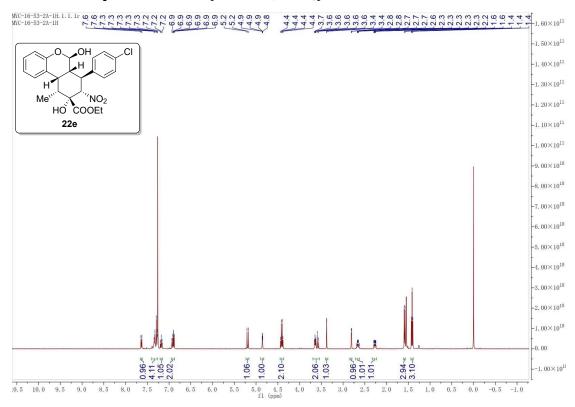
Chrom Type: Fixed WL Chromatogram, 205 nm

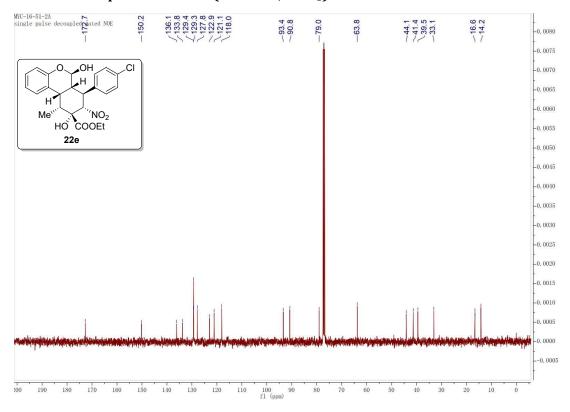

Chrom Type: Fixed WL Chromatogram, 205 nm

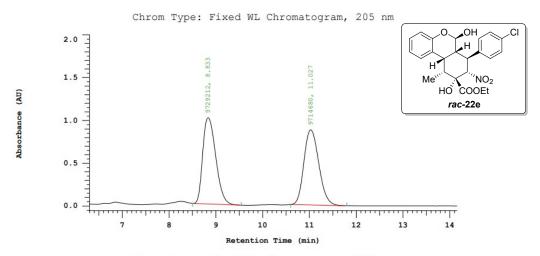
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	24.853	4651241	49.792	ВВ
2	31.527	4690137	50.208	BB
		9341378	100.000	

The HPLC of chiral 22d

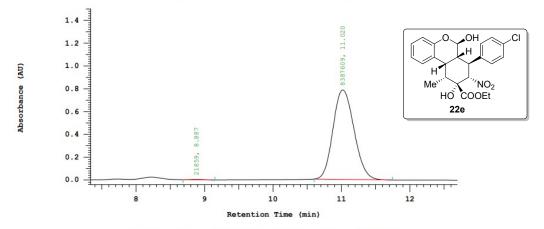

Chrom Type: Fixed WL Chromatogram, 205 nm


Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1	26.173	292155	2.544	BB
2	30.927	11192207	97.456	BB
		11484362	100.000	

The ¹H NMR spectrum of 22e (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 22e (100 MHz, CDCl₃)


Chrom Type: Fixed WL Chromatogram, 205 nm

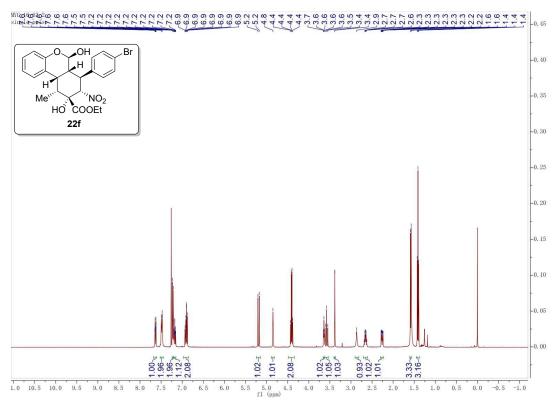
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	8.833	9729212	50.037	ВВ
2	11.027	9714680	49.963	BB
-		19443892	100.000	

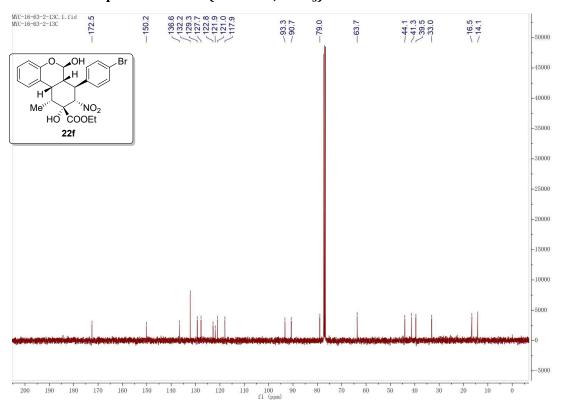
The HPLC of chiral 22e

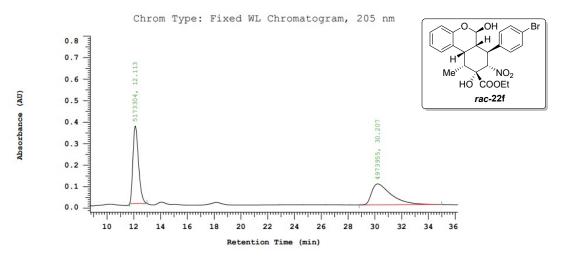
Chrom Type: Fixed WL Chromatogram, 205 nm

Chrom Type: Fixed WL Chromatogram, 205 nm $\,$


Peak Quantitation: AREA Calculation Method: AREA%

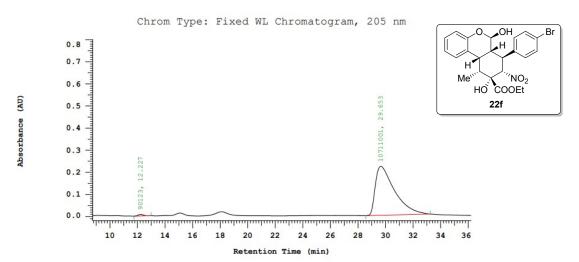
No. RT Area Area % BC


1 8.887 21859 0.260 BB
2 11.020 8387609 99.740 BB


8409468 100.000

The ¹H NMR spectrum of 22f (400 MHz, CDCl₃)

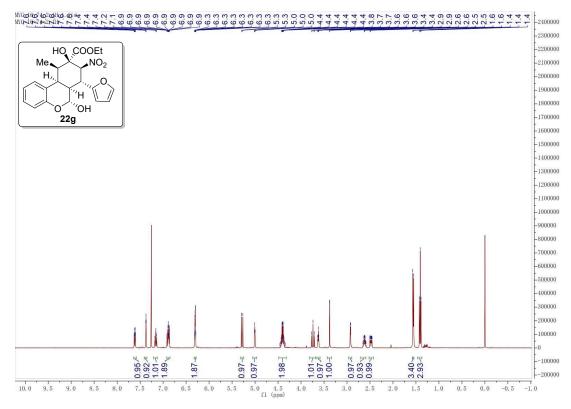
The ¹³C NMR spectrum of 22f (100 MHz, CDCl₃)

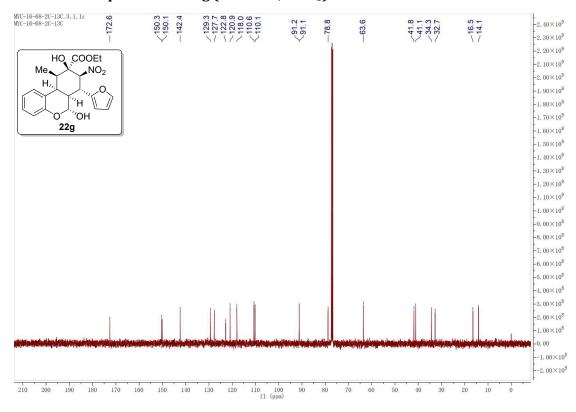


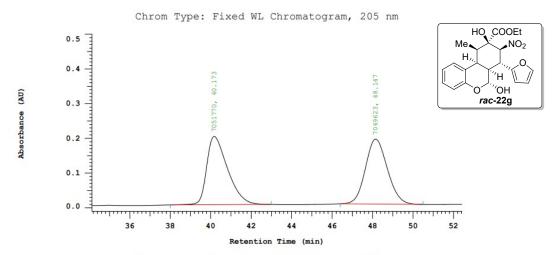
Chrom Type: Fixed WL Chromatogram, 205 nm

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	12.113	5173304	50.982	ВВ
2	30.207	4973955	49.018	BB
		10147259	100.000	

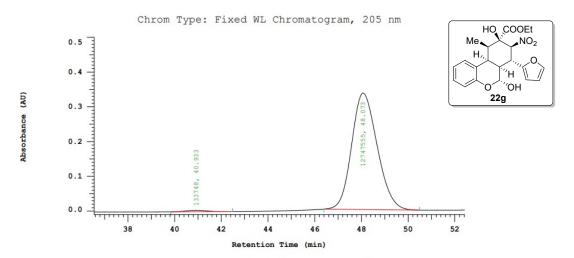

The HPLC of chiral 22f


Chrom Type: Fixed WL Chromatogram, 205 nm


No.	RT	Area	Area %	BC
1	12.227	90123	0.834	ВВ
2	29.653	10711001	99.166	BB
		10801124	100.000	

The ¹H NMR spectrum of 22g (400 MHz, CDCl₃)

The ¹³C NMR spectrum of 22g (100 MHz, CDCl₃)



Chrom Type: Fixed WL Chromatogram, 205 nm

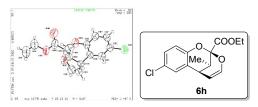
Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	40.173	7051770	50.008	ВВ
2	48.147	7049623	49.992	BB
		14101393	100.000	

The HPLC of chiral 22g

Chrom Type: Fixed WL Chromatogram, 205 nm

No.	RT	Area	Area %	BC
1	40.933	133748	1.038	ВВ
2	48.073	12747555	98.962	BB
		12881303	100.000	100


J. Single crystal X-Ray diffraction data

Single crystal preparation: 6h was dissolved in CH_2Cl_2 (0.1 mL), diluted with MeOH (1 mL), sealed, cultured in standing, and the solvent was volatilized at room temperature. After a week, single crystals were formed.

The instrumentation used: Gemini E/Eos of Rigaku.

[CCDC 2210634 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.].

Absolute configuration of 6h - CCDC 2210634

Bond precision:	C-C = 0.0138 A	Wavele	ength=1.54184
Cell:	a=6.0599(8)	b=13.909(2)	c=17.1498(18)
	alpha=90	beta=90	gamma=90
Temperature:	293 K		
	Calculated	Repor	rted
Volume		1445.	5(3)
Space group		P 21	21 21
Hall group	P 2ac 2ab	P 2ac	2ab
-	C15 H15 C1 O4	C15 F	H15 Cl O4
Sum formula		C15 F	
Mr	294.72	294.7	12
Dx, g cm-3	1.354	1.354	1
Z	4	4	
Mu (mm-1)	2.439	2.439)
F000	616.0	616.0)
F000'	619.28		
h,k,lmax	7,17,21	7,16,	20
	2788[1635]	2226	
Tmin, Tmax	0.677,0.784	0.680	,1.000
Tmin'	0.585		
Correction metho AbsCorr = MULTI-	od= # Reported T L -SCAN	imits: Tmin=0.68	30 Tmax=1.000
Data completenes	ss= 1.36/0.80	Theta(max)= 7	0.940
			wR2 (reflections) =
R(reflections)=	0.0656(1138)		0.2282(2226)

K. Proposed reaction mechanism

$$R^{2} = NEt_{2} R^{1}OH_{2}$$

$$R^{2$$