Electronic Supporting Information

Synthesis of Tröger Base-Based[3]arenes for Efficient Iodine Adsorption

Pengbo Niu, ^a Conghao Shi, ^a Jianmin Jiao, ^a Wang Xie, ^a Heng Qiu, ^a Zhen Yang, ^a Juli Jiang, ^{*a,b} and Leyong Wang ^{*a}

^a State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China

^b Ma' anshan High-Tech Research Institute of Nanjing University, Ma' anshan, 238200, China

* Corresponding Author: jjl@nju.edu.cn; lywang@nju.edu.cn

Table of Contents

1. General Information	S3
2. Synthesis and Characterization of M[3], E[3] and B[3]	S4
3. High Resolution ESI-MS of M[3], E[3] and B[3]	S22
4. X-ray Experimental Data for <i>rac</i> - MTB	S23
5. Resolution of R_{2N} -ETB and S_{2N} -ETB	S25
6. CD Spectra	S28
7. Iodine Vapor Adsorption Experiments	S29
8. Iodine Desorption in Methanol	S32
9. Reference	S33

1. General Information

All reactions were performed in air atmosphere unless otherwise stated. All chemicals and solvents were purchased from commercial suppliers and were used without further purification unless otherwise specified. Hydroxyl TB were synthesized according to the previously reported literature. All yields were given as isolated yields. NMR spectra were recorded on Bruker DPX 400 MHz or Bruker DPX 500 MHz spectrometer with internal standard tetramethylsilane (TMS) and solvent signals as internal references at 298 K, and the chemical shifts (δ) were expressed in ppm and J values were given in Hz. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on Bruker micrOTOF-Q III and Agilent 6540Q-TOF LCMS equipped with an electrospray ionization (ESI) probe operating in positiveion mode with direct infusion. EA were measured on Elementar Vario MICRO cube. The measurements of $[\alpha]_D$ were recorded on AUTOPOL III. The UV-Vis absorption spectra were measured on a Shimadzu UV-3600 UV-Vis Spectrometer. The Fourier Transform Infrared (FT-IR) spectra were recorded in the range 4000-400 cm⁻¹ on a Tensor 27 FT-IR spectrophotometer. The Scanning Electron Mircoscopy (SEM) experiments was carried out on a JEOL JSM-6490 instrument. X-ray photoelectron spectroscopy (XPS) experiments were carried out on PHI5000 VersaProbe analyzer. The sample was degassed under vacuum at 100 °C for 5 hours before measurement. Thermogravimetric Analysis (TGA) was carried out using a ASAP2020 analyzer. The samples were heated at the rate of 10 °C/min and N₂ was used as protective gas. The crystal structures were determined by single-crystal X-ray analysis. Data collections were performed using a Bruker Apex Smart CCD diffractometer. The structures were solved with direct methods using the SHELXTL program and refined anisotropically with SHELXTL using full-matrix least-squares procedures.

2. Synthesis and Characterization of M[3], E[3] and B[3]

Scheme S1 Synthetic route of M[3], E[3] and B[3]

Synthesis of rac- MTB and characterization data

Hydroxyl TB was synthesized according to previous work.¹ To the solution of **Hydroxyl TB** (0.28 g, 1.0 mmol) and 1,4-Dimethoxybenzene (0.80 g, 5.8 mmol) in CH₃NO₂ (50 mL) was added trifluoromethanesulfonic acid (0.2 mL). The mixture was stirred at 110 °C for 24 h. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 3/1, v/v, dichloromethane : ethyl acetate) to afford *rac*-**MTB** (0.090 g, 17%), as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 4H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.72 (s, 2H), 6.70 (dd, *J* = 8.8, 3.0 Hz, 2H), 6.62 (d, *J* = 3.0 Hz, 2H), 4.64 (d, *J* = 16.7 Hz, 2H), 4.28 (s, 2H), 4.09 (d, *J* = 16.7 Hz, 2H), 3.81 (s, 4H), 3.74 (s, 6H), 3.70 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 151.6, 145.5, 136.7, 130.7, 128.0, 127.4, 127.0, 124.9, 116.9, 111.4, 111.2, 66.9, 58.5, 56.0, 55.6, 35.4.

Fig. S1 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *rac*-MTB.

Fig. S2 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of *rac*-MTB.

Synthesis of M[3] and characterization data

rac-**MTB** (0.20 g, 0.4 mmol) and paraformaldehyde (0.040 g, 1.2 mmol), 60 mL of 1,2-dichloroethane were added to a 100 mL round-bottom flask. BF₃·O(C₂H₅)₂ (0.4 mL, 3.1 mmol) was added to the solution and the mixture was stirred at room temperature for 1 h. The reaction was quenched with NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 50/1, v/v, dichloromethane : methano) to afford **M[3]** (0.025 g, 12%), as a yellow solid. Elemental analysis: C 76.67%, H 6.68%, N 5.46%), corresponding to C₁₀₂H₁₀₂N₆O₁₂ with the calculated (C 76.38%, H 6.41%, N 5.24%). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, 12H), 6.70 (s, 6H), 6.63 (d, *J* = 1.7 Hz, 6H), 4.63 (d, *J* = 16.7 Hz, 6H), 4.29 (s, 6H), 4.08 (d, *J* = 16.7 Hz, 6H), 3.88 (s, 6H), 3.82 (s, 12H), 3.68 (d, *J* = 1.8 Hz, 18H), 3.62 (d, *J* = 1.8 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 151.2, 145.6, 136.9, 127.9, 127.7, 127.5, 127.4, 126.8, 124.8, 113.9, 113.5, 67.0, 58.6, 56.1, 35.2, 29.8.

Fig. S3 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of M[3].

Fig. 54 C Wirk spectrum (100 Wirlz, CDC13, 270 K) of Wi

Synthesis of rac-ETB and characterization data

To the solution of **Hydroxyl TB** (1.00 g, 3.5 mmol) and 1,4-Diethoxybenzene (3.48 g, 21.2 mmol) in CH₃NO₂ (150 mL) was added trifluoromethanesulfonic acid (0.7 mL). The mixture was stirred at 110 °C for 24 h. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 3/1, v/v, dichloromethane : ethyl acetate) to afford *rac*-**ETB** (0.62 g, 30%), as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 4H), 6.77 (s, 2H), 6.74 (s, 2H), 6.69 (d, *J* = 3.0 Hz, 2H), 6.67 (d, *J* = 3.0 Hz, 2H), 4.64 (d, *J* = 16.7 Hz, 2H), 4.30 (s, 2H), 4.11 (d, *J* = 16.7 Hz, 2H), 3.93 (d, *J* = 7.0 Hz, 8H), 3.82 (s, 4H), 1.36 (t, *J* = 7.0 Hz, 6H), 1.30 (t, *J* = 7.0 Hz, 6H).

Fig. S5 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *rac*-ETB.

Characterization data of *R*_{2N}-ETB.

¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, 4H), 6.75 (s, 2H), 6.73 (s, 2H), 6.67 (s, 2H), 6.65 (s, 2H), 4.63 (d, J = 16.7 Hz, 2H), 4.28 (s, 2H), 4.09 (d, J = 16.7 Hz, 2H), 3.92 (m, 8H), 3.80 (s, 4H), 1.35 (t, J = 7.0 Hz, 6H), 1.29 (t, J = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 152.7, 150.8, 145.7, 136.7, 131.1, 128.0, 127.4, 127.1, 124.7, 117.3, 112.7, 111.9, 66.9, 64.3, 63.8, 58.6, 35.7, 14.9, 14.9. [α]_D^{25 °C} = -110.2 (1.0 × 10⁻² g/mL, CH₂Cl₂).

Fig. S6 ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of R_{2N} -ETB.

Fig. S7 ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of *R*_{2N}-**ETB**.

Characterization data of S_{2N}-ETB.

¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, 4H), 6.76 (s, 2H), 6.74 (s, 2H), 6.69 (d, *J* = 3.0 Hz, 2H), 6.67 (d, *J* = 3.0 Hz, 2H), 4.64 (d, *J* = 16.7 Hz, 2H), 4.30 (s, 2H), 4.11 (d, *J* = 16.7 Hz, 2H), 3.93 (d, *J* = 7.0 Hz, 8H), 3.82 (s, 4H), 1.36 (t, *J* = 7.0 Hz, 6H), 1.31 (t, *J* = 7.0 Hz, 6H).¹³C NMR (125 MHz, CDCl₃) δ 152.7, 150.9, 145.8, 136.7, 131.2, 128.0, 127.5, 127.2, 124.8, 117.4, 112.7, 112.0, 67.0, 64.4, 63.8, 58.7, 35.7, 15.0, 15.0. [α]_D^{25 °C} = +108.9 (1.0 × 10⁻² g/mL, CH₂Cl₂).

Fig. S8 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *S*_{2*N*}-**ETB**.

Fig. S9 ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of S_{2N}-ETB.

Synthesis of E[3] and characterization data

rac-**ETB** (2.55 g, 4.4 mmol) and paraformaldehyde (0.40 g, 13.3 mmol), 500 mL of 1,2-dichloroethane were added to a 1000 mL round-bottom flask. BF₃·O(C₂H₅)₂ (2.0 mL, 15.5 mmol) was added to the solution and the mixture was stirred at room temperature for 40 minutes. The reaction was quenched with NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 60/1, v/v, dichloromethane : methanol) to afford **E**[**3**] (0.20 g, 7%), as a yellow solid. Elemental analysis: C 77.48%, H 7.32%, N 4.52%, corresponding to C₁₁₄H₁₂₆N₆O₁₂ with the calculated (C 77.26%, H 7.17%, N 4.74%). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (s, 12H), 6.72 (s, 6H), 6.68 (s, 6H), 6.57 (s, 6H), 4.63 (d, *J* = 16.7 Hz, 6H), 4.30 (s, 6H), 4.07 (d, *J* = 16.7 Hz, 6H), 3.91 – 3.77 (m, 42H), 1.31 (t, *J* = 6.9 Hz, 18H), 1.19 (t, *J* = 6.9 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 150.3, 145.2, 137.4, 128.5, 127.8, 127.7, 127.2, 126.9, 124.6, 115.3, 114.6, 67.0, 64.4, 64.3, 58.6, 35.5, 29.9, 15.1, 14.9.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ (ppm) Fig. S11 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of E[3]. Synthesis of rac-BTB and characterization data

To the solution of **Hydroxyl TB** (0.30 g, 1.0 mmol) and 1,4-Dibutoxybenzene (1.36 g, 6.1 mmol) in CH₃NO₂ (25 mL) was added trifluoromethanesulfonic acid (0.2 mL). The mixture was stirred at 110 °C for 24 h. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 3/1, v/v, dichloromethane : ethyl acetate) to afford *rac*-**BTB** (0.20 g, 27%), as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 4H), 6.75 (s, 2H), 6.73 (s, 2H), 6.68 (d, *J* = 3.0 Hz, 2H), 6.66 (d, *J* = 3.0 Hz, 2H), 4.63 (d, *J* = 16.7 Hz, 2H), 4.29 (s, 2H), 4.09 (d, *J* = 16.7 Hz, 2H), 3.85 (td, *J* = 6.4, 2.3 Hz, 8H), 3.81 (s, 4H), 1.68 (m, 8H), 1.43 (m, 8H), 0.93 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 150.9, 142.4, 138.9, 130.4, 128. 8, 127.2, 125.9, 124.5, 117.6, 112.4, 112.2, 68.3, 68.2, 67.3, 58.1, 35.8, 31.5, 19.3, 13.9, 13.9.

$\begin{array}{c} 7.02\\ 6.63\\ 6.67\\ 6.66\\ 6.67\\ 6.66\\ 6.68\\ 6.66\\ 6.66\\ 6.66\\ 6.66\\ 6.66\\ 6.68\\ 6.68\\ 6.66\\ 6.68\\ 8.12\\ 3.87\\ 3.88\\ 3.87\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\ 3.88\\ 1.73\\$

Fig. S12 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *rac*-BTB.

Fig. S13 ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of rac-BTB.

Synthesis of B[3] and characterization data

rac-**BTB** (1.90 g, 2.7 mmol) and paraformaldehyde (0.25 g, 8.2 mmol), 400 mL of 1,2-dichloroethane were added to a 1000 mL round-bottom flask. BF₃·O(C₂H₅)₂ (2.0 mL, 15.5 mmol) was added to the solution and the mixture was stirred at room temperature for 20 minutes. The reaction was quenched with NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 60/1, v/v, dichloromethane : methanol) to afford **B**[**3**] (0.32 g, 6%), as a yellow solid. Elemental analysis: C 78.30%, H 8.52%, N 3.76%, corresponding to C₁₃₈H₁₇₄N₆O₁₂ with the calculated (C 78.59%, H 8.32%, N 3.99%). ¹H NMR (500 MHz, CDCl₃) δ 7.00 (s, 12H), 6.72 (s, 6H), 6.68 (s, 6H), 6.58 (s, 6H), 4.63 (d, *J* = 16.7 Hz, 6H), 4.30 (s, 6H), 4.07 (d, *J* = 16.7 Hz, 6H), 3.87 (s, 6H), 3.83 (t, *J* = 6.4 Hz, 12H), 3.79 (s, 12H), 3.75 (t, *J* = 6.4 Hz, 12H), 1.73 – 1.66 (m, 12H), 1.62 – 1.55 (m, 12H), 1.47 – 1.40 (m, 12H), 1.34 – 1.28 (m, 12H), 0.91 (t, *J* = 7.4 Hz, 18H), 0.84 (t, *J* = 7.4 Hz, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 150.4, 145.2, 137.5, 128.5, 127.8, 127.5, 127.1, 126.9, 124.7, 115.0, 114.4,

Fig. S15 ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of B[3].

Synthesis of R_{6N}-E[3] and characterization data

*R*_{2*N*}-**ETB** (0.19 g, 0.32 mmol) and paraformaldehyde (0.030 g, 1.0 mmol), 50 mL of 1,2-dichloroethane were added to a 100 mL round-bottom flask. BF₃·O(C₂H₅)₂ (0.4 mL, 3.1 mmol) was added to the solution and the mixture was stirred at room temperature for 40 minutes. The reaction was quenched with NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 60/1, v/v, dichloromethane : methanol) to afford *R*_{6*N*}-**E**[**3**] (0.026 g, 13%), as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, 12H), 6.69 (s, 6H), 6.65 (s, 6H), 6.54 (s, 6H), 4.60 (d, *J* = 16.7 Hz, 6H), 4.26 (s, 6H), 4.04 (d, *J* = 16.7 Hz, 6H), 3.88 – 3.75 (m, 42H), 1.29 (t, *J* = 6.9 Hz, 18H), 1.16 (t, *J* = 6.9 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 150.4, 145.6, 137.2, 128.5, 127.8, 127.4, 126.9, 124.7, 115.4, 114.6, 67.0, 64.4, 64.4, 58.7, 35.5, 29.7, 15.1, 15.0. [α]_D^{25 °C} = -59.1 (2.0 × 10⁻² g/mL, CH₂Cl₂).

Fig. S16 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *R*_{6N}-E[3].

Fig. S18 ¹H-¹H COSY spectrum (400 MHz, CDCl₃, 298 K) of *R*_{6N}-**E[3]**.

Fig. S20 HMBC NMR spectrum (100 MHz, CDCl₃, 298 K) of *R*_{6N}-E[3].

Fig. S21 HSQC NMR spectrum (100MHz, CDCl₃, 298 K) of *R*_{6N}-E[3].

Synthesis of S6N-E[3] and characterization data

 S_{2N} -**ETB** ((0.19 g, 0.32 mmol) and paraformaldehyde (0.03 g, 1.0 mmol), 50 mL of 1,2-dichloroethane were added to a 100 mL round-bottom flask. BF₃·O(C₂H₅)₂ (0.4 mL, 3.1 mmol) was added to the solution and the mixture was stirred at room temperature for 40 minutes. The reaction was quenched with NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. Then the solvent was concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (eluent: 60/1, v/v, dichloromethane : methanol) to afford $S_{\delta N}$ -**E[3]** (0.024 g, 13%), as a yellow

solid. ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, 12H), 6.69 (s, 6H), 6.65 (s, 6H), 6.54 (s, 6H), 4.60 (d, J = 16.6 Hz, 6H), 4.26 (s, 6H), 4.04 (d, J = 16.7 Hz, 6H), 3.88 – 3.75 (m, 42H), 1.28 (t, J = 7.0 Hz, 32H), 1.16 (t, J = 7.0 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 150.4, 145.6, 137.1, 128.5, 127.8, 127.7, 127.4, 126.9, 124.7, 115.3, 114.6, 67.0, 64.4, 64.3, 58.7, 35.5, 29.7, 15.1, 14.9. [α]_D^{25 °C} = +58.9 (2.0 × 10⁻² g/mL, CH₂Cl₂).

Fig. S22 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *S*_{6N}-**E[3**].

Fig. S23 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of *S*_{6N}-E[3].

Fig. S25 ¹H-¹H NOESY spectrum (400 MHz, CDCl₃, 298 K) of *S*_{6*N*}-E[3].

Fig. S26 HMBC NMR spectrum (100MHz, CDCl₃, 298 K) of *S*_{6N}-E[3].

Fig. S27 HSQC NMR spectrum (100 MHz, CDCl₃, 298 K) of *S*_{6*N*}-E[3].

3. High Resolution ESI-MS of M[3], E[3] and B[3]

Fig. S28 High Resolution ESI-MS of **M[3]** with the parent ion $[M + H]^+$ and $[M + Na]^+$ at 1604.7660 and 1626.7501, corresponding to $C_{102}H_{103}N_6O_{12}^+$ and $C_{102}H_{102}N_6NaO_{12}^+$ with the calculated m/z = 1604.7662 and 1626.7481.

Fig. S29 High Resolution ESI-MS of **E[3]** with the parention $[M + H]^+$ and $[M + Na]^+$ at 1772.9515 and 1794.9333, corresponding to $C_{114}H_{127}N_6O_{12}^+$ and $C_{114}H_{126}N_6NaO_{12}^+$ with the calculated m/z = 1772.9540 and 1794.9359.

Fig. S30 High Resolution ESI-MS of **B[3]** with the parent ion $[M + H]^+$ at 2109.3297, corresponding to $C_{138}H_{175}N_6O_{12}^+$ with the calculated m/z = 2109.3296.

4. X-ray Experimental Data for rac-MTB

Single crystals of *rac*-**MTB** were obtained by slow evaporation of the solution of *rac*-**MTB** in a mixed solvent of hexane and ethyl acetate at 25 °C.

Fig. S31 The crystal structure of (a) R_{2N} -**MTB** (b) S_{2N} -**MTB**. Each type of enantiomers appears in pairs. The black dashes represent C-H… π interaction respectively.

Identification code	rac- MTB
Empirical formula	$C_{33}H_{34}N_2O_4$
Formula weight	522.25
Temperature/K	193.0
Crystal system	monoclinic
Space group	C2/c
a/Å	20.8793(8)
b/Å	5.2883(2)
c/Å	25.9027(10)
α/°	90
β/°	108.6850(10)
$\gamma/^{\circ}$	90
Volume/Å ³	2709.33
Z	4
$ ho_{cale}g/cm^3$	1.281
µ/mm ⁻¹	0.432
F(000)	1112.0
Crystal size/mm ³	$0.22\times0.2\times0.19$
2θ range for data collection/°	6.268 to 107.964
Index ranges	$-24 \le h \le 24, -6 \le k \le 6, -31 \le l \le 30$
Reflections collected	14157
Independent reflections	2470 [Rint = 0.0317, Rsigma = 0.0208]
Data/restraints/parameters	2470/0/231

Table S1. Experimental single crystal X-ray data for *rac*-MTB (CCDC number: 2224433).

Goodness-of-fit on F ²	1.051
Final R indexes [I>= 2σ (I)]	R1 = 0.0600, wR2 = 0.1441
Final R indexes [all data]	R1 = 0.0685, wR2 = 0.1504
Largest diff. peak/hole / e Å-3	0.25/-0.46

5. Resolution of R_{2N}-ETB and S_{2N}-ETB

Sample name	Appearance	ee	Mass/g	Chromatogram at
Raw Material	white powder		0.6812	page 2
Peak 1	white powder	> 98%	0.2177	page 3
Peak 2	white powder	> 98%	0.2543	page 4

CHIRAL CHROMATOGRAPHY REPORT

Column	: CHIRALPAK IG(IG00CE-UC054)				
Column size	: 0.46 cm I.D. \times 25 cm L	$0.46 \text{ cm I.D.} \times 25 \text{ cm L}$			
Injection	: 2 ul	2 ul			
Mobile phase	: MeOH/DCM/DEA=90/10/0.1(V/V/V)	MeOH/DCM/DEA=90/10/0.1(V/V/V)			
Flow rate	: 1.0 ml/min	1.0 ml/min			
Wave length	: UV 214 nm	UV 214 nm			
Temperature	: 35 °C				
HPLC equipment	: Shimadzu LC-20AT CP-HPLC-07				
Sample name	: Raw Material				

<Chromatogram>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	10.474	986627	3.323	5790		
2	11.049	11853667	39.923	6792	1.444	1.059
3	11.914	1078918	3.634	2738		1.196
4	13.249	11531200	38.837	7160		1.736
5	14.011	4241108	14.284	5836		1.122

Fig. S32 chiral chromatography report of *rac*-ETB.

CHIRAL CHROMATOGRAPHY REPORT

Column	: CHIRALPAK IG(IG00CE-UC054)					
Column size	: 0.46 cm I.D. × 25 cm L					
Injection	: 5 ul	: 5 ul				
Mobile phase	: MeOH/DCM/DEA=90/10/0.1(V/V/V)					
Flow rate	: 1.0 ml/min					
Wave length	: UV 214 nm					
Temperature	: 35 °C					
HPLC equipment	: Shimadzu LC-20AT CP-HPLC-07					
Sample name	: Peak 1					

<Chromatogram>

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	11.057	7479316	91.616	7486	1.395	
2	11.908	684487	8.384	2198		1.115

Fig. S33 chiral chromatography report of *S*_{2N}-ETB.

CHIRAL CHROMATOGRAPHY REPORT

Column	: CHIRALPAK IG(IG00CE-UC054)			
Column size	: 0.46 cm I.D. × 25 cm L			
Injection	: 10 ul			
Mobile phase	: MeOH/DCM/DEA=90/10/0.1(V/V/V)			
Flow rate	: 1.0 ml/min			
Wave length	: UV 214 nm			
Temperature	: 35 °C			
HPLC equipment	: Shimadzu LC-20AT CP-HPLC-07			
Sample name	: Peak 2			

<Chromatogram>

<peak table=""></peak>							
Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution	
1	13.263	8752832	78.608	7436			
2	14.019	2381943	21.392	5526		1.104	

Fig. S34 chiral chromatography report of R_{2N} -**ETB**.

6. CD Spectra

Fig. S35 CD spectra of S_{2N} -ETB (0.05 mM, red) and R_{2N} -ETB (0.05 mM, blue) in CHCl₃.

Fig. S36 CD spectra of *S*_{6N}-E[3] (0.01 mM, red) and *R*_{6N}-E[3] (0.01 mM, blue) in CHCl₃.

7. Iodine Vapor Adsorption Experiments

Fig. S37 Thermogravimetric analysis of (a) M[3], (b) E[3] before and after adsorption of iodine vapor and (c) B[3].

Fig. S38 iodine molecules were attached per indole unit for M[3], rac-MTB, E[3] and rac-ETB.

Fig. S39 Scanning electron microscopy image of **M[3]** and **E[3]**. (a) (d) before, (b) (e) after adsorption iodine, (c) (f) after desorption of iodine vapor.

Fig. S40 High-resolution I 3d XPS spectra of (a) I₂@M[3], (b) I₂@E[3].

Fig. S41 Energy-dispersive spectroscopy (EDS) analysis profile of (a) **M[3]**, (b) **E[3]** after adsorption of iodine vapor.

8. Iodine desorption in methanol

Fig. S42 Time-dependent UV/vis spectral changes after adding 2 mg $I_2@M[3]$ in 10.0 mL methanol.

Fig. S43 Time-dependent UV/vis spectral changes after adding 2 mg I₂@E[3] in 10.0 mL methanol.

9. Reference

S1 D. Didier, B. Tylleman, N. Lambert, C. M. L. Vande Velde, F. Blockhuys, A. Collas and S. Sergeyev, *Tetrahedron*, 2008, **64**, 6252-6262.