Aerobic Oxidative C-H Phosphorylation of Quinoxalines

under Catalyst-free Conditions

Qiaoyu Gan,^{a,b} Haibo Liu,^b Zeqi Jiang, ^b Junmei Xia, ^b Zhenhua Gao, ^{b,*} Yongbiao Guo, ^{b,*} Hongliang Wen^{a,*}

^a China chool of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijng 102488, P. R. China.

^b State Key Laboratory of NBC Protection for Civilian Research, Beijing 102205, P. R. China. E-mail: <u>van87120@126.com</u>; <u>gaozhenhua1223@163.com</u>; <u>wen.hongliang@bit.edu.cn</u>

Supporting Information

Table of Contents

1.Reaction conditions optimization for the Phosphonation of Quinoxalines	2
2. Experimental Section and compound characterization	2
3. NMR spectrum of 3, 5 and 6	20

1. Reaction conditions optimization for the Phosphonation of Quinoxalines

Supplementary Table 1. Selected optimization studies [a]

Entry	1a/2a	Solvent	Yield (%)	
			3aa	4aa
1	1/1.1	n-hexane	33	21
2	1/1.1	CCl ₄	70	2
3	1/1.1	toluene	54	10
4	1/1.1	Et ₂ O	36	28
5	1/1.1	CH ₂ Cl ₂	40	2
6	1/1.1	THF	40	10
7	1/1.1	EtOAc	53	14
8	1/1.1	EtOH	9	< 0.1
9	1/1.1	<i>i</i> -PrOH	15	< 0.1
10	1/1.1	MeOH	5	< 0.1
11	1/1.1	1,4-Dioxane	54	8
12	1/1.1	Actone	16	2
13	1/1.1	CH ₃ CN	49	25
14	1/1.1	DMF	16	2
15	1/1.1	DMSO	40	20
16	1/1.1	CHCl₃	10	< 0.1
17	1/1.1	1,2-dichlorethane	73	< 0.1
18	1/1.1	1-bromo-2-chlorethane	40	1
19 ^c	1/1.1	1,2-dichlorethane	87	< 0.1
20 ^ª	1/1.1	1,2-dichlorethane	88	1
21 ^{ce}	1/1.1	1,2-dichlorethane	92(90)	0
22 ^{ce}	1/1.2	1,2-dichlorethane	92	0

^{*a*}Reaction conditions: **1a** (0.1 mmol) and **2a** (0.11 mmol) in solvent(2 mL) under N₂ for 24 h. ^{*b*}Yield was determined by HPLC analysis. ^{*c*}Solvent (1 mL). ^{*d*}Solvent (0.5 mL) ^{*e*} under air.

2. Experimental Section and compound characterization

General information: Reagents and solvents were purchased from common commercial suppliers and were used without further purification. Column chromatography was generally performed on silica gel (200-300 mesh). Melting points were determined with a Büchi B-545 melting-point apparatus. 600MHz 1H NMR and 150MHz 13C NMR spectra were recorded on Varian VMS-600 spectrometers, respectively. The chemical shifts are reported in ppm (δ scale) relative to internal tetramethylsilane, and coupling constants are reported in hertz (Hz). High-resolution mass spectra (HRMS) were obtained on Agilent 6502 Q-TOF HPLC and mass spectrometry.

Synthesis of monophosphorylated product 3. A mixture of quinoxalines 1 (0.2 mmol) and diarylphosphine oxides or diphenylphosphonate 2 (0.22 mmol), and 1,2-dichlorethane (2 mL) was stirred at room temperature for 24 h, and directly charged onto silica gel. The product was isolated using hexane/ethyl acetate ($2/1^{-1}$:2) as eluent.

diphenyl(quinoxalin-2-yl)phosphine oxide (3aa). Yield, 91%; ¹H NMR (600 MHz, CDCl₃) δ 9.64 (s, 1H), 8.25 – 8.19 (m, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.01 – 7.92 (m, 4H), 7.92 – 7.86 (m, 1H), 7.87 – 7.81 (m, 1H), 7.56 (td, J = 7.4, 1.0 Hz, 2H), 7.49 (td, J = 7.6, 3.0 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 152.54 (d, *J* = 124.0 Hz), 145.66 (d, *J* = 22.2 Hz), 142.43 (d, *J* = 17.1 Hz), 141.73, 132.38, 132.36, 132.33, 132.15 (2), 132.09 (2), 131.53, 130.99, 130.83, 130.24, 129.14, 128.62 (2), 128.53 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.46. HRMS (m/z) calcd for C₂₀H₁₆N₂OP[M+H]⁺ 331.0966, found 331.0958.

(1,2-dihydroquinoxalin-2-yl)diphenylphosphine oxide (3aa'). ¹H NMR (600 MHz, CD₂Cl₂) δ 8.45 (s, 1H), 8.16 (td, J = 8.5, 1.3 Hz, 2H), 7.94 (ddd, J = 14.1, 7.7, 6.4 Hz, 4H), 7.87 (dtd, J = 16.7, 6.9, 1.5 Hz, 2H), 7.73 – 7.66 (m, 5H), 7.65 (s, 1H), 3.54 – 3.32 (m, 1H).

quinoxalin-2-ylbis(4-(trifluoromethyl)phenyl)phosphine oxide (3ab). Yield, 78%; ¹H NMR (600 MHz, CDCl₃) δ 9.70 – 9.66 (m, 1H), 8.22 (dd, J = 8.4, 1.0 Hz, 1H), 8.20 – 8.12 (m, 5H), 7.91 (m, 2H), 7.77 (dd, J = 8.4, 2.2 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 150.48 (d, J = 127.4 Hz), 146.20 (d, J = 22.4 Hz), 142.91 (d, J = 2.3 Hz), 142.11 (d, J = 17.5 Hz), 135.28 (d, J = 102.8 Hz), 134.73 - 133.93 (m), 132.61, 132.55 (2), 132.49 (2), 131.28, 130.04, 129.79 (d, J = 1.6 Hz), 125.66 - 125.55 (m), 125.52 (m), 134.30, 122.49; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 16.79; ¹⁹F NMR (282 MHz, CDCl₃) δ -104.94 – -105.62 (m). HRMS (m/z) calcd for C₂₂H₁₄F₆N₂OP[M+H]⁺ 467.467.0742, found 467.0738.

bis(4-fluorophenyl)(quinoxalin-2-yl)phosphine oxide (3ac). Yield, 80%; ¹H NMR (600 MHz, CDCl₃) δ 9.65 (s, 1H), 8.24 (dd, J = 8.3, 0.8 Hz, 1H), 8.16 (dd, J = 8.3, 1.1 Hz, 1H), 8.00 – 7.94 (m, 4H), 7.93 – 7.89 (m, 1H), 7.89 – 7.85 (m, 1H), 7.18 (tdd, J = 6.5, 4.4, 2.2 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 165.40 (dd, J = 254.6, 3.3 Hz), 151.93 (d, J = 126.5 Hz), 145.73 (d, J = 22.4 Hz), 142.28 (d, J = 17.2 Hz), 142.11, 134.70 (2), 134.64 (2), 134.63 (2), 134.57 (2), 132.47, 131.15, 130.09, 129.37, 127.10 (dd, J = 108.7, 3.3 Hz), 116.31 – 115.93 (4); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 18.94; ¹⁹F NMR (282 MHz, CDCl₃) δ -63.30. HRMS (m/z) calcd for C₂₀H₁₄F₂N₂OP[M+H]⁺ 367.0806, found 367.0800.

di([1,1'-biphenyl]-4-yl)(quinoxalin-2-yl)phosphine oxide (3ab). Yield, 70%; ¹H NMR (600 MHz, CDCl₃) δ 9.67 (s, 1H), 8.21 (dd, J = 17.2, 8.2 Hz, 2H), 8.04 (dd, J = 11.6, 8.2 Hz, 4H), 7.86 (dt, J = 14.6, 7.0 Hz, 2H), 7.70 (dd, J = 7.9, 2.1 Hz, 4H), 7.62 – 7.54 (m, 4H), 7.42 (t, J = 7.6 Hz, 4H), 7.36 (dd, J = 8.2, 6.5 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.15, 152.55 (d, J = 124.8 Hz), 145.86 (d, J = 22.2 Hz), 145.21 (d, J = 2.6 Hz), 142.46 (d, J = 17.0 Hz), 141.97, 139.81, 132.69 (2), 132.63 (2), 132.30, 131.00, 130.26, 129.80 (d, J = 106.4 Hz), 129.29, 128.96 (4), 128.24, 127.35(2), 127.29 (4), 127.27 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.43. HRMS (m/z) calcd for C₃₂H₂₄N₂OP[M+H]⁺ 483.1621, found 483.1624.

quinoxalin-2-yldi-p-tolylphosphine oxide (3ae). Yield, 60%; ¹H NMR (600 MHz, CDCl₃) δ 9.60 (s, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.17 (dd, J = 8.3, 0.7 Hz, 1H), 7.91 – 7.87 (m, 1H), 7.85 (dd, J = 8.3, 1.3 Hz, 1H), 7.81 (dd, J = 12.0, 8.1 Hz, 4H), 7.29 (dd, J = 8.0, 2.7 Hz, 4H), 2.40 (s, 6H); ¹³C NMR (151

MHz, CDCl₃) δ 153.12 (d, *J* = 123.6 Hz), 145.40 (d, *J* = 22.3 Hz), 142.97 (d, *J* = 2.8 Hz), 142.54 (d, *J* = 16.9 Hz), 141.35, 132.31, 132.19 (2), 132.13 (2), 130.97, 130.26, 129.37 (2), 129.29 (2), 128.94, 127.92 (d, *J* = 107.8 Hz), 21.65, 21.64; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 21.41. HRMS (m/z) calcd for C₂₂H₂₀N₂OP[M+H]⁺ 359.1308, found 359.1307.

bis(4-(tert-butyl)phenyl)(quinoxalin-2-yl)phosphine oxide (3af). Yield, 67%; ¹H NMR (600 MHz, CDCl₃) δ 9.61 (s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.89 (dd, J = 11.9, 8.4 Hz, 6H), 7.50 (dd, J = 8.3, 2.6 Hz, 4H), 1.31 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 155.89, 155.87, 153.32 (d, J = 123.2 Hz), 145.22 (d, J = 22.4 Hz), 142.62 (d, J = 16.8 Hz), 141.09, 132.38, 132.04 (2), 131.97 (2), 131.02, 130.31, 128.80, 127.87 (d, J = 107.8 Hz), 125.67 (2), 125.59 (2), 35.05 (2), 31.05 (6); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.43. HRMS (m/z) calcd for C₂₈H₃₂N₂OP[M+H]⁺ 443.2247, found 433.2252.

bis(4-(tert-butyl)phenyl)(quinoxalin-2-yl)phosphine oxide (3ag). Yield, 67%; ¹H NMR (600 MHz, CDCl₃) δ 9.60 (s, 1H), 8.31 – 8.24 (m, 1H), 8.17 (d, J = 7.6 Hz, 1H), 7.91 – 7.87 (m, 1H), 7.87 – 7.81 (m, 5H), 6.98 (dd, J = 8.8, 2.3 Hz, 4H), 3.84 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 162.85, 162.83, 153.40 (d, J = 124.5 Hz), 145.20 (d, J = 22.3 Hz), 142.57 (d, J = 16.9 Hz), 141.12, 134.11 (2), 134.04 (2), 132.35, 131.02, 130.23, 128.82, 122.25 (d, J = 112.4 Hz), 114.24 (2), 114.15 (2), 55.36 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 21.54. HRMS (m/z) calcd for C₂₂H₂₀N₂O₃P[M+H]⁺ 391.1206, found 391.1210.

quinoxalin-2-yldi-o-tolylphosphine oxide (3ah). Yield, 56%; ¹H NMR (600 MHz, CDCl₃) δ 9.56 (s,

1H), 8.28 (dd, J = 8.4, 0.7 Hz, 1H), 8.16 – 8.08 (m, 1H), 7.91 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.85 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.47 (dd, J = 10.6, 4.4 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.31 (dd, J = 7.5, 4.5 Hz, 2H), 7.24 – 7.18 (m, 2H), 2.48 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 153.04 (d, J = 122.6 Hz), 146.20 (d, J = 22.9 Hz), 143.11 (d, J = 8.6 Hz), 142.29 (d, J = 17.0 Hz), 141.32, 133.08 (d, J = 12.0 Hz, 2C), 132.49 (d, J = 2.6 Hz, 2C), 132.40, 131.99 (d, J = 11.0 Hz, 2C), 131.00, 130.38, 129.38 (d, J = 103.0 Hz), 128.96, 125.62 (d, J = 12.9 Hz, 2C), 21.89 (d, J = 4.2 Hz, 2C); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 29.81. HRMS (m/z) calcd for C₂₂H₂₀N₂OP[M+H]⁺ 359.1308, found 359.1310.

bis(2-methoxyphenyl)(quinoxalin-2-yl)phosphine oxide (3ai). Yield, 80%; ¹H NMR (600 MHz, CDCl₃) δ 8.93 (s, 1H), 8.37 – 8.31 (m, 2H), 7.95 – 7.85 (m, 2H), 7.75 (ddd, *J* = 14.3, 7.6, 1.6 Hz, 2H), 7.61 (dd, *J* = 11.6, 4.1 Hz, 2H), 7.13 (td, *J* = 7.5, 1.7 Hz, 2H), 6.95 (dd, *J* = 8.2, 5.6 Hz, 2H), 3.58 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 160.71 (d, *J* = 2.9 Hz, 2C), 155.60 (d, *J* = 131.4 Hz), 143.78 (d, *J* = 29.8 Hz), 143.33 (d, *J* = 17.2 Hz), 137.66, 135.08, 135.07, 134.86 (d, *J* = 7.9 Hz, 2C), 132.60, 131.16, 130.63, 126.87, 121.40 (d, *J* = 12.4 Hz, 2C), 117.71 (d, *J* = 109.1 Hz, 2C), 111.25 (d, *J* = 6.6 Hz, 2C), 55.56 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 18.47. HRMS (m/z) calcd for C₂₂H₂₀N₂O₃P[M+H]⁺ 391.1206, found 391.1200.

bis(3,5-dimethylphenyl)(quinoxalin-2-yl)phosphine oxide (3aj). Yield, 88%; ¹H NMR (600 MHz, CDCl₃) δ 9.58 (s, 1H), 8.27 (dd, J = 8.4, 1.0 Hz, 1H), 8.21 (dd, J = 8.3, 1.0 Hz, 1H), 7.93 – 7.88 (m, 1H), 7.86 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.53 (s, 2H), 7.51 (s, 2H), 7.18 (s, 2H), 2.33 (s, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 153.16 (d, J = 122.5 Hz), 145.40 (d, J = 22.3 Hz), 142.63 (d, J = 16.8 Hz), 141.25, 138.40 (2), 138.31 (2), 134.21 (d, J = 2.8 Hz), 132.34, 130.99, 130.76 (d, J = 104.2 Hz), 130.34, 129.69 (2), 129.62 (2), 128.88, 21.33 (4); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 21.87. HRMS (m/z) calcd for C₂₄H₂₄N₂OP[M+H]⁺ 387.1621, found 387.1625.

bis(3,5-di-tert-butylphenyl)(quinoxalin-2-yl)phosphine oxide (3ak). Yield, 80%; ¹H NMR (600 MHz, CDCl₃) δ 9.63 (s, 1H), 8.28 (dd, J = 8.2, 1.1 Hz, 1H), 8.18 (dd, J = 8.2, 1.4 Hz, 1H), 7.97 (d, J = 1.8 Hz, 2H), 7.95 (d, J = 1.8 Hz, 2H), 7.91 – 7.85 (m, 2H), 7.60 (d, J = 0.9 Hz, 2H), 1.31 (s, 36H); ¹³C NMR (151 MHz, CDCl₃) δ 154.29 (d, J = 119.7 Hz), 151.08 (2), 151.00 (2), 144.99, 142.74, 140.90, 132.25, 131.14, 130.65, 129.97 (2), 128.76, 126.45 (2), 126.35 (2), 126.28 (2), 35.13 (4), 31.35 (12); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 19.20. HRMS (m/z) calcd for C₃₆H₄₈N₂OP[M+H]⁺ 555.3499, found 555.3500.

di(naphthalen-2-yl)(quinoxalin-2-yl)phosphine oxide (3am). Yield, 70%; ¹H NMR (600 MHz, CDCl₃) δ 9.66 (s, 1H), 8.72 (d, *J* = 8.5 Hz, 2H), 8.24 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 2H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.90 – 7.83 (m, 1H), 7.81 – 7.75 (m, 1H), 7.69 (dd, *J* = 16.2, 7.1 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.46 – 7.39 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 152.99 (d, *J* = 124.3 Hz), 146.18 (d, *J* = 23.4 Hz), 142.30 (d, *J* = 17.2 Hz), 141.47, 134.11, 134.04, 133.90 (d, *J* = 9.6 Hz), 133.85 (2), 133.83 (2), 133.74 (d, *J* = 8.6 Hz), 132.39, 130.93, 130.41, 128.95 (2), 127.58 (d, *J* = 3.6 Hz), 127.30 (d, *J* = 5.2 Hz), 126.90 (2), 126.58 (2), 124.54, 124.44; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 30.62. HRMS (m/z) calcd for $C_{28}H_{20}N_2OP[M+H]^+$ 431.1308, found 431.1315.

di(naphthalen-1-yl)(quinoxalin-2-yl)phosphine oxide (3an). Yield, 85%; ¹H NMR (600 MHz, CDCl₃) δ 9.73 (s, 1H), 8.58 (d, J = 14.2 Hz, 2H), 8.26 (d, J = 8.3 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.01 – 7.83 (m, 10H), 7.65 – 7.58 (m, 2H), 7.58 – 7.52 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 152.64 (d, J = 124.5 Hz), 145.80 (d, J = 22.3 Hz), 142.50 (d, J = 17.0 Hz), 141.81, 134.92 (d, J = 2.3 Hz), 134.39, 134.33, 132.47, 132.38, 131.04, 130.26, 129.18, 129.09 (2), 128.53 (2), 128.49, 128.41, 128.30 (d, J = 105.6 Hz), 127.85 (2), 127.03 (2), 126.83, 126.76 ; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 21.32. HRMS (m/z) calcd for C₂₈H₂₀N₂OP[M+H]⁺ 431.1308, found 431.1311.

ethyl phenyl(quinoxalin-2-yl)phosphinate (3ao). Yield, 76%; ¹H NMR (600 MHz, CDCl₃) δ 9.44 (s, 1H), 8.21 – 8.15 (m, 1H), 8.13 (dd, J = 8.3, 1.0 Hz, 1H), 8.07 – 7.99 (m, 2H), 7.82 (dtd, J = 16.6, 6.9, 1.4 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.48 (td, J = 7.6, 3.7 Hz, 2H), 4.35 – 4.12 (m, 2H), 1.42 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.68 (d, J = 161.6 Hz), 146.26 (d, J = 24.9 Hz), 142.81 (d, J = 2.4 Hz), 142.47 (d, J = 18.6 Hz), 132.90 (d, J = 2.8 Hz), 132.43, 132.36, 132.02, 130.71, 130.32 (d, J = 0.9 Hz), 129.49 (d, J = 1.9 Hz), 129.39 (d, J = 140.0 Hz), 128.66, 128.57, 62.29 (d, J = 6.3 Hz), 16.56 (d, J = 6.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 24.30; HRMS (m/z) calcd for C₁₆H₁₆N₂O₂P[M+H]⁺ 299.0945, found 299.0950.

ethyl methyl(quinoxalin-2-yl)phosphinate (3ap). Yield, 67%; ¹H NMR (600 MHz, CDCl₃) δ 9.42 (s, 1H), 8.25 – 8.11 (m, 2H), 7.97 – 7.72 (m, 2H), 4.29 – 4.14 (m, 1H), 4.04 – 3.91 (m, 1H), 1.92 (d, J = 15.1 Hz, 3H), 1.31 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.29 (d, J = 152.0 Hz), 145.74 (d, J = 23.7 Hz), 143.07 (d, J = 2.4 Hz), 142.36 (d, J = 18.6 Hz), 132.06 (s), 130.86 (s), 130.07 (d, J = 1.0 Hz), 129.57 (d, J = 1.9 Hz), 61.63 (d, J = 6.5 Hz), 16.42 (d, J = 6.3 Hz), 13.67 (d, J = 104.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 39.24 (s); HRMS (m/z) calcd for C₁₁H₁₄N₂O₂P[M+H]⁺ 237.0788, found 237.0797.

diphenyl quinoxalin-2-ylphosphonate (3aq). Yield, 70%; ¹H NMR (600 MHz, CDCl₃) δ 9.42 (s, 1H),

8.34 – 8.28 (m, 1H), 8.20 (dd, J = 8.3, 1.2 Hz, 1H), 7.95-7.89 (m, 2H), 7.35 – 7.29 (m, 8H), 7.20 – 7.16 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 150.03 (d, J = 8.0 Hz), 147.00, 145.48, 146.31 (d, J = 29.7 Hz), 143.07 (d, J = 2.8 Hz), 142.42 (d, J = 22.5 Hz), 132.75, 131.22, 130.45 (d, J = 1.5 Hz), 129.86 (4), 129.53 (d, J = 2.3 Hz), 125.61 (2), 120.78 (2), 120.75 (2).³¹P NMR (243 MHz, CDCl₃): δ (ppm) 0.96. HRMS (m/z) calcd for C₂₀H₁₆N₂O₃P[M+H]⁺ 363.0893, found 363.0890.

(3-chloro-7-fluoroquinoxalin-2-yl)diphenylphosphine oxide (3ca). Yield, 47%; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (dd, J = 9.2, 5.4 Hz, 1H), 7.79 (dd, J = 12.2, 7.6 Hz, 4H), 7.69 – 7.64 (m, 1H), 7.64 – 7.58 (m, 3H), 7.53 (td, J = 7.5, 2.7 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 162.97 (d, J = 255.3 Hz), 151.36 (d, J = 126.7 Hz), 148.09, 140.66, 140.66, 139.13, 132.71 (d, J = 2.3 Hz), 132.14 (2), 132.08 (2), 130.43 (d, J = 9.8 Hz), 129.54 (d, J = 109.8 Hz), 128.72 (2), 128.64 (2), 123.73 (d, J = 26.2 Hz), 113.74 (d, J = 21.7 Hz), 110.08 (d, J = 209.3 Hz); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 29.46. HRMS (m/z) calcd for C₂₀H₁₄ClFN₂OP[M+H]⁺ 383.0511, found 383.0510.

(3,7-dichloroquinoxalin-2-yl)diphenylphosphine oxide (3da). Yield, 81%; ¹H NMR (600 MHz, CDCl₃) ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 2.2 Hz, 1H), 7.83 – 7.75 (m, 5H), 7.61 (td, J = 7.5, 1.1 Hz, 2H), 7.52 (td, J = 7.7, 3.1 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 152.11 (d, J = 124.9 Hz), 149.02 (d, J = 21.3 Hz), 140.30, 140.03 (d, J = 15.8 Hz), 136.66, 134.03 (2), 132.46, 134.44, 132.07 (2), 132.01 (2), 130.22 (d, J = 109.2 Hz), 129.46 (d, J = 1.6 Hz), 128.87, 128.57 (2), 128.49 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 27.67. HRMS (m/z) calcd for C₂₀H₁₄Cl₂N₂OP[M+H]⁺ 399.0215, found 399.0210.

(7-bromo-3-chloroquinoxalin-2-yl)diphenylphosphine oxide (3ea). Yield, 54%;¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 1.9 Hz, 1H), 7.87 – 7.76 (m, 6H), 7.60 (dd, *J* = 10.7, 4.2 Hz, 2H), 7.51 (td, *J* = 7.7, 3.0 Hz, 4H);¹³C NMR (151 MHz, CDCl₃) δ 151.29 (d, *J* = 125.6 Hz), 149.81 (d, *J* = 21.2 Hz), 142.22, 138.63 (d, *J* = 15.7 Hz), 134.36, 132.41 (d, *J* = 2.7 Hz), 132.08 (2), 132.01 (2), 131.23,

130.64, 129.93, 128.56 (2), 128.48 (2), 127.76; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 27.59. HRMS (m/z) calcd for C₂₀H₁₄BrClN₂OP[M+H]⁺ 442.9710, found 442.9705.

(6-bromo-3-chloroquinoxalin-2-yl)diphenylphosphine oxide (3fa). Yield, 59%;¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, J = 1.9 Hz, 1H), 7.87 – 7.76 (m, 6H), 7.60 (dd, J = 10.7, 4.2 Hz, 2H), 7.51 (td, J = 7.7, 3.0 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 152.00 (d, J = 125.0 Hz), 149.10 (d, J = 21.6 Hz), 140.57, 140.27 (d, J = 15.7 Hz), 136.58 (2), 132.48, 132.46, 132.24, 132.08 (2), 132.01 (2), 130.12 (d, J = 109.2 Hz), 129.51, 128.60 (2), 128.51 (2), 124.76; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 27.87. HRMS (m/z) calcd for C₂₀H₁₄BrClN₂OP[M+H]⁺ 442.9710, found 422.9715.

1-(3-(diphenylphosphoryl)quinoxalin-2-yl)ethan-1-one (**3ga**). Yield, 66%; ¹H NMR (600 MHz, CDCl₃) δ 8.18 – 8.13 (m, 1H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.92 – 7.87 (m, 1H), 7.87 – 7.81 (m, 5H), 7.54 (td, *J* = 7.4, 1.3 Hz, 2H), 7.50 – 7.44 (m, 4H), 2.84 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 199.22, 170.15, 152.62 (d, *J* = 19.5 Hz), 149.91 (d, *J* = 122.9 Hz), 140.29 (d, *J* = 16.9 Hz), 139.03, 131.51, 131.34, 131.10 (2), 131.03 (2), 130.89, 130.87, 130.78, 130.62, 129.01, 128.65 (d, *J* = 1.8 Hz), 127.29 (2), 127.20 (2), 26.65; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 24.99. HRMS (m/z) calcd for $C_{22}H_{18}N_2O_2P[M+H]^+$ 373.1100, found 373.1109.

(3-methylquinoxalin-2-yl)diphenylphosphine oxide (3ha). Yield, 35%; ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 1H), 7.61 (dd, *J* = 11.3, 4.0 Hz, 1H), 7.56 (dd, *J* = 12.0, 7.3 Hz, 4H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.32 (td, *J* = 7.4, 0.9 Hz, 2H), 7.24 (td, *J* = 7.7, 3.0 Hz, 4H), 2.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.89 (d, *J* = 22.9 Hz), 152.42 (d, *J* = 123.5 Hz), 140.40 (d, *J* = 17.5 Hz), 139.24, 132.83, 132.27, 132.25, 132.17 (2), 132.11 (2), 131.16 (d, *J* = 106.2 Hz), 130.15, 130.05, 128.54 (2), 128.46 (2), 127.19, 22.75. ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 27.10. HRMS (m/z) calcd for $C_{21}H_{18}N_2OP[M+H]^+$ 345.1151, found 345.1153.

(3-aminoquinoxalin-2-yl)diphenylphosphine oxide (3ia). Yield, 89%; ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.92 (m, 4H), 7.87 (d, J = 8.3 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.59 (td, J = 7.4, 1.2 Hz, 2H), 7.50 (td, J = 7.7, 3.3 Hz, 4H), 7.43 (ddd, J = 8.3, 6.0, 2.3 Hz, 1H); ¹³C ¹³C NMR (151 MHz, CDCl₃) δ 153.19 (d, J = 20.8 Hz), 141.85 (d, J = 124.9 Hz), 136.70 (d, J = 17.2 Hz), 133.23, 132.63, 132.61, 132.17 (d, J = 9.4 Hz), 132.16 (2), 132.10 (2), 130.67 (d, J = 106.6 Hz), 129.97, 128.65 (2), 128.57 (2), 125.68, 123.71; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 26.07. HRMS (m/z) calcd for C₂₀H₁₇N₃OP[M+H]⁺ 346.1104, found 346.1102.

(5,8-dibromoquinoxalin-2-yl)diphenylphosphine oxide (**3ja**). Yield, 61%; ¹H NMR (600 MHz, CDCl₃) δ 9.77 (s, 1H), 8.17 – 8.09 (m, 4H), 8.03 (m, 2H), 7.58 – 7.53 (m, 2H), 7.53 – 7.47 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 154.31 (d, J = 121.2 Hz), 147.44, 147.30, 141.31 (d, J = 2.3 Hz), 140.63 (d, J = 16.5 Hz), 135.17, 134.11, 132.39, 132.37, 132.13 (2), 132.06 (2), 131.05 (d, J = 105.2 Hz), 128.65 (2), 128.57 (2), 125.00, 124.15 (d, J = 2.5 Hz). ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 17.38. HRMS (m/z) calcd for C₂₀H₁₄Br₂N₂OP[M+H]⁺ 486.9205, found 486.9200.

(6,7-dichloroquinoxalin-2-yl)diphenylphosphine oxide (**3ka**). Yield, 67%; ¹H NMR (600 MHz, CDCl₃) δ 9.63 (s, 1H), 8.29 (d, *J* = 6.1 Hz, 2H), 7.96 – 7.85 (m, 4H), 7.61 – 7.53 (m, 2H), 7.50 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 153.74 (d, *J* = 121.2 Hz), 147.42, 147.28, 141.33 (d, *J* = 1.8 Hz), 140.70 (d, *J* = 17.4 Hz), 136.89, 135.76, 132.52, 132.50, 132.10 (2), 132.04 (2), 130.87 (d, *J* = 105.3 Hz), 130.52, 130.21 (d, *J* = 1.8 Hz), 128.68 (2), 128.60 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 17.38. HRMS (m/z) calcd for C₂₀H₁₄Cl₂N₂OP[M+H]⁺ 399.0215, found 399.0211.

3-(diphenylphosphoryl)quinoxaline-5-carboxylic acid (3la-1). Yield, 48%; ¹H NMR (600 MHz, CDCl₃) δ 13.41 (s, 1H), 9.78 (s, 1H), 8.88 (d, *J* = 7.2 Hz, 1H), 8.47 (d, *J* = 8.3 Hz, 1H), 8.08 (t, *J* = 7.9 Hz, 1H), 7.81 (dd, *J* = 12.2, 7.7 Hz, 4H), 7.67 (t, *J* = 7.3 Hz, 2H), 7.57 (td, *J* = 7.5, 2.7 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 151.55 (d, *J* = 113.6 Hz), 147.70 (d, *J* = 19.4 Hz), 143.10, 138.71 (d, *J* = 14.1 Hz), 137.02, 135.10, 133.43, 133.41, 132.38, 132.02 (2), 131.95 (2), 129.33 (2), 129.24 (2), 129.02 (d, *J* = 106.7 Hz), 125.35; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 24.87. HRMS (m/z) calcd for C₂₁H₁₅N₂O₃P[M+H]⁺ 375.0893, found 375.0899.

2-(diphenylphosphoryl)quinoxaline-5-carboxylic acid (3la-2). Yield, 48%; ¹H NMR (600 MHz, CDCl₃) δ 9.67 (s, 1H), 8.95 (dd, *J* = 7.3, 1.0 Hz, 1H), 8.45 (d, *J* = 8.4 Hz, 1H), 8.09 – 8.02 (m, 1H), 7.96 (dd, *J* = 12.0, 7.6 Hz, 4H), 7.60 (t, *J* = 7.3 Hz, 2H), 7.52 (td, *J* = 7.6, 2.8 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 151.55 (d, *J* = 113.6 Hz), 147.70 (d, *J* = 19.4 Hz), 143.10, 138.71 (d, *J* = 14.1 Hz), 137.02, 135.10, 133.43, 133.41, 132.38, 132.02 (2), 131.95 (2), 129.33 (2), 129.24 (2), 129.02 (d, *J* = 106.7 Hz), 125.35; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.26. HRMS (m/z) calcd for C₂₁H₁₅N₂O₃P[M+H]⁺ 375.0893, found 375.0897.

(8-chloroquinoxalin-2-yl)diphenylphosphine oxide (3ma-1). Yield, 71%; ¹H NMR (600 MHz, CDCl₃) δ 9.70 (s, 1H), 8.10 (dd, J = 8.5, 1.1 Hz, 1H), 7.97 (dd, J = 7.5, 1.2 Hz, 1H), 7.96 – 7.91 (m, 4H), 7.76 (dd, J = 8.4, 7.6 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.49 (ddd, J = 7.4, 4.0, 2.4 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 153.44 (d, J = 122.2 Hz), 146.73 (d, J = 22.1 Hz), 143.07 (d, J = 17.0 Hz), 139.50 (d, J = 2.4 Hz), 133.60 (d, J = 2.3 Hz), 132.45, 132.43, 132.17 (2), 132.10 (2), 131.72, 131.04 (d, J = 105.2 Hz), 130.42, 129.28, 128.65 (2), 128.57 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.56. HRMS (m/z) calcd for C₂₀H₁₅ClN₂OP[M+H]⁺ 365.0605, found 365.0600.

(5-chloroquinoxalin-2-yl)diphenylphosphine oxide (3ma-2). Yield, 71%; ¹H NMR (600 MHz, CDCl₃) δ 9.73 (s, 1H), 8.12 (ddd, *J* = 11.0, 9.1, 4.1 Hz, 5H), 7.94 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.79 (dd, *J* = 8.3, 7.8 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.52 – 7.46 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 152.90 (d, *J* = 123.2 Hz), 146.82 (d, *J* = 21.5 Hz), 143.59 (d, *J* = 2.2 Hz), 138.97 (d, *J* = 16.6 Hz), 134.36, 132.29, 132.27, 132.09 (2), 132.03 (2), 131.60, 131.35 (d, *J* = 104.8 Hz), 130.57, 128.65 (d, *J* = 1.7 Hz), 128.61 (2), 128.53 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 17.65. HRMS (m/z) calcd for $C_{20}H_{15}CIN_2OP[M+H]^+$ 365.0605, found 365.0607.

(8-bromoquinoxalin-2-yl)diphenylphosphine oxide (3na-1). Yield, 91%; ¹H NMR (600 MHz, CDCl₃) δ 9.68 (s, 1H), 8.18 (dd, J = 7.5, 1.1 Hz, 1H), 8.14 (dd, J = 8.5, 0.9 Hz, 1H), 7.96 – 7.90 (m, 4H), 7.69 (dd, J = 8.3, 7.7 Hz, 1H), 7.57 (td, J = 7.4, 1.2 Hz, 2H), 7.49 (td, J = 7.6, 3.1 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 153.39 (d, J = 122.3 Hz), 147.00 (d, J = 22.2 Hz), 143.13 (d, J = 17.1 Hz), 140.40 (d, J = 2.2 Hz), 135.30, 132.46, 132.44, 132.17 (2), 132.10 (2), 131.01 (d, J = 105.3 Hz), 130.99, 130.04, 128.66 (2), 128.58 (2), 124.51 (d, J = 2.6 Hz); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.58. HRMS (m/z) calcd for C₂₀H₁₅BrN₂OP[M+H]⁺ 409.0100, found 409.0110.

(5-bromoquinoxalin-2-yl)diphenylphosphine oxide (3na-2). Yield, 91%; ¹H NMR (600 MHz, CDCl₃) δ 9.70 (s, 1H), 8.16 (dt, J = 10.3, 4.7 Hz, 6H), 7.73 (t, J = 8.0 Hz, 1H), 7.55 (td, J = 7.4, 1.3 Hz, 2H), 7.50 (ddd, J = 7.2, 5.4, 2.6 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 153.13 (d, J = 124.0 Hz), 146.77 (d, J = 21.4 Hz), 143.65, 139.85 (d, J = 16.6 Hz), 134.14, 132.32, 132.30, 132.17, 132.13 (2), 132.07(2), 131.21 (d, J = 104.9 Hz), 129.40, 128.63 (2), 128.55 (2), 125.41; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 17.48. HRMS (m/z) calcd for C₂₀H₁₅BrN₂OP[M+H]⁺ 409.0100, found 409.0108.

(8-methylquinoxalin-2-yl)diphenylphosphine oxide (**3oa-1**) Yield, 88%; ¹H NMR (600 MHz, CDCl₃) δ 9.60 (s, 1H), 7.99 (dd, *J* = 7.6, 2.1 Hz, 1H), 7.98 – 7.92 (m, 4H), 7.74 – 7.68 (m, 2H), 7.55 (td, *J* = 7.4, 1.2 Hz, 2H), 7.48 (td, *J* = 7.6, 3.0 Hz, 4H), 2.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 151.56 (d, *J* = 124.9 Hz), 145.12 (d, *J* = 22.3 Hz), 142.43 (d, *J* = 17.0 Hz), 141.71, 138.02, 132.26, 132.25, 132.17 (2), 132.11 (2), 131.87, 131.80, 131.10, 130.51, 128.56 (2), 128.48 (2), 128.04, 17.29; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.71; HRMS (m/z) calcd for C₂₁H₁₈N₂OP[M+H]⁺ 345.1151, found 345.1148.

(5-methylquinoxalin-2-yl)diphenylphosphine oxide (3oa-2). Yield, 88%; ¹H NMR (600 MHz, CDCl₃) δ 9.64 (s, 1H), 8.09 (d, J = 8.5 Hz, 1H), 8.03 – 7.93 (m, 4H), 7.83 – 7.75 (m, 1H), 7.69 (d, J = 7.0 Hz, 1H), 7.56 (td, J = 7.4, 1.3 Hz, 2H), 7.52 – 7.44 (m, 4H), 2.75 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.98 (d, J = 125.6 Hz), 145.10 (d, J = 22.4 Hz), 141.62 (d, J = 16.4 Hz), 138.57, 132.37, 132.29, 132.27, 132.12 (2), 132.06 (2), 131.46 (d, J = 104.9 Hz), 130.95, 128.54 (2), 128.46 (2), 126.78, 126.78, 17.11; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.20; HRMS (m/z) calcd for C₂₁H₁₈N₂OP[M+H]⁺ 345.1151, found 345.1147.

(8-hydroxyquinoxalin-2-yl)diphenylphosphine oxide (3pa-1). Yield, 60%; ¹H NMR (600 MHz, CDCl₃) δ 9.53 (s, 1H), 8.00 – 7.93 (m, 4H), 7.77 – 7.72 (m, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.49 (td, J = 7.6, 3.0 Hz, 4H), 7.33 (d, J = 7.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 153.13 (d, J = 124.4 Hz), 152.11, 143.75 (d, J = 22.6 Hz), 142.62 (d, J = 17.4 Hz), 132.41, 132.40, 132.15 (2), 132.08 (2), 131.99, 131.46, 130.76, 128.63 (2), 128.55 (2), 120.45, 112.77; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.73; HRMS (m/z) calcd for C₂₀H₁₆N₂O₂P[M+H]⁺ 347.0944, found 347.0945.

(5-hydroxyquinoxalin-2-yl)diphenylphosphine oxide (3pa-2). Yield, 60%; ¹H NMR (600 MHz, CDCl₃) δ 9.54 (s, 1H), 7.82 (dt, J = 7.7, 7.0 Hz, 5H), 7.73 (d, J = 8.3 Hz, 1H), 7.61 (t, J = 7.0 Hz, 2H), 7.52 (td, J = 7.6, 2.9 Hz, 4H), 7.29 (d, J = 7.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 152.36, 149.14 (d, J = 122.1 Hz), 147.12 (d, J = 22.0 Hz), 143.00, 133.80, 132.71 (d, J = 2.4 Hz), 132.15 (2), 132.08 (2), 130.62 (d, J = 105.5 Hz), 128.93, 128.83 (2), 128.75 (2), 119.91, 112.02 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 23.42; HRMS (m/z) calcd for C₂₀H₁₆N₂O₂P[M+H]⁺ 347.0944, found 347.0947.

3qa, 80% (1:1 mixture)

2 or **3**-(diphenylphosphoryl)quinoxaline-6-carbaldehyde (3qa). Yield, 80%; ¹H NMR (600 MHz, CDCl₃) δ 10.29 (s, 1H), 9.75 (s, 1H), 8.65 (s, 1H)8.37 – 8.23 (m, 2H), 7.97 (dd, *J* = 11.9, 7.8 Hz, 4H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.51 (dd, *J* = 9.8, 4.9 Hz, 4H); ¹H NMR (600 MHz, CDCl₃) δ 10.27 (s, 1H), 9.75 (s, 1H), 8.64 (s, 1H)8.37 – 8.23 (m, 2H), 7.97 (dd, *J* = 11.9, 7.8 Hz, 4H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.51 (dd, *J* = 9.8, 4.9 Hz, 4H); ¹H NMR (600 MHz, CDCl₃) δ 10.27 (s, 1H), 9.75 (s, 1H), 8.64 (s, 1H)8.37 – 8.23 (m, 2H), 7.97 (dd, *J* = 11.9, 7.8 Hz, 4H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.51 (dd, *J* = 9.8, 4.9 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 190.98, 190.83, 148.51 (d, *J* = 21.5 Hz), 147.55 (d, *J* = 21.7 Hz), 145.43, 144.79 (d, *J* = 16.9 Hz), 142.48 (d, *J* = 2.1 Hz), 141.84 (d, *J* = 16.9 Hz), 138.27, 137.53, 135.21, 135.10, 132.60, 132.58, 132.17 (2), 132.15 (2), 132.10 (2), 132.09 (2), 131.46, 131.12, 131.06, 130.42, 130.37, 128.73 (2), 128.65 (2), 127.32; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.73 or 20.63; HRMS (m/z) calcd for C₂₁H₁₆N₂O₂P[M+H]⁺ 359.0944, found 359.0948.

3ra, 80% (1:1.24 mixture)

2 or **3**-(diphenylphosphoryl)quinoxaline-6-carboxylic acid (3ra). Yield, 80%; ¹H NMR (600 MHz, CDCl₃) δ 9.77 (s, 1H), 8.94 (d, *J* = 1.7 Hz, 1H), 8.48 (dd, *J* = 8.8, 1.8 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 8.03 – 7.95 (m, 4H), 7.58 (dd, *J* = 10.4, 4.4 Hz, 2H), 7.51 (td, *J* = 7.6, 3.1 Hz, 4H) or ¹H NMR (600 MHz, CDCl₃) δ 9.75 (s, 1H), 8.95 (d, *J* = 1.7 Hz, 1H), 8.44 (dd, *J* = 8.8, 1.8 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.04 – 7.94 (m, 4H), 7.58 (dd, *J* = 10.4, 4.4 Hz, 2H), 7.51 (td, *J* = 7.6, 3.1 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 171.21, 168.31, 154.33 (d, *J* = 122.4 Hz), 153.52 (d, *J* = 123.2 Hz), 147.95 (d, *J* = 21.5 Hz), 147.22 (d, *J* = 22.0 Hz), 144.45, 144.03 (d, *J* = 17.3 Hz), 141.89, 141.41 (d, *J* = 17.3 Hz), 133.46, 132.86, 132.62, 132.21, 132.17, 132.15, 132.11, 131.97, 131.69, 131.20 (d, *J* = 10.9 Hz), 130.89 (d,

 $J = 9.0 \text{ Hz}), 130.49, 130.47, 130.18 \text{ (d, } J = 8.9 \text{ Hz}), 129.94, 128.74, 128.66; {}^{31}\text{P NMR} (243 \text{ MHz}, \text{CDCl}_3): \delta (ppm) 21.44 \text{ or } 21.07; \text{ HRMS} (m/z) \text{ calcd for } C_{21}H_{16}N_2O_3P[\text{M+H}]^+ 375.0893, \text{ found } 375.0890.$

3sa, 80% (1:7.6 mixture)

methyl 2 or 3-(diphenylphosphoryl)quinoxaline-6-carboxylate (3sa). Yield, 80%; ¹H NMR (600 MHz, CDCl₃) δ 9.70 (s, 1H), 8.87 (d, J = 1.6 Hz, 1H), 8.40 (dd, J = 8.8, 1.7 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 7.97 (dt, J = 11.1, 7.0 Hz, 4H), 7.57 (dd, J = 10.7, 4.1 Hz, 2H), 7.50 (td, J = 7.6, 3.0 Hz, 4H), 4.03 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.82, 154.50 (d, J = 121.6 Hz), 147.22 (d, J = 21.8 Hz), 143.85 (d, J = 17.0 Hz), 141.94, 133.00, 132.49, 132.48, 132.19, 132.16, 132.10, 131.28, 130.58, 130.44, 130.17, 128.68, 128.60, 52.84; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.54 or 20.24; HRMS (m/z) calcd for C₂₂H₁₈N₂O₃P[M+H]⁺ 389.1050, found 389.1055.

(7-chloroquinoxalin-2-yl)diphenylphosphine oxide (3ta-1). Yield, 98%; ¹H NMR (600 MHz, CDCl₃) δ9.61 (s, 1H), 8.18 (d, J = 2.2 Hz, 1H), 8.09 (d, J = 9.0 Hz, 1H), 7.95 – 7.90 (m, 4H), 7.77 (dd, J = 9.0, 2.2 Hz, 2H), 7.60 – 7.56 (m, 2H), 7.50 (td, J = 7.6, 3.0 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ152.26 (d, J = 123.9 Hz), 147.18 (d, J = 22.0 Hz), 142.86, 140.71 (d, J = 16.8 Hz), 138.20, 132.55, 132.53, 132.15 (2), 132.08 (2), 132.03, 131.37, 131.24, 131.14 (d, J = 8.5 Hz), 130.41, 128.70 (2), 128.62 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 21.42. HRMS (m/z) calcd for C₂₀H₁₅CIN₂OP[M+H]⁺ 365.0605, found 365.0609.

(6-chloroquinoxalin-2-yl)diphenylphosphine oxide (3ta-2). Yield, 98%; ¹H NMR (600 MHz, CDCl₃) δ 9.63 (s, 1H), 8.17 (d, J = 2.3 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H), 7.98 – 7.90 (m, 4H), 7.80 (dd, J = 9.0, 2.3 Hz, 1H), 7.57 (td, J = 7.4, 1.3 Hz, 2H), 7.52 – 7.46 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 153.51 (d, J = 122.5 Hz), 146.43 (d, J = 21.8 Hz), 142.34 (d, J = 17.3 Hz), 141.05, 136.83, 133.04, 132.45, 132.43, 132.12 (2), 132.06 (2), 131.38, 130.82 (d, J = 1.8 Hz), 130.68, 128.90, 128.65 (2), 128.57 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.48. HRMS (m/z) calcd for C₂₀H₁₅ClN₂OP[M+H]⁺

365.0605, found 365.0608.

(7-bromoquinoxalin-2-yl)diphenylphosphine oxide (3ua-1). Yield, 98%; ¹H NMR (600 MHz, CDCl₃) δ 9.61 (s, 1H), 8.37 (d, *J* = 2.1 Hz, 1H), 8.02 (d, *J* = 9.0 Hz, 1H), 7.97 – 7.87 (m, 5H), 7.57 (td, *J* = 7.4, 1.2 Hz, 2H), 7.49 (td, *J* = 7.6, 3.1 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 152.73 (d, *J* = 123.1 Hz), 147.18 (d, *J* = 21.9 Hz), 143.06, 140.93 (d, *J* = 17.1 Hz), 134.49, 132.43, 132.41, 132.14 (2), 132.08 (2), 131.91 (d, *J* = 1.6 Hz), 131.38, 131.10 (d, *J* = 105.3 Hz), 128.65 (2), 128.56 (2), 126.45; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.60. HRMS (m/z) calcd for C₂₀H₁₅BrN₂OP[M+H]⁺ 409.0100, found 409.0109.

(6-bromoquinoxalin-2-yl)diphenylphosphine oxide (3ua-2). Yield, 98%; ¹H NMR (600 MHz, CDCl₃) δ 9.65 (s, 1H), 8.35 (d, J = 2.0 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.94 (ddd, J = 9.0, 5.6, 4.5 Hz, 4H), 7.57 (td, J = 7.4, 1.2 Hz, 2H), 7.52 – 7.44 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 153.45 (d, J = 122.4 Hz), 146.61 (d, J = 21.7 Hz), 142.56 (d, J = 17.3 Hz), 141.36, 135.50, 132.44, 132.42, 132.31, 132.12 (2), 132.05 (2), 131.06 (d, J = 105.2 Hz), 130.90, 128.64 (2), 128.56 (2), 125.00; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.41. HRMS (m/z) calcd for C₂₀H₁₅BrN₂OP[M+H]⁺ 409.0100, found 409.0105.

3va-1

(7-methylquinoxalin-2-yl)diphenylphosphine oxide (3va-1). Yield, 95%; ¹H ¹H NMR (600 MHz, CDCl₃) δ 9.57 (s, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.95 (m, 5H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.3 Hz, 2H), 7.48 (t, *J* = 7.1 Hz, 4H), 2.63 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.07 (d, *J* = 318.0 Hz), 146.40 (d, *J* = 22.4 Hz), 143.08, 142.88 (d, *J* = 62.2 Hz), 133.17, 132.22 (2), 132.16 (2), 132.10 (2), 129.72, 128.55 (2), 128.47 (2), 128.26, 29.70; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 19.00; HRMS (m/z) calcd for C₂₁H₁₈N₂OP[M+H]⁺ 345.1151, found 345.1155.

(6-methylquinoxalin-2-yl)diphenylphosphine oxide (3va-2). Yield, 95%; ¹H NMR (600 MHz, CDCl₃) δ 9.55 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 1H), 8.00 – 7.89 (m, 5H), 7.72 (d, *J* = 8.6 Hz, 1H), 7.56 (dd, *J* = 10.6, 4.3 Hz, 2H), 7.48 (td, *J* = 8.0, 2.9 Hz, 4H), 2.61 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 152.22 (d, *J* = 124.8 Hz), 144.81 (d, *J* = 22.4 Hz), 142.52 (d, *J* = 17.1 Hz), 141.86, 140.29, 134.76, 132.29, 132.27, 132.12 (2), 132.06 (2), 131.34 (d, *J* = 105.0 Hz), 128.86, 128.56 (3), 128.48 (2), 116.35, 21.84; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 18.80; HRMS (m/z) calcd for $C_{21}H_{18}N_2OP[M+H]^+$ 345.1151, found 345.1150.

(7-methoxyquinoxalin-2-yl)diphenylphosphine oxide (3wa-1). Yield, 98%; ¹H NMR (600 MHz, CDCl₃) δ 9.44 (s, 1H), 8.03 (d, J = 9.2 Hz, 1H), 7.93 (dd, J = 11.8, 7.9 Hz, 4H), 7.55 (t, J = 7.3 Hz, 2H), 7.48 (t, J = 5.9 Hz, 5H), 7.37 (s, 1H), 3.96 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.32, 151.70 (d, J = 125.1 Hz), 144.02 (d, J = 17.9 Hz), 143.88 (d, J = 22.7 Hz), 138.95 (d, J = 2.1 Hz), 132.25, 132.23, 132.13 (2), 132.07 (2), 131.38 (d, J = 104.8 Hz), 130.34 (d, J = 1.8 Hz), 128.55 (2), 128.46 (2), 125.92, 106.80, 55.94; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 19.40; HRMS (m/z) calcd for C₂₁H₁₈N₂O₂P[M+H]⁺ 361.1100, found 361.1105.

(6-methoxyquinoxalin-2-yl)diphenylphosphine oxide (3wa-2). Yield, 98%; ¹H NMR (600 MHz, CDCl₃) δ 9.52 (s, 1H), 8.03 (d, *J* = 8.9 Hz, 1H), 7.98 – 7.90 (m, 4H), 7.55 (t, *J* = 7.2 Hz, 2H), 7.51 – 7.45 (m, 6H), 4.00 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.68, 146.08 (d, *J* = 23.1 Hz), 144.03, 132.23 (2), 132.17 (2), 132.11 (2), 131.29, 128.57 (2), 128.49 (2), 124.91, 105.98, 56.18; ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 19.17; HRMS (m/z) calcd for $C_{21}H_{18}N_2O_2P[M+H]^+$ 361.1100, found 361.1102.

2-(diphenylphosphaneyl)quinoxaline (6). ¹H NMR (600 MHz, CDCl₃) δ 9.64 (s, 1H), 8.25 (dd, *J* = 8.3, 0.9 Hz, 1H), 8.19 (dd, *J* = 8.3, 0.8 Hz, 1H), 8.00 – 7.93 (m, 4H), 7.93 – 7.88 (m, 1H), 7.88 – 7.83

(m, 1H), 7.57 (td, *J* = 7.4, 1.2 Hz, 2H), 7.49 (td, *J* = 7.6, 3.1 Hz, 4H).¹³C NMR (151 MHz, CDCl₃) δ 152.63 (d, *J* = 124.0 Hz), 145.55 (d, *J* = 22.3 Hz), 142.49 (d, *J* = 17.0 Hz), 141.58, 132.40 (2), 132.38, 132.17 (2), 132.10 (2), 131.53, 131.05, 130.83, 130.26, 129.07, 128.63 (2), 128.55 (2).³¹P NMR (243 MHz, CDCl₃): δ (ppm) 20.48. HRMS (m/z) calcd for C₂₀H₁₆N₂P[M+H]⁺ 315.1046, found 315.1045.

diphenyl(quinoxalin-2-yl)phosphine sulfide (7). ¹H NMR (600 MHz, CDCl₃) δ 9.81 (s, 1H), 8.23 (d, J = 7.5 Hz, 1H), 8.14 – 8.09 (m, 1H), 8.00 – 7.93 (m, 4H), 7.92 – 7.87 (m, 1H), 7.86 – 7.81 (m, 1H), 7.56 – 7.52 (m, 2H), 7.50 – 7.44 (m, 4H); ¹³C ¹³C NMR (151 MHz, CDCl₃) δ 151.84 (d, J = 104.7 Hz), 146.01 (d, J = 27.8 Hz), 141.51 (d, J = 16.2 Hz), 141.07, 132.53 (2), 132.46 (2), 132.36, 131.94, 131.92, 131.69, 131.12, 131.05, 130.23 (d, J = 1.3 Hz), 128.97 (d, J = 2.1 Hz), 128.54 (2), 128.45 (2); ³¹P NMR (243 MHz, CDCl₃): δ (ppm) 35.74. HRMS (m/z) calcd for C₂₀H₁₆N₂PS[M+H]⁺ 347.0766, found 347.0765.

3. NMR spectrum of 3, 6 and 7

Fig.S 2 ¹³C NMR of compound **3aa**

Fig.S 6 ¹³C NMR of compound **3ab**

Fig.S 9 ¹H NMR of compound **3ac**

Fig.S 10 ¹³C NMR of compound **3ac**

Fig.S 12 ¹⁹F NMR of compound **3ac**

Fig.S 15 ³¹P NMR of compound **3ad**

Fig.S 16 ¹H NMR of compound **3ae**

Fig.S 24 ³¹P NMR of compound **3ag**

Fig.S 30 ³¹P NMR of compound **3ai**

Fig.S 34 ¹H NMR of compound **3ak**

Fig.S 36 ³¹P NMR of compound **3ak**

Fig.S 39 ³¹P NMR of compound **3am**

Fig.S 40 ¹H NMR of compound **3an**

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 fl (ppm)

Fig.S 41 ¹³C NMR of compound **3an**

Fig.S 42 ³¹P NMR of compound **3an**

Fig.S 50 ¹³C NMR of compound **3aq**

Fig.S 51 ³¹P NMR of compound **3aq**

Fig.S 53 ¹³C NMR of compound **3ca**

Fig.S 54 ³¹P NMR of compound **3ca**

Fig.S 60³¹P NMR of compound **3ea**

Fig.S 62 ¹³C NMR of compound **3fa**

Fig.S 66 ³¹P NMR of compound **3ga**

Fig.S 70 ¹H NMR of compound **3ia**

Fig.S 72 ³¹P NMR of compound **3ia**

Fig.S 80 ¹³C NMR of compound **3la-1**

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -2 f1 (ppm)

Fig.S 82 ¹H NMR of compound **3la-2**

Fig.S 83 ¹³C NMR of compound **3la-2**

Fig.S 84 ³¹P NMR of compound **3la-2**

Fig.S 88 ¹H NMR of compound **3ma-2**

Fig.S 90 ³¹P NMR of compound **3ma-2**

Fig.S 96 ³¹P NMR of compound **3na-2**

Fig.S 102 ³¹P NMR of compound **30a-2**

Fig.S 104 ¹³C NMR of compound **3pa-1**

Fig.S 105 ³¹P NMR of compound **3pa-1**

Fig.S 106 ¹H NMR of compound **3pa-2**

Fig.S 108 ³¹P NMR of compound **3pa-2**

Fig.S 113 ¹³C NMR of compound **3ra**

Fig.S 114 ³¹P NMR of compound **3ra**

Fig.S 120 ³¹P NMR of compound **3ta-1**

Fig.S 125 ¹³C NMR of compound **3ua-1**

Fig.S 126 ³¹P NMR of compound **3ua-1**

Fig.S 128 ¹³C NMR of compound **3ua-2**

Fig.S 131 ¹³C NMR of compound **3va-1**

Fig.S 132 ³¹P NMR of compound **3va-1**

-2.61

Fig.S 138 ³¹P NMR of compound **3wa-1**

Fig.S 141 ³¹P NMR of compound **3wa-2**

Fig.S 142 ¹H NMR of compound **6**

Fig.S 144 ³¹P NMR of compound **6**

Fig.S 147 ³¹P NMR of compound **7**