Palladium-Catalyzed Coupling of Amides and Cyclopropanols for the Synthesis of $\boldsymbol{\gamma}$-Diketones

Lili Fang, Shuqi Jia, Shuaixin Fan, and Jin Zhu*

[^0]
Content

General Information 3
Optimization of the Reaction Conditions 3
Optimization of the Reaction Conditions for N-acyl phthalimides 3
Optimization of the Reaction Conditions for N-glutarimide benzamides5
Optimization of the Reaction Conditions for certain N -glutarimide amides 6
Typical Procedure for the Synthesis of γ-Diketones 8
Characterization data of N -glutarimide amide9
Characterization data of cyclopropanols 9
Characterization data of γ-diketones 10
Mechanistic Studies 21
Coupling of cyclopropanol and amide in the presence of BHT 21
Radical clock experiment 22
NMR spectrum evidence for the release of glutarimide. 22
Competition experiment 24
Control experiments 24
Proposed mechanism 26
Exploration for the cross-coupling reaction of acid chloride with cyclopropanol 26
Kinetic competition experiment 28
Reactivity order chemistry set 29
Reduction of γ-diketones to alkane 29
Reference 31
NMR spectra 32

General Information

All reactions were performed in a nitrogen-filled dry box unless otherwise stated. All solvents were obtained from commercial suppliers and were used as received. Toluene (PhMe) were purchased as HPLC-grade from Guoyao. Other commercially available reagents were used without further purification. Reaction temperature was reported corresponding to the oil bath temperature. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Flash chromatography was performed using 40-63 $\mu \mathrm{m}$ silica gel (Si 60, Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 500 or 400 (stated espeacially) MHz NMR spectrometer in the solvents indicated. Chemical shifts (δ) are given in ppm relative to TMS. HRMS were obtained on a Thermo Fisher Scientific LTQ FT Ultra.
Tertiary cyclopropanols were prepared by Kulinkovich reaction or Simmons-Smith sequence according to the reported procedure. ${ }^{1}$ The substrates of amide were prepared according to the reported literature procedures. ${ }^{2}$ All the characteristic data are consistent with the data reported before. ${ }^{3-10}$
The amount of ligand PCy_{3} is critical for the yield of γ-diketones, excessive ligand will reduce yields of γ-diketones. Otherwise, addition of 1.0 equiv amount of $\mathrm{B}(\mathrm{OH})_{3}$ can promote the yield of γ-diketones derived from the reaction of $\mathbf{1 a}$ and $\mathbf{2 d}$, but it seems ineffective for the other reactions sometime.
Additive distortion parameters $\left(\Sigma \tau+\chi_{\mathrm{N}}\right)$ refer to the literature reported before. ${ }^{11}$

Optimization of the Reaction Conditions

Optimization of the Reaction Conditions for N-acyl phthalimides
Table S1. Screening of solvent and ligand in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$

1aP 2d
3ad

Entry	catalyst	ligand	additive $(1.0$ equiv. $)$	solvent	Yield ${ }^{[a]}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	1,4 -Dioxane	Trace
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	MeCN	Trace
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	MeOH	ND
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	THF	25%
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	PhMe	30%
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhMe	ND
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Dppf}(10 \mathrm{~mol} \%)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhMe	ND
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	IPr	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhMe	Trace
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	28%

Table S2. Screening of ligand and additive in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}$

Entry	catalyst	ligand	additive	solvent	Yield ${ }^{[b]}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	29\%
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{P}^{\prime} \mathrm{Bu}_{3}$	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	ND
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	Dppm	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	17\%
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	Dcype	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	Trace
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	X-phos	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	messy
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	Davephos	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	ND
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	2,2'-Bipyridine	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	ND
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	---	PhMe	20\%
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	KOAc	PhMe	23\%
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{K}_{3} \mathrm{PO}_{4}$	PhMe	<20\%
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{KO}^{\prime} \mathrm{Bu}$	PhMe	ND
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	DABCO	PhMe	40\%
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	HOAc	PhMe	<20\%
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	$\mathrm{B}(\mathrm{OH})_{3}$	PhMe	ND
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	PhCOOH	PhMe	ND

Table S3. Screening of catalyst

15	$\mathrm{Pd}(\mathrm{OPiv})_{2}$	PCy_{3}	DABCO_{2}	PhMe	41%
16	$\mathrm{Pd}(\mathrm{OPiv})_{2}$	PCy_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	$62 \%{ }^{[d]}$

Optimization of the Reaction Conditions for \boldsymbol{N}-glutarimide benzamides

Table S4. Screening of solvent

Entry	catalyst	ligand	solvent	Yield ${ }^{[a]}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	PhMe	56%
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	1,4 -dioxane	52%
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	THF	55%
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	MeCN	Trace
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	DMF	ND
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	DMSO	ND

Table S5. Screening of catalyst

Entry	catalyst	ligand	solvent	yield $^{[a][b]}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PCy_{3}	PhMe	56%
2	$\mathrm{Pd}(\mathrm{OPiv})_{2}$	PCy_{3}	PhMe	58%
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	PCy_{3}	PhMe	43%
4	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	PhMe	60%
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	PCy_{3}	PhMe	60%
6	PdCl_{2}	PCy_{3}	PhMe	ND
7	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	PhMe	$68 \%^{[c]}$

Table S6. Screening of ligand

Entry	catalyst	ligand	solvent	${\text { yield }{ }^{[a][d]}}^{[1}$
$\operatorname{Pd}(\mathrm{acac})_{2}$	PPh_{3}	PhMe	16%	
2	$\operatorname{Pd}(\mathrm{acac})_{2}$	$\mathrm{P}^{t} \mathrm{Bu}_{3}$	PhMe	ND
3	$\mathrm{Pd}(\mathrm{acac})_{2}$	X-phos	PhMe	12%
4	$\mathrm{Pd}(\mathrm{acac})_{2}$	Dcype	PhMe	Trace
5	$\operatorname{Pd}(\mathrm{acac})_{2}$	Xantphos	PhMe	18%
6	$\operatorname{Pd}(\mathrm{acac})_{2}$	Dppf	PhMe	10%
7	$\operatorname{Pd}(\mathrm{acac})_{2}$	Dppm	PhMe	ND

Table S7. Screening of Screening for additive

Entry	catalyst	ligand	additive $(1.0$ equiv $)$	solvent	Yield ${ }^{[b][d]}$
1	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	$\mathrm{~B}(\mathrm{OMe})_{3}$	PhMe	55%
2	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	PhCOOH	PhMe	61%
3	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	HOAc	PhMe	67%
4	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	$\mathrm{Zn}(\mathrm{OTf})_{2}$	PhMe	ND
5	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	CuCl	PhMe	ND
6	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	$\mathrm{H}_{3} \mathrm{PO}_{4}$	PhMe	Trace
7	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	PhMe	17%
8	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	$\mathrm{NaO}^{t} \mathrm{Bu}$	PhMe	ND
9	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	33%

Optimization of the Reaction Conditions for certain \mathbf{N}-glutarimide amides
Table S8. Optimization of the Reaction Conditions for the coupling of $\mathbf{1 j}$ and $\mathbf{2 d}$

Entry	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	T	Yield ${ }^{[b]}$
1	$5 \mathrm{~mol} \%$	10 mol \%	$80^{\circ} \mathrm{C}$	48\%
2	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	$80^{\circ} \mathrm{C}$	62\%
3	$5 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$	$100^{\circ} \mathrm{C}$	56\%
4	$10 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	$100{ }^{\circ} \mathrm{C}$	57\%

Table S9. Optimization of the Reaction Conditions for the coupling of $\mathbf{1 n}$ and $\mathbf{2 d}$

Entry	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	T	Yield $^{[b]}$
1	$5 \mathrm{~mol} \mathrm{\%}$	$10 \mathrm{~mol} \%$	$80^{\circ} \mathrm{C}$	30%
2	$5 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$	$100^{\circ} \mathrm{C}$	40%
3	$10 \mathrm{~mol} \mathrm{\%}$	$20 \mathrm{~mol} \%$	$100^{\circ} \mathrm{C}$	35%

Table S10. Optimization of the Reaction Conditions for the coupling of $\mathbf{1 0}$ and 2d

Table S11. Optimization of the Reaction Conditions for the coupling of $\mathbf{1 q}$ and $\mathbf{2 d}$

Scheme S1. N-substitutes evaluation of benzamides ${ }^{[a][c]}$

1a
68\%

1aP
61\% ${ }^{[d][e]}$

1aB
Trace

ND

ND

All reactions were performed on 0.2 mmol scale benzamide with 1.0 equiv of the cyclopropanol under N_{2} unless stated in 2 mL toluene;
${ }^{[a]}$ isolated yields;
${ }^{[b]}$ yields determined by ${ }^{1} \mathrm{H}$ NMR with 1,3,5-trimethoxybenzene as the internal standard.
${ }^{[c]} 1.25$ equiv cyclopropanol was used;
${ }^{[d]} 1.5$ equiv cyclopropanol was used;
${ }^{[e]} \mathrm{Pd}(\mathrm{OPiv})_{2}(10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(20 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}\left(1.0\right.$ equiv) at $90^{\circ} \mathrm{C}$.
Scheme S2. Substrate scope of N -glutarimide amide with 2a as coupling partner

1s

1t

1u

1v

3sa: 71\%

3ta: 53\%

3va: 31\%

All reactions were performed on 0.2 mmol scale benzamide with 1.25 equiv of the cyclopropanol under N_{2} unless stated in 2 mL toluene;

Typical Procedure for the Synthesis of $\boldsymbol{\gamma}$-Diketones

General procedure: A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with $1 \mathbf{a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv, 43.4 mg), $\mathbf{2 d}(0.25 \mathrm{mmol}, 1.25$ equiv, 41 mg$), \operatorname{Pd}(\mathrm{acac})_{2}(0.01$ mol, 0.05 equiv, 3.1 mg). The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}, 5.6 \mathrm{mg})$ then was added and removed from glove. The reaction
mixture was resolved in $\mathrm{PhMe}(2 \mathrm{~mL})$ and allowed to stir at $80^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature then mixture was filtered on celite and concentrated to yield the crude product, which was further purified by flash chromatography (Petroleum ether/EtOAc $=5: 1$ or Petroleum ether/ Dichloromethane $=1: 2$) to give the desired product 3ad.

Characterization data of \mathbf{N}-glutarimide amide
 5-(5-(2,6-Dioxopiperidine-1-carbonyl)thiazol-2-yl)-2-isobutoxybenzonitrile (1m)

This compound was prepared according to the general procedure. Purification by column chromatography on silica gel (Petroleum ether/ Ethyl acetate $=1 / 1, \mathrm{v} / \mathrm{v}$) afforded 3qd as a yellow solid (29 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, $J=9.0,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H})$, 2.20 (hept, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (p, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.09 (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 171.39,169.15,164.90,163.01,162.65,132.84,132.45,126.26,125.26,115.13$, $112.70,103.11,75.77,32.38,28.12,19.01,18.21,17.29$.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-} 410.1180$, found 410.1176 .

1-(4-Methylpentanoyl)piperidine-2,6-dione (10)

White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 2.73-2.59(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{~h}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60$ $(\mathrm{qd}, J=7.4,6.4,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 178.36$, $171.56,171.52,39.09,39.07,32.24,32.22,32.03,27.22,22.20,17.29$.
HRMS (FI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]^{+}$211.1203, found 211.1197.

Characterization data of cyclopropanols

1-(4-cyclohexylphenyl)cyclopropan-1-ol (2c)

White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 2.52-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{br}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.31-$ $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 146.47, 141.51, 126.83, 124.60, 56.70, 44.17, 34.49, 26.91, 26.16, 17.45.

HRMS (FI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+} 216.1509$, found 216.1511 .

1-(4-Nitrophenyl)cyclopropan-1-ol (2i)

Yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.17-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 2.69$ (br, 1H), $1.47-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 152.87$, 146.16, 124.26, 123.55, 56.12, 20.28.

HRMS (FI) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}]^{+} 180.0654$, found 180.0655 .

Characterization data of γ-diketones

1-(4-Methoxyphenyl)-4-phenylbutane-1,4-dione (3ad/3sa)

White solid ($36.7 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.06-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.60-$ $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 198.85,197.15,163.50,136.81,133.07,130.35,129.86,128.55$, 128.10, 113.70, 55.45, 32.65, 32.21 .

The spectroscopic data matched literature values. ${ }^{12}$

1-(4-Methoxyphenyl)-4-(p-tolyl)butane-1,4-dione (3bd)

White solid ($31.2 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.03-7.99$ (m, 2H), $7.95-7.91$ $(\mathrm{m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 198.45,197.25,163.45,143.80,134.30,130.32,129.87,129.22$, $129.20,128.18,113.66,55.41,32.51,32.21,21.59$.
The spectroscopic data matched literature values. ${ }^{13}$

1-(4-(tert-Butyl)phenyl)-4-(4-methoxyphenyl)butane-1,4-dione (3cd)

White solid ($35.7 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.03-7.99$ (m, 2H), $7.99-7.95$ (m, 2H), $7.48(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.44-3,38(\mathrm{~m}, 4 \mathrm{H}), 1.34$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 198.47, 197.21, 163.43, 156.72, 134.21, 130.30, 129.86, 128.02, 125.45, 113.65, 55.39, 35.04, 32.50, 32.23, 31.03.

HRMS (FI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}]^{+} 324.1720$, found 324.1712.
1-(4-Fluorophenyl)-4-(4-methoxyphenyl)butane-1,4-dione (3dd)

White solid (44.4 mg, 78\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.97$ $(\mathrm{m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 197.22,196.99,166.70,164.67,163.50,133.24,133.21,130.71,130.64$, $130.30,129.73,115.67,115.49,113.68,55.40,32.45,32.14 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) δ 105.36 .

The spectroscopic data matched literature values. ${ }^{14}$

1-(4-Chlorophenyl)-4-(4-methoxyphenyl)butane-1,4-dione (3ed)

White solid ($28.8 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.04-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 197.69,196.97,163.58,139.51,135.16,130.37,129.76,129.54,128.89,113.74,55.47,32.58$, 32.19 .

The spectroscopic data matched literature values. ${ }^{14}$

1-(4-Methoxyphenyl)-4-(o-tolyl)butane-1,4-dione (3fd)

White solid ($33.5 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.41-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 202.81$, $197.05,163.44,137.95,137.88,131.79,131.18,130.28,129.82,128.53,125.63,113.65,55.40,35.34$, 32.43, 21.19.

The spectroscopic data matched literature values. ${ }^{15}$

1-(2-Fluorophenyl)-4-(4-methoxyphenyl)butane-1,4-dione (3gd)

White solid ($20.1 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{td}, J$ $=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=11.0,8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 197.16,197.12,196.94,163.46,163.06,161.04,134.51,134.43,130.65,130.63,130.32,129.85$, $124.37,124.35,116.74,116.55,113.67,55.43,37.47,37.40,32.19,32.17 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform-d) δ-109.01.
HRMS (FI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}]^{+}$286.1000, found 286.0985.

1-(4-Methoxyphenyl)-4-(m-tolyl)butane-1,4-dione (3hd)

White solid ($40.5 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.80$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 199.00$, 197.17, 163.44, 138.25, 136.79, 133.77, 130.30, $129.83,128.58,128.38,125.25,113.64,55.39,32.65,32.20,21.28$.
The spectroscopic data matched literature values. ${ }^{16}$

1-(3-Chlorophenyl)-4-(4-methoxyphenyl)butane-1,4-dione (3id)

White solid ($25.3 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.03-7.98(\mathrm{~m}, 3 \mathrm{H}), 7.91$ (dt, $J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.0,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (s, 3H), 3.44-3.37 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 197.62, 196.83, 163.56, 134.89, $132.97,130.34,129.90,129.71,128.23,126.19,113.72,55.45,32.69,32.16$.
The spectroscopic data matched literature values. ${ }^{14}$
1-(4-Methoxyphenyl)-4-(naphthalen-1-yl)butane-1,4-dione (3jd)

White solid (39.2 mg, 62\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.61(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.07-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{dt}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.55$ $-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroformd) $\delta 203.03,197.05,163.48,136.02,133.87,132.45,130.33,130.07,129.83,128.29,127.76$, $127.55,126.32,125.81,124.39,113.69,55.42,36.02,32.63$.
The spectroscopic data matched literature values. ${ }^{17}$
1-(Furan-2-yl)-4-(4-methoxyphenyl)butane-1,4-dione (3kd)

White solid ($34.5 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.00-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J$ $=1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{dd}, J=3.5,2.0 \mathrm{~Hz}$, 1 H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ $196.78,187.98,163.48,152.50,146.27,130.29,129.67,117.04,113.66,112.13,55.40,32.26$, 31.86.

The spectroscopic data matched literature values. ${ }^{14}$

1-(4-Methoxyphenyl)-4-(thiophen-2-yl)butane-1,4-dione (3Id)

White solid (39 mg, 71\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.02-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=$ $4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 196.90$, 191.78, 163.52, $143.91,133.45,131.98,130.37,130.33,129.71,128.07,113.69,55.43,33.23,32.22$.
The spectroscopic data matched literature values. ${ }^{18}$

2-Isobutoxy-5-(5-(4-(4-methoxyphenyl)-4-oxobutanoyl)-4-methylthiazol-2-yl)benzonitrile

 (3md)

Light yellow solid ($27 \mathrm{mg}, 29 \%$) ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.21(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.11(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H})$, $3.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.43-3,39(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 1.09$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- -d) δ 196.61, 191.52, 166.53, 163.62, 162.56, $159.79,132.66,132.17,130.64,130.36,129.58,125.85,115.34,113.75,112.62,103.00,55.46$, 36.82, 32.31, 28.13, 19.02, 18.49.

HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+} 463.1687$, found 463.1686.

(E)-1-(4-Methoxyphenyl)-6-phenylhex-5-ene-1,4-dione (3nd)

White solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.35(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 198.84$, $197.16,163.51,142.75,134.51,130.42,130.35,129.82,128.91,128.29,126.19,113.70,55.45$, 34.51, 32.23.

The spectroscopic data matched literature values. ${ }^{17}$

1-(4-Methoxyphenyl)-7-methyloctane-1,4-dione (3od)

Light green solid ($29.1 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.97-7.93$ (m, 2H), 6.94 $-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.59$
$-1.47(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 210.05,197.15$, $163.44,130.25,129.76,113.64,55.40,41.03,36.20,32.62,31.98,27.69,22.31$.
The spectroscopic data matched literature values. ${ }^{19}$

1-(4-Methoxyphenyl)-5,5-dimethylhexane-1,4-dione (3pd)

Colorless liquid (3mg, 6\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.93$ $(\mathrm{m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 214.81,197.44,163.43,130.28,129.95,113.66,55.44,44.07,32.03,30.82$, 26.63.

The spectroscopic data matched literature values. ${ }^{20}$

1-Cyclohexyl-4-(4-methoxyphenyl)butane-1,4-dione (3qd)

White solid ($35.9 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90$ $(\mathrm{m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{tt}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.79(\mathrm{dt}, J=12.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.15(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 212.80,197.28,163.44,130.27,129.85,113.65,55.43,50.92,34.30,31.94,28.56$, 25.87, 25.67.

HRMS (FI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}]^{+} 274.1564$, found 274.1560 .

1,4-Diphenylbutane-1,4-dione (3aa)

Colorless liquid ($37.5 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.06-8.02$ (m, 4H), $7.60-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.62, 136.72, 133.10, 128.55, 128.07, 32.54.

The spectroscopic data matched literature values. ${ }^{21}$

1-Phenyl-4-(p-tolyl)butane-1,4-dione (3ab)

White solid (31.2 mg, 62\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.06-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.92$ $(\mathrm{m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.75, 198.26, 143.87, 136.77, 134.26, 133.07, 129.22, 128.54, 128.19, 128.08, 32.58, 32.44, 21.61.

The spectroscopic data matched literature values. ${ }^{12}$

1-(4-Cyclohexylphenyl)-4-phenylbutane-1,4-dione (3ac)

White solid (43.3 mg, 68\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.06-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.95$ $(\mathrm{m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 4 \mathrm{H}), 2.57$ $(\mathrm{tt}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.22$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform- d) $\delta 198.73,198.28,153.74,136.76,134.58,133.04$, $128.52,128.29,128.06,127.02,44.65,34.06,32.60,32.43,26.68,25.99$.
HRMS (FI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+} 320.1771$, found 320.1766.

1-(4-Fluorophenyl)-4-phenylbutane-1,4-dione (3ae)

White solid ($39.8 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.09-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform- d) $\delta 198.53$, 197.05, 166.77, 164.74, 136.66, 133.19, 133.17, 130.75, $130.68,128.58,128.07,115.73,115.56,32.53,32.41 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) δ 105.24 .

The spectroscopic data matched literature values. ${ }^{22}$

1-(4-Chlorophenyl)-4-phenylbutane-1,4-dione (3af)

White solid ($28.8 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.05-8.01$ (m, 2H), $7.99-7.95$ $(\mathrm{m}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 198.43$, 197.43, 139.51, 136.61, 135.06, 133.17, 129.50, 128.86, 128.57, 128.06, 32.50, 32.45.

The spectroscopic data matched literature values. ${ }^{18}$
Methyl 4-(4-oxo-4-phenylbutanoyl)benzoate (3ag)

White solid ($47.3 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.16-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.10-8.07$ $(\mathrm{m}, 2 \mathrm{H}), 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.45(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.28, 198.13, 166.12, 139.90, 136.54, 133.80, 133.14, 129.74, 128.53, 128.01, 127.94, 32.80, 32.44.

The spectroscopic data matched literature values. ${ }^{23}$

1-Phenyl-4-(4-(trifluoromethyl)phenyl)butane-1,4-dione (3ah)

White solid ($44.9 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.15$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $8.05-$ $8.02(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.44(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.30, 197.81, 139.46, 136.57, 133.30, 128.65, 128.45, $128.11,125.74,125.71,125.68,125.65,32.79,32.55 .{ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-63.10$. The spectroscopic data matched literature values. ${ }^{24}$

1-(4-Nitrophenyl)-4-phenylbutane-1,4-dione (3ai/3ua)

Yellow solid ($42 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.34-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.20-8.16(\mathrm{~m}$, $2 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.44(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.09, 197.30, 150.30, 141.24, 136.39, 133.35, 129.11, 128.63, 128.06, 123.81, 32.96, 32.56.

The spectroscopic data matched literature values. ${ }^{25}$

1-(2-Methoxyphenyl)-4-phenylbutane-1,4-dione (3aj)

White solid (27.4 mg, 51\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J$ $=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.90(\mathrm{~m}$, $3 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 200.57$, $199.03,158.78,136.91,133.55,132.95,130.47$, 128.55, 128.50, 128.08, 127.81, 120.61, 111.53, 55.50, 37.91, 32.97.

The spectroscopic data matched literature values. ${ }^{16}$

1-(2-Fluorophenyl)-4-phenylbutane-1,4-dione (3ak)

White solid ($24.6 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{td}, J=$ $7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15$ (ddd, $J=11.0,8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ $198.40,196.89,196.86,163.07,161.04,136.70,134.56,134.49,133.04,130.63,130.60,128.51,128.04$, $125.44,125.33,124.37,124.34,116.73,116.54,37.36,37.30,32.51,32.49 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform-d) $\delta-108.95$.
HRMS (FI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}]^{+}$256.0894, found 256.0876.

1-(3-Methoxyphenyl)-4-phenylbutane-1,4-dione (3al)

White solid ($32 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12 (ddd, $J=8.5,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ $198.59,198.43,159.76,138.06,136.71,133.08,129.54,128.53,128.05,120.74,119.64,112.22,55.38$, 32.67, 32.54.

The spectroscopic data matched literature values. ${ }^{18}$

1-(3-Fluorophenyl)-4-phenylbutane-1,4-dione (3am)

White solid ($37.2 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{dt}, J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=9.5,2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.30-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 198.38$, 197.43, 197.41, 163.81, 161.84, 138.85, 138.80, 136.61, 133.19, 130.27, 130.21, 128.59, 128.07, 123.87, $123.85,120.19,120.02,114.90,114.73,32.66,32.49 .{ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-111.89$. The spectroscopic data matched literature values. ${ }^{26}$

1-(3,5-Bis(trifluoromethyl)phenyl)-4-phenylbutane-1,4-dione (3an)

White solid (49.1 mg, 65\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.47(\mathrm{t}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $8.08(\mathrm{t}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.49$ $-3.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 197.99, 196.03, 138.26, 136.36, 133.41, 132.74, $132.47,132.20,131.93,128.66,128.49,128.20,128.17,128.14,128.09,126.34,126.31,126.28,126.25$, 126.22, 126.16, 123.99, 121.82, 119.65, 32.63, 32.54. ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-62.92$.

The spectroscopic data matched literature values. ${ }^{27}$

2-Methyl-1,4-diphenylbutane-1,4-dione (3ao)

White solid ($22.1 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.97$ (m, 2H), $7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=18.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{dd}, J=18.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 203.38$, 198.46, 136.64, 136.06, 133.16, 132.95, 128.64, 128.54, 128.49, 128.08, 42.32, 36.26, 17.94.

The spectroscopic data matched literature values. ${ }^{22}$

2,2-Dimethyl-1,4-diphenylbutane-1,4-dione (3ap)

White solid ($37.5 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.96-7.92$ (m, 2H), $7.71-7.67$ $(\mathrm{m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 5 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 210.00$, 197.67, 139.79, 136.85, 133.05, 130.14, 128.48, 127.96, 127.93, 127.90, 127.24, 50.41, 45.39, 26.82.

The spectroscopic data matched literature values. ${ }^{28}$

2-(1-Benzoylcyclohexyl)-1-phenylethan-1-one (3aq)

Colorless liquid ($28.9 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.70-$ $7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 1.97-$ $1.85(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 211.20,198.04,140.59,137.10,133.08,129.69,128.52,127.97,127.83,127.22$, 49.54, 43.93, 33.86, 25.61, 22.20.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{+}$306.1614, found 306.1606.

2-(2-Oxo-2-phenylethyl)-2,3-dihydro-1H-inden-1-one (3ar)

This mixture compound was prepared according to the typical procedure. Purification by column chromatography on silica gel (Petroleum ether/ Ethyl acetate $=5 / 1, \mathrm{v} / \mathrm{v}$) afforded 3ar as a lightyellow liquid ($37 \mathrm{mg}, 74 \%$). Then the mixture compound was purified by by column chromatography on silica gel (Petroleum ether / Ethyl acetate $=10 / 1, \mathrm{v} / \mathrm{v}$ then Petroleum ether $/$ dichloromethane $=1 / 2$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.01-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}$, 2H), $7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=17.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=$ $17.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=17.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.0,4.0 \mathrm{~Hz}$, 1H). ${ }^{13}$ C NMR (126 MHz , Chloroform- d) $\delta 207.89,197.95,153.58,136.51,136.44,134.80,133.33$, 128.66, 128.08, 127.41, 126.54, 123.89, 43.19, 40.02, 33.57.

The spectroscopic data matched literature values. ${ }^{29}$
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.08(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.00-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.59$ $(\mathrm{m}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.34-$ $3.26(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 199.79,196.45,141.68,135.14,133.91,133.62,131.98,128.95,128.85,128.44,127.21,127.19,42.65$, 41.25, 32.63.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$251.1067, found 251.1061.

2-(2-Oxo-2-phenylethyl)-3,4-dihydronaphthalen-1(2H)-one (3as)

White solid ($32.6 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.04(\mathrm{dt}, J=8.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}$), $7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J$ $=17.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}$, 1H), 1.99 (qd, $J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.98, 198.51, 144.11, $136.99,133.33,133.06,132.26,128.74,128.56,128.11,127.44,126.57,44.21,38.99,29.54,29.37$. The spectroscopic data matched literature values. ${ }^{30}$

1-(Naphthalen-1-yl)-4-phenylbutane-1,4-dione (3at)

White Solid. (47.6 mg, 83\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.63$ (dd, $J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.09-8.04(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{dt}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 202.77, 198.54, 136.70, 135.89, 133.85, 133.08, 132.49, 130.05, 128.53, 128.29, 128.05, 127.78, $127.55,126.33,125.78,124.37,35.87,32.96$.

The spectroscopic data matched literature values. ${ }^{18}$

1-Phenyl-4-(thiophen-2-yl)butane-1,4-dione (3au)

Light yellow solid (15.8 mg. 32\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.05-8.01$ (m, 2H), 7.84 (dd, $J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.15(\mathrm{dd}, J=5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 198.41,191.58,143.87,136.63,133.53,133.18,132.01,128.58,128.09,33.15$, 32.59.

The spectroscopic data matched literature values. ${ }^{18}$

1-(Benzo[b]thiophen-2-yl)-4-phenylbutane-1,4-dione (3av/3va)

Yellow solid (35.4 mg, 60\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.08$ (d, $J=0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.05-$ $8.01(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{ddt}, J=18.0,8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.39$
$(\mathrm{m}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.25, 193.12, 143.21, 142.41, $139.10,136.55,133.20,129.20,128.58,128.07$, 127.34, 125.93, 124.94, 122.92, 33.06, 32.62.
HRMS (FI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$294.0709, found 294.0701.

1-Phenylnonane-1,4-dione (3aw)

Colorless liquid ($26 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=7.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 209.73,198.63,136.65,133.06,128.51,127.99,42.93,36.13,32.32$, 31.37, 23.52, 22.41, 13.88.

The spectroscopic data matched literature values. ${ }^{31}$

1-Cyclopentyl-4-phenylbutane-1,4-dione (3ax)

Colorless liquid ($32.8 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.00-7.96$ (m, 2H), $7.57-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{p}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=6.5$, $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.54(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, Chloroform- d) $\delta 211.70$, 198.74, 136.71, 133.01, 128.49, 127.99, 51.44, 35.28, 32.33, 28.90, 25.97.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$231.1380, found 231.1374.

2-Methyltridecane-5,8-dione (3ow)

Yellow liquid (19.9 mg, 44\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 2.68-2.64(\mathrm{~m}, 4 \mathrm{H}), 2.46-$ $2.40(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 209.87, 209.77, 42.80, 40.86, 35.97, 35.94, 32.59, 31.34, 27.66, 23.49, 22.40, 22.29, 13.86.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$227.2006, found 227.2002.

1-Phenylundecane-3,6-dione (3rw)

Yellow liquid. (24.1 mg, 44\%) ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.16(\mathrm{~m}, 3 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.58(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ,

Chloroform- d) $\delta 209.68,208.53,140.98,128.43,128.24,126.03,44.28,42.76,36.14,35.97,31.34$, 29.69, 23.49, 22.40, 13.88.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$261.1849, found 261.1842.

1-(Benzo[d][1,3]dioxol-5-yl)-4-phenylbutane-1,4-dione (3ta)

White solid ($30.3 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (dd, J $=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H})$, $3.46-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 198.74, 196.69, $151.77,148.14,136.76,133.12,131.64,128.57,128.10,124.38,107.93,107.89,101.80,32.69$, 32.31 .

The spectroscopic data matched literature values. ${ }^{18}$

2-Clopropyl-1,4-diphenylbutane-1,4-dione (3ay)

Colorless liquid (27.3 mg, 50\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.06-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.01-$ $7.97(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{dd}, J=18.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{td}, J=9.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=25.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.54$ $(\mathrm{m}, 1 \mathrm{H}), 0.49-0.42(\mathrm{~m}, 1 \mathrm{H}), 0.32-0.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 202.80,198.75$, 137.70, 136.51, 133.18, 132.79, 128.61, 128.53, 128.12, 45.25, 41.96, 13.85, 4.68, 4.14.

HRMS (FI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{+}$278.1301, found 278.1293.

Mechanistic Studies

Coupling of cyclopropanol and amide in the presence of BHT

A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with $\mathbf{1 a}$ $(0.2 \mathrm{mmol}, 1.0$ equiv, 43.4 mg$), \mathbf{2 d}(0.25 \mathrm{mmol}, 1.25$ equiv, 41 mg$), \mathrm{Pd}(\mathrm{acac})_{2}(0.01 \mathrm{~mol}, 0.05$ equiv, 3.1 mg), and BHT ($0.3 \mathrm{mmol}, 2.5$ equiv, 110.2 mg). The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}, 5.6 \mathrm{mg})$ then was added and removed from glove. The reaction mixture was resolved in $\operatorname{PhMe}(2 \mathrm{~mL})$ and allowed to stir at $80^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature then mixture was filtered on celite and concentrated to yield the crude product, which was further purified by flash chromatography $($ Petroleum ether $/$ Ethyl acetate $=5 / 1)$ to give the desired product 3aa in 63% of yield. No trapped
intermediate is detected.

Radical clock experiment

A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv, 43.4 mg), 2aa (1.25 equiv, $0.25 \mathrm{mmol}, 41 \mathrm{mg}$), $\mathrm{Pd}(\mathrm{acac})_{2}(0.01 \mathrm{~mol}, 0.05$ equiv, 3.1 mg). The vessel was capped with a rubber septum and then transferred to the glove. PCy_{3} $(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}, 5.6 \mathrm{mg})$ then was added and removed from glove. The reaction mixture was resolved in $\mathrm{PhMe}(2 \mathrm{~mL})$ and allowed to stir at $80^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature then mixture was filtered on celite and concentrated to yield the crude product, which was further purified by flash chromatography (Petroleum ether / ethyl acetate $=5 / 1$) to give the desired product 3aaa in 50% yields, no cyclopropyl-opening product was observed.

NMR spectrum evidence for the release of glutarimide.

A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with 1 a ($0.2 \mathrm{mmol}, 1.0$ equiv, 43.4 mg), $2 \mathrm{~d}(0.25 \mathrm{mmol}, 1.25$ equiv, 41 mg$), \operatorname{Pd}(\mathrm{acac})_{2}(0.01 \mathrm{~mol}, 0.05$ equiv, $3.1 \mathrm{mg})$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(10$ $\mathrm{mol} \%, 0.02 \mathrm{mmol}, 5.6 \mathrm{mg}$) then was added and removed from glove. The reaction mixture was resolved in Toluene (2 mL) and allowed to stir at $80^{\circ} \mathrm{C}$ for 16 h . After completion of reaction as monitored by TLC, solvent was removed under reduced pressure and the crude was subjected to perform an NMR test. From the NMR spectrum of the crude, we can clearly see the peak of glutarimide. Then the crude product was recovered, followed by glutarimides ($0.2 \mathrm{mmol}, 1.0$ equiv, 22.6 mg) added, then was subjected to NMR test again. We can see the overlap of the peaks of glutarimide. Meanwhile, another same reaction mixture was filtered on celite and concentrated to yield crude product, which was further purified by flash chromatography (Petroleum ether / Ethyl acetate $=3 / 1$ to Dichloromethane $/$ Methanol $=10 / 1$) to give the pure byproduct glutarimide in 73% $(16.8 \mathrm{mg})$ yields. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97$ (br, 1H), $2.62-2.56$ (d, $J=2.0 \mathrm{~Hz}$, 4H), $2.05-1.97$ (m, 2H).

Figure S3. NMR spectrum of 3ad crude product

Figure S4. NMR spectrum of $\mathbf{3 a d}$ crude product after 0.2 mmol glutarimide added

Competition experiment

A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with $\mathbf{1 a}$ (0.2 mmol, 1.0 equiv, 43.4 mg), $\mathbf{2 d}(0.2 \mathrm{mmol}, 1.0$ equiv, 32.8 mg), $2 \mathbf{i}(0.2 \mathrm{mmol}, 1.0$ equiv, 38.4 mg) and $\operatorname{Pd}(\mathrm{acac})_{2}(0.01 \mathrm{~mol}, 0.05$ equiv, 3.1 mg$)$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}, 5.6 \mathrm{mg})$ then was added and removed from glove. The reaction mixture was resolved in Toluene (2 mL) and allowed to stir at $80^{\circ} \mathrm{C}$ for 16 h . After completion of reaction as monitored by TLC, solvent was removed under reduced pressure and the crude was subjected to perform an NMR test. NMR spectrum indicates ratio of 3ad vs 3ai is $1 / 1.73$.

Figure S5. NMR spectrum of 3ad and 3ai crude product

Control experiments

Phenylcyclopropane ($\mathbf{2 a O}$) was obtained as colorless liquid according to the literature reported before. ${ }^{32}$ To a 10 mL dry test tube with stir bar was added N -glutarimide benzamide $\mathbf{1 a}(0.2 \mathrm{mmol}$, 1.0 equiv, 43.4 mg$), \mathrm{Pd}(\mathrm{acac})_{2}(0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 5.6 \mathrm{mg})$ then was added and removed from glove. Phenylcyclopropane ($0.25 \mathrm{mmol}, 1.25$ equiv, 29.5 mg) dissolved in 2 mL Toluene was added and stand for 16 h at $80^{\circ} \mathrm{C}$, after completion of reaction, TLC indicated that no desired product was yielded.

1-Phenylcyclopropyl acetate ($\mathbf{2 a A}$) was prepared according to the literature before. ${ }^{33}$ To a 10 mL dry test tube with stir bar was added N -glutarimide benzamide $\mathbf{1 a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv, 43.4 $\mathrm{mg}), \operatorname{Pd}(\mathrm{acac})_{2}(5 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 3.1 \mathrm{mg})$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 5.6 \mathrm{mg})$ then was added and removed from glove. 1-phenylcyclopropyl acetate ($0.25 \mathrm{mmol}, 1.25$ equiv, 44 mg) dissolved in 2 mL Toluene was added and stand for 16 h at $80^{\circ} \mathrm{C}$, after completion of reaction, TLC indicated that no desired product was yielded.

To a 10 mL dry test tube with stir bar was added N -glutarimide benzamide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv, 43.4 mg), 1-phenylcyclobutan-1-ol (1.25 equiv, 37 mg) and $\operatorname{Pd}(\mathrm{acac})_{2}(5 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$, $3.1 \mathrm{mg})$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(0.02$ mmol, $10 \mathrm{~mol} \%, 5.6 \mathrm{mg}$) then was added and removed from glove. The reaction mixture was dissolved in 2 mL Toluene and stand for 16 h at $80^{\circ} \mathrm{C}$, after cooling to room temperature, TLC indicated that no desired product was yielded.

Proposed mechanism

Figure S6. Proposed mechanistic cycle

Exploration for the cross-coupling reaction of acid chloride with cyclopropanol

Table S12. Screening for the catalyst and solvent

		Pd catalyst (5 mol \% ligand ($10 \mathrm{~mol} \%$) solvent, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$		
Entry	catalyst	ligand	solvent	yield $^{[b]}$
1	$\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	DPE-Phos	PhMe	15\%
2	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	DPE-Phos	PhMe	9\%
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DPE-Phos	PhMe	10\%
4	$\mathrm{Pd}(\mathrm{acac})_{2}$	DPE-Phos	PhMe	ND
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DPE-Phos	PhMe	10\%
6	$\mathrm{Pd}(\mathrm{acac})_{2}$	PCy_{3}	PhMe	ND
7	$\mathrm{Pd}\left(\mathrm{P}^{\prime} \mathrm{Bu}_{3}\right)_{2}$	DPE-Phos	MeCN	12\%

8	$\operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	DPE-Phos	THF	7%
9	$\operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	DPE-Phos	MeOH	ND

Table S13. Screening for the catalyst and solvent

Table S14. Screening for the additive

	Cl	Me	$\begin{gathered} \text { Pd catalyst (} 5 \mathrm{~mol} \% \text {) } \\ \text { ligand (} 10 \mathrm{~mol} \% \text {) } \\ \text { additive (} 1.0 \text { equiv) } \end{gathered}$			
Entry	catalyst	ligand	additive	solvent	T	yield $^{[b]}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	---	---	THF	RT	ND
2	$\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	---	---	PhMe	$80^{\circ} \mathrm{C}$	ND
3	$\operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	PPh_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	$80^{\circ} \mathrm{C}$	30\%
4	$\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	PPh_{3}	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhMe	$80^{\circ} \mathrm{C}$	35\%
5	$\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	PPh_{3}	$\mathrm{KO}^{t} \mathrm{Bu}$	PhMe	$80^{\circ} \mathrm{C}$	ND
6	$\operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	Dppf	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	$80^{\circ} \mathrm{C}$	40\%
7	$\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	Dppf	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhMe	$80^{\circ} \mathrm{C}$	36\%

$8 \quad$	$8 d\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$	Dppf	$\mathrm{KO}^{t} \mathrm{Bu}$	PhMe	$80^{\circ} \mathrm{C}$	ND

Unless otherwise noted, all reactions were performed on 0.2 mmol acid chloride with 1.0 equiv of the cyclopropanol under nitrogen for 12 h .

Kinetic competition experiment

A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with $\mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv, 21.7 mg), $\mathbf{1 a B}(0.1 \mathrm{mmol}, 1.0$ equiv, 32.1 mg$), \mathbf{2 i}(0.3 \mathrm{mmol}, 3.0$ equiv, 53.7 $\mathrm{mg})$, and $\operatorname{Pd}(\mathrm{acac})_{2}(0.005 \mathrm{~mol}, 0.05$ equiv, 1.6 mg$)$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 2.8 \mathrm{mg})$ then was added and removed from glove. The reaction mixture was resolved in toluene (1 mL) and allowed to stir at $80^{\circ} \mathrm{C}$ for 1 h . The mixture was allowed to room temperature after 1 h , and filtered through celite, then concentrated under vacuum. The crude substrate-product mixture was purified by flash chromatography (Petroleum ether / Ethyl acetate $=5 / 1$ then Petroleum ether/ Dichloromethane $=$ 1:2) to give the substrates mixture ($\mathbf{1 a}$ and $\mathbf{1 a B}$).

Time	Concentration of 1a	Concentration of 1aB
0 h	$0.1 \mathrm{~mol} / \mathrm{L}$	$0.1 \mathrm{~mol} / \mathrm{L}$
1 h	$0.06525 \mathrm{~mol} / \mathrm{L}$	$0.08925 \mathrm{~mol} / \mathrm{L}$

A 10 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with 1aP ($0.1 \mathrm{mmol}, 1.0$ equiv, 25.1 mg), $\mathbf{1 a B}(0.1 \mathrm{mmol}, 1.0$ equiv, 32.1 mg), $\mathbf{2 i}(0.3 \mathrm{mmol}, 3.0$ equiv, 53.7 $\mathrm{mg})$, and $\operatorname{Pd}(\mathrm{acac})_{2}(0.005 \mathrm{~mol}, 0.05$ equiv, 1.6 mg$)$. The vessel was capped with a rubber septum and then transferred to the glove. $\mathrm{PCy}_{3}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 2.8 \mathrm{mg})$ then was added and removed from glove. The reaction mixture was resolved in toluene $(1 \mathrm{~mL})$ and allowed to stir at $80^{\circ} \mathrm{C}$ for 1 h . The mixture was allowed to room temperature after 1 h , and filtered through celite, then concentrated under vacuum. The crude substrate-product mixture was purified by flash chromatography (Petroleum ether $/$ Ethyl acetate $=5 / 1$ then Petroleum ether/ Dichloromethane $=$ $1: 2)$ to give the substrates mixture ($\mathbf{1 a B}$ and $\mathbf{1 a P}$).

Time	Concentration of 1aB	Concentration of 1aP
0 h	$0.1 \mathrm{~mol} / \mathrm{L}$	$0.1 \mathrm{~mol} / \mathrm{L}$
1 h	$0.087 \mathrm{~mol} / \mathrm{L}$	$0.096 \mathrm{~mol} / \mathrm{L}$

Figure S7. Relative reactivity versus the additive parameter of the three amides

Reactivity order chemistry set

$\left\{\left(\mathbf{1 a}, \mathrm{R}, \mathrm{P}, k_{1 \mathbf{a}}-12.9, \mathrm{EC}\right)\right.$,
($1 \mathrm{aB}, \mathrm{R}, \mathrm{P}, k_{1 \mathrm{ab}}-3.4, \mathrm{EC}$),
(1aP, R, P, $\left.\left.k_{1 \mathbf{a P}}-1, \mathrm{EC}\right)\right\}$,
where $\mathrm{R}=\mathbf{2 i}, \mathrm{P}=\mathbf{3 a i}$,
$\mathrm{EC}=\operatorname{Pd}(\mathrm{acac})_{2}(5 \mathrm{~mol} \%) / \mathrm{PCy}_{3}(10 \mathrm{~mol} \%) /$ Toluene $/ 80^{\circ} \mathrm{C} / 1 \mathrm{~h}$

Reduction of $\boldsymbol{\gamma}$-diketones to alkane

According to the literature reported, ${ }^{34}$ to a solution of 1, 4 - diketones compound $\mathbf{3 r w}$ (0.2 mmol , 1.0 equiv, 52 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and tris (pentafluoro phenyl) borane ($5 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$, 5.1 mg) was slowly added polymethylhydrosiloxane ($0.6 \mathrm{mmol}, 3$ equiv, $134 \mathrm{mg}, 133 \mu \mathrm{~L}$) at room temperature. After 20 min , a vigorous effervescence (like foam) was observed. At this point, the reaction mixture was dissolved in hexane and filtered through a silica gel pad using hexane. Evaporation of the solvents afforded the product in crude form (alkane and alkene product presumably). To eliminate alkene product and acquire pure alkane product, we converted alkene product to epoxides according to the literature. ${ }^{35}$ To a 10 mL dried test tube was added alkene -
alkane crude product (1.0 equiv, 0.2 mmol), NaHCO_{3} (1.3 equiv, $0.26 \mathrm{mmol}, 21.8 \mathrm{mg}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ under N_{2} atmosphere. The test tube was then added m-CPBA (1.2 equiv, $0.24 \mathrm{mmol}, 41.4$ $\mathrm{mg})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction was then stirred for an additional 1 h and then allowed to warm to room temperature. After completion of the reaction (TLC monitoring), the reaction mixture is quenched with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, and the aqueous phase is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers are washed successively with a saturated solution of NaHCO_{3} and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography (eluent: n-hexane) afforded the corresponding alkane product ($3 \mathbf{r w R}$) with 31% yields $(14.3 \mathrm{mg})$ as colorless liquid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 16 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 142.96,128.38,128.19,125.51,35.99,31.92,31.53,29.67,29.63,29.60,29.52$, $29.35,22.69,14.12$. The spectroscopic data of product (3rwR) matched literature values. ${ }^{36}$

Crude alkane and alkene product was obtained according to the procedure in 0.2 mmol scale, the crude product was mixed with $\mathrm{MeOH}(2 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(15 \mathrm{mg})$, and $\mathrm{Pd} / \mathrm{C}(15 \mathrm{mg})$ and the suspension was kept under H_{2} atmosphere for 24 h at room temperature. Filtration through a Celite pad followed by evaporation and chromatography on silica gel (eluent: n-hexane) afforded the products ($\mathbf{3 r w R}$) with 81% yields (37.8 mg) as colorless liquid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.26$ $(\mathrm{m}, 16 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 142.95,128.38,128.19$, $125.51,36.00,31.92,31.53,29.67,29.64,29.60,29.53,29.35,22.69,14.12$.

According to the literature reported ${ }^{37}$, Reactions were carried out on 0.2 mmol scale. A 10 mL reaction vessel equipped with a magnetic stir bar was charged with 12 mg of 5 weight $\%$ of Pd / C (3 $\mathrm{mol} \%$), 39.4 mg of tetrahydroxydiboron (2.2 equiv), and 52 mg of the diketones $\mathbf{3 o d}$ (0.2 mmol) in 2 mL THF, then the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h . The crude mixture was passed through Celite plug rinsing the reaction vial with DCM ; the eluent was removed by rotary evaporation, followed by flash column chromatography (Petroleum ether / Ethyl acetate $=10 / 1$) to afford the product (30dR) with 67% yields $(33.1 \mathrm{mg})$ as colorless liquid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.38(\mathrm{dt}, J=19.5,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.87(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 211.32,157.79,133.66,129.29$, 113.72, 55.19, 41.79, 40.84, 34.16, 32.58, 27.66, 25.46, 22.29. HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 249.1849$, found 249.1842.

Reference

1. L. R. Mills, C. Zhou, E. Fung and S. A. L. Rousseaux, Org. Lett., 2019, 21, 8805-8809.
2. C. Dorval, O. Stetsiuk, S. Gaillard, E. Dubois, C. Gosmini and G. Danoun, Org. Lett., 2022, 24, 2778-2782.
3. J. Yang, Q. Sun and N. Yoshikai, ACS Catal., 2019, 9, 1973-1978.
4. K. Nomura and S. Matsubara, Asian J. Chem., 2010, 5, 147-152.
5. M. Ji, Z. Wu and C. Zhu, Chem. Comm., 2019, 55, 2368-2371.
6. R. M. Rivera, Y. Jang, C. M. Poteat and V. N. G. Lindsay, Org. Lett., 2020, 22, 6510-6515.
7. J. Liu, E. Xu, J.-Y. Jiang, Z. Huang, L.-Y. Zheng and Z.-Q. Liu, Chem. Comm., 2020, 56, 22022205.
8. W. Srimontree, A. Chatupheeraphat, H.-H. Liao and M. Rueping, Organic Letters, 2017, 19, 3091-3094.
9. F.-S. Bie, X.-J. Liu, H. Cao, Y.-J. Shi, T.-L. Zhou, M. Szostak and C.-W. Liu, Org. Lett., 2021, 23, 8098-8103.
10. L. Fang, S. Fan, W. Wu, T. Li and J. Zhu, Chem. Commu., 2021, 57, 7386-7389.
11. P. Gao, M. M. Rahman, A. Zamalloa, J. Feliciano and M. Szostak, J. Org. Chem., 2022, DOI: 10.1021/acs.joc.2c01094.
12. Y. Dong, R. Li, J. Zhou and Z. Sun, Org. Lett., 2021, 23, 6387-6390.
13. H. Yin, D. U. Nielsen, M. K. Johansen, A. T. Lindhardt and T. Skrydstrup, ACS Catal., 2016, 6, 2982-2987.
14. L. Xu, X. Liu, G. R. Alvey, A. Shatskiy, J.-Q. Liu, M. D. Kärkäs and X.-S. Wang, Org. Lett., 2022, 24, 4513-4518.
15. T. Fujimura, S. Aoki and E. Nakamura, J. Org. Chem., 1991, 56, 2809-2821.
16. C. C. Derek, R. S. Joseph, C. Rajiv, C. Rebecca, W. E. John, Y. F. Kristi, L. H. Boyd, H. Yun, J. Steve, D. J. Lee, J. Guixian, A. L. Peter, S. M. Michael, S. M. Eric, J. M. William, O. D. MaryMargaret, M. O. Andrea, J. R. Albert, S. Kristine, W. JunJun, W. Eric and B. Jonathan, Bioorganic Med. Chem. Lett., 2008, 18, 1063-1066.
17. V. Selvamurugan and I. S. Aidhen, Tetrahedron, 2001, 57, 6065-6069.
18. L.-H. Wang and J. Zhao, Eur. J. Org. Chem., 2018, 2018, 4345-4348.
19. L. Debien, B. Quiclet-Sire and S. Z. Zard, Org. Lett., 2011, 13, 5676-5679.
20. R. Ilhyong, I. Masanobu, S. Noboru, Y. Shin-ya, Y. Go-hei and K. Mitsuo, Tetrahedron Lett., 2002, 43, 1257-1259.
21. D. Yu, W.-P. To, G. S. M. Tong, L.-L. Wu, K.-T. Chan, L. Du, D. L. Phillips, Y. Liu and C.-M. Che, Chem. Sci., 2020, 11, 6370-6382.
22. Q. Liu, R.-G. Wang, H.-J. Song, Y.-X. Liu and Q.-M. Wang, Adv. Synth. Catal., 2020, 362, 4391-4396.
23. C. Che, Z.-S. Qian, M.-C. Wu, Y. Zhao and G.-G. Zhu, J. Org. Chem., 2018, 83, 5665-5673.
24. I. Y. Ajibola, L. Ai and B. Li, ChemistrySelect, 2021, 6, 9559-9564.
25. M. Egbertson and S. J. Danishefsky, J. Org. Chem., 1989, 54, 11-12.
26. Y.-X. Zhang, X.-T. Li, L.-M. Xu, X.-M. Xie, Y. Lu and Z.-G. Zhang, Org. Lett., 2022, 24, 75127516.
27. S. Kortet, A. Claraz and P. M. Pihko, Org. Lett., 2020, 22, 3010-3013.
28. T. Amaya, Y. Maegawa, T. Masuda, Y. Osafune and T. Hirao, J. Am. Chem. Soc., 2015, 137, 10072-10075.
29. F. Behler, F. Habecker, W. Saak, T. Klüner and J. Christoffers, Eur. J. Org. Chem., 2011, 2011, 4231-4240.
30. Y. Luo, Q. Wei, L.-K. Yang, Y.-Q. Zhou, W.-D. Cao, Z.-S. Su, X.-H. Liu and X.-M. Feng, $A C S$ Catal., 2022, 12, 12984-12992.
31. K. Tanaka, T. Shoji and M. Hirano, Eur. J. Org. Chem., 2007, 2007, 2687-2699.
32. J. C. Lorenz, J. Long, Z.-Q. Yang, S. Xue, Y.-N. Xie and Y.-A. Shi, J. Org. Chem., 2004, 69, 327-334.
33. T. Avullala, P. Asgari, Y. Hua, A. Bokka, S. G. Ridlen, K. Yum, H. V. R. Dias and J. Jeon, $A C S$ Catal., 2019, 9, 402-408.
34. S. Chandrasekhar, C. R. Reddy and B. N. Babu, J. Org. Chem., 2002, 67, 9080-9082.
35. W. Liu, T. Leischner, W. Li, K. Junge and M. Beller, Angew. Chem. Int. Ed., 2020, 59, 1132111324.
36. F. Zhou, J. Zhu, Y. Zhang and S. Zhu, Angew. Chem. Int. Ed., 2018, 57, 4058-4062.
37. W. C. Spaller, J. Q. Lu and B. J. Stokes, Adv. Synth. Catal. , 2022, 364, 2571-2575.

NMR spectra

	忒	ल్ల్న	욱		区－0
	ल్ల్ర్ֹల్ర¢	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\text { m}}{\square}$		
\bigcirc	－¢	F\％	\bigcirc	－	个－

$\stackrel{\bar{N}}{\stackrel{\rightharpoonup}{0}}$
$\stackrel{\sim}{\sim}$

C

		号号尔	®	年き
产栜	\％id \％M M	天	\％	（2）

 $\stackrel{\circ}{0}$
$\stackrel{\circ}{\circ}$
i

30	20	10	0	－10	－20	－30	－40	－50	${ }_{-60}$	－70	－80	－90	－100	－110	－120	－130	-140	－150	－160

230	220	210	200	190	180	170	160	150	140	130	120	110	110
		11	1000										

$11 \mid$

免产	寺			\％	䦙宪	
$\stackrel{\square}{\square}$	$\stackrel{\text { \％}}{\square}$		天	\％		

		デ		－

N~NN八NN***00000
N~NN八NN***00000

$\begin{aligned} & \text { No } \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{N} \end{aligned}$	$\begin{aligned} & \stackrel{n}{n} \\ & \stackrel{\sim}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{g}{7} \\ & \underset{\sim}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 융 } \\ & \stackrel{y}{c} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{6}^{(} \\ & \stackrel{\Gamma}{\Gamma} \end{aligned}$		¢\%	

Б

$\stackrel{\stackrel{\rightharpoonup}{N}}{\underset{\sim}{\top}}$

| ∞ |
| :--- | :--- | :--- |

$3 q d$

$240 \begin{array}{lllllllllllll}130 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & & & & (\mathrm{ppa})\end{array}$

$\stackrel{-}{-\infty}$	子	N Noio	Nึగ్గో
¢		NON	ल్ల゙へ

$\underbrace{10.0}_{100}$

®	\％		欯亏웅	
－	$\stackrel{*}{\top}$		¢	等우쌔․

3ar-2

220	210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20	10

今，
$\stackrel{\circ}{\circ}$

䍒		发亏发
ヘั่		N

3au

$\stackrel{\text { ¢ }}{\ddagger}$			¢్వ®
$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\top}}$		天	

230	220	210	200	190	180	170	160	150	140	130			100	90	80	70	60	50	40	30	20	10	0	

シすす。

－		发吕发
		N－9\％

[^1]จig

두우우웅

等

240	230	220	210	200	190	180	170	160	150	140	130	120	11
$f 1$	(pman)												

-

NNNNNNNNNNN

3rwR

$\underset{\underset{J}{J}}{\stackrel{N}{j}}$ $\stackrel{F}{\dot{J}}$
3 rwR

[^0]: School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
 *Corresponding Author. E-mail: jinz@nju.edu.cn.

[^1]:

