Supporting Information

Reduction of esters to alcohols and iodides using aminodiborane $(\mu - NH_2B_2H_5)$: Scope and mechanistic investigations

Abhishek Nair,^a Vikas Tiwari,^a Sambhav Rath,^a Parul Saini,^a

Ashutosh Verma,^a and Anil J. Elias*^a

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

E-mail: <u>eliasanil@gmail.com</u>

Contents

A.	General Information	3
B.	Optimization of reaction conditions	3-5
C.	General procedure for the reactions	5-6
D.	Substrate Scope	6-7
E.	¹¹ B NMR Spectra	8
F.	Deuterium Incorporation Studies	9
G.	Control Experiments	10-13
H.	All possible mechanistic pathways	14
I.	Formation of product after hydrolysis and iodination	15
J.	DFT Energy Profile	15
K.	¹¹ B NMR comparison study with different amounts of iodine	16
L.	Identification of products	16-25
M.	Representative NMR Spectra	26-62
N.	Computational details	62-76
0.	References	76

A. General Information

All the reactions and manipulations were performed under atmospheric conditions except for the synthesis of NH₂B₂H₅.THF (using the protocol of Shore & co-workers).¹ Schlenk or glovebox techniques [GP(Concept)-T2, Jacomex] were used for the synthesis of NH₂B₂H₅.THF. ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra were recorded on a Bruker Ascend 500 NMR spectrometer. All chemical shifts (δ) are reported in ppm. All chemical shifts are related to residual solvent peaks [CDCl₃: 7.26 (¹H), 77.16 (¹³C)]. All ester derivatives were purchased from commercial sources. Ammonia-borane was synthesised by the literature procedure.² Mass Spectra were recorded on a Bruker Micro-TOF QII quadrupole time-of-flight (Q-TOF) mass spectrometer.

B. Optimization of reaction conditions:

Table S1: Optimization of promoter and temperature for reduction of ethyl benzoate

$ \underbrace{I_2(X \text{ mol}\%), AB(6 \text{ eq.})}_{OH} $							
$\begin{array}{c c} & & \\ \hline \\ 1a & \\ \end{array} \end{array} \qquad \begin{array}{c} DCE (2 \text{ mL}), T \ ^{\circ}C, 24h \\ & \\ 2a \end{array} $							
S. No.	Promoter (X mol%)	Temperature (°C)	(%) of Yield ^a				
1	-	60	5				
2	KI (30 mol%)	60	0				
3	Br ₂ (30 mol%)	60	55				
4	I ₂ (30 mol%)	60	62				
5	I ₂ (50 mol%)	60	72				
6	I ₂ (50 mol%)	80	95				
7	I ₂ (30 mol%)	80	83				
8	I ₂ (50 mol%)	100	94				

^a Conditions: 1a (0.37 mmol), I₂ (as indicated), AB (6 eq.), DCE as solvent, 24h

	O O O I ₂ (50 mol%), A DCE (2 mL), 80 1a	ОН 2а	
S. No.	Ammonia-borane (eq.)	Time	Percentage Yield (%)
1.	6	24h	95
2.	5	24h	93
3.	4	24h	88
4	3	24h	76
5.	2	24h	70
6.	5	20h	70

Table S2: Effect of amount of ammonia-borane and time for reduction of esters

 Table S3: Effect of solvent for reduction of ethyl benzoate

	I_2 (50 mol%),	I ₂ (50 mol%) , AB (5 eq)		
	solvent (2 mL),	80 °C, 24h		
		2a		
S. No.	Solvent	Percentage Yield (%)		
1.	H ₂ O	0		
2.	CH ₃ CN - H ₂ O	0		
3.	CH ₃ CN	75		
4.	toluene	96		
5.	DCE	94		
6.	THF	62		

 Table S4: Effect of temperature, amount of iodine and ammonia borane for the reduction

 of methyl 4-bromobenzoate

ſ	~ 0	I ₂ (x eq.) , AB (y	r eq)	Y I	
Br 1a		toluene (2 mL), T °C, 24h Br 2a			
S. No.	I_2 (x eq.)	NH ₃ BH ₃ (y eq.)	Temperature (°C)	(%) of Yield ^a	
1	1	5	80	51	
2	1.5	5	80	72	
3	2	5	80	96	
4	2	4	80	62	
5	2	3	80	72	
6	2	5	60	95	

^a Conditions: 1a (0.37 mmol), I₂ (as indicated), AB (as indicated), toluene as solvent, 24h

C. General procedure for the reaction

- 1. For the reduction of esters to alcohols: A 10 mL T-23 pressure tube was charged with a magnetic bead, Ethylbenzoate (100mg, 0.67mmol), iodine (85mg, 50 mol%), ammonia-borane (92mg, 3.35 mmol) and 2 mL toluene. This reaction was carried out at 80°C for 24 h. After the reaction, 4-5 mL water was added to the reaction mixture and stirred for 5 mins. Ethyl acetate and water were added to the reaction mixture. Ethyl acetate layer was concentrated using a rotavapor. After evaporation, the crude mixture was purified by silica gel column chromatography using EtOAc and hexane (20:80) as eluent. The product was characterized by ¹H NMR and ¹³C NMR.
- 2. For conversion of esters to iodides: A 10 mL T-23 pressure tube was charged with a magnetic bead, methyl 4-bromobenzoate (100mg, 0.47mmol), iodine (236mg, 2 eq.), ammonia-borane (72mg, 2.33 mmol) and 2 mL toluene. This reaction was carried out at 80°C for 24 h. After the reaction, ethyl acetate and water were added to the reaction

mixture. Ethyl acetate layer was concentrated using a rotavapor. After evaporation, the crude mixture was purified by silica gel column chromatography using hexane as eluent The product was characterized by ¹H NMR and ¹³C NMR.

3. For the reduction of carbonates and anhydrides to alcohols: A 10 mL T-23 pressure tube was charged with a magnetic bead, carbonate or anhydride (100mg, 1 eq.), iodine (1 eq.), ammonia-borane (10 eq.) and 2 mL toluene. This reaction was carried out at 80°C for 24 h. After the reaction, 4-5 mL water was added to the reaction mixture and stirred for 5 mins. Ethyl acetate and water were added to the reaction mixture. Ethyl acetate layer was concentrated using a rotavapor. After evaporation, the crude mixture was purified by silica gel column chromatography using EtOAc and hexane as eluent. The product was characterized by ¹H NMR and ¹³C NMR.

D. Substrate Scope:

Unsubstituted aromatic esters were reduced to the corresponding benzyl alcohols with yields up to 86% (2a-2c). The reduction of aromatic esters to alcohols, especially those having electron-donating and electron-withdrawing groups at the ortho, meta, and para positions, gave more than 60% yield of the corresponding alcohols (2d-2m). Methyl 4-acetylbenzoate underwent the reduction of both ketone and ester functional groups, giving the corresponding diol compound in good yield (2n). When 3-methylisobenzofuran-1-one was employed, 30% of the diol product (2o) was obtained. Diethyl terephthalate was reduced to 1,4-benzenedimethanol (2p) with 41% yield. The reduction of methyl 2-phenylacetate was also carried out, resulting in 58% yield of 2-phenylethan-1-ol (2q). Ethyl thiophene-3-carboxylate resulted in 90% yield of 3-thiophenemethanol (2s), while 0% yield of 2t was observed with ethyl isonicotinate. Aliphatic esters such as dimethyl succinate and ethyl levulinate gave moderate to low yields of corresponding alcohols, 2u & 13, respectively (see manuscript, Scheme 4).

To determine the substrate scope of benzyl and alkyl halides, ester substrates were reacted resulting in good to moderate yields of iodides (3a-3j) (see manuscript, Scheme 5). Diphenyl carbonate (4a) and bis(4-nitrophenyl) carbonate (4b) resulted in good yields of phenol compounds (Scheme S1A). Phthalic anhydride (6a) and naphthoic anhydride (6b) were reduced to diol compounds with moderate yields (Scheme S1B).

Scheme S1 : (A) Substrate scope for the reduction of carbonates to alcohols. Conditions: 4 (0.37 mmol), I_2 (1 eq.), AB (10 eq.), 80 °C, toluene as solvent, 24h. (B) Substrate scope for the reduction of anhydrides to alcohols. Conditions: 6 (0.37 mmol), I_2 (1 eq.), AB (10 eq.), 80 °C, toluene as solvent, 24h.

E. ¹¹B NMR Spectra:

Figure S1. ¹¹B NMR spectra of diisopropylaminoborane (in CDCl₃) (prepared by protocol reported by Ramachandran and co-workers).

Figure S2. ¹¹B NMR spectra of dimethylaminoborane (in CDCl₃) (prepared by protocol reported by Ramachandran and co-workers).

F. Deuterium Incorporation Studies

Scheme S2: Reaction of NH₃BD₃ and iodine with ethylbenzoate.

Figure S3: ¹H NMR comparison of deuterated mixture of benzylalcohol and pure benzylalcohol.

G. Control Experiments

Scheme S3: Control studies for the reduction of ethyl benzoate to benzyl alcohol. ^aBorazine was prepared by reacting 1 eq. I₂ and 4 eq. NH₃BH₃ at 60°C. ^bIsolated iPr₂NBH₂ and NMe₂BH₂ was synthesised by employing protocol of Ramachandran and co-workers. ^cAminodiborane was synthesised by employing protocol of Shore and co-workers.

Scheme S4: Control studies for the reductive iodination of 4-bromo benzyl alcohol

Scheme S5: Control studies for the determination of Int_6.

Figure S4: ¹H NMR study comparison of reaction mixture without any hydrolysis using NH₃BH₃.

Figure S5: ¹¹B NMR of reaction mixture using ammonia borane.

Figure S6: ¹H NMR study comparison of reaction mixture without any hydrolysis using NHMe₂BH₃.

Figure S7: ¹¹B NMR of reaction mixture using dimethylamineborane.

H. All the possible mechanistic pathways

Here we have compared various possible pathways of ester reduction in the presence of iodine (I₂) and ammonia borane (AB). AB reacts with I₂ to give exclusively aminodiborane (ADB). Other possible active reagents which may be formed during the reaction are NH₂BH₂ and NH₃BH₂I. We have not considered NH₃BH₂I, due to its high reactivity with AB giving ADB (NH₂B₂H₅), which has been reported previously.³ Both ADB and NH₂BH₂ reacts with ester to give the Int_2 (Figure S8A). The highest ΔG^{\ddagger} for reaction of ester with ADB is lower (33.4 Kcal/mol) compared with NH₂BH₂ (35.9 Kcal/mol), suggesting that pathway involving ADB is more favourable. Further Int_2 reacts via various pathways to give the corresponding products (Figure S8B). The most favourable pathway having lowest energy barriers is shown in green coloured dotted lines.

Figure S8: A) Reaction of ester with ADB and NH₂BH₂ to form Int_2. B) Various pathways for the reduction of esters in the presence of I_2/NH_3BH_3 using DFT calculations. The Gibbs free energy (ΔG) values are indicated in Kcal/mol. The most favourable pathway is shown in green colour.

I. Formation of product after hydrolysis and iodination

Int_6 undergoes hydrolysis in the presence of water, leading to the formation of benzyl alcohols as products. The reaction is thermodynamically favorable, as indicated by a ΔG_r value of -0.06 kcal/mol. This suggests that both the reactant and the product have similar stabilities. Experimental observations have also confirmed the difficulty and time-consuming nature of the hydrolysis of Int_6.

Alternatively, in the presence of an excess of iodine, benzyl iodide is formed as the product. The excess iodide reacts with ammonia borane (AB) to generate hydrogen iodide (HI). Subsequently, HI reacts with Int_6 to yield benzyl iodide. This reaction exhibits a significantly more negative ΔG_r value of -9.2 kcal/mol, indicating that the equilibrium is strongly shifted towards the formation of the product.

In both cases, the byproduct generated is a borate species.

Scheme S6: Gibbs free energy of reaction (ΔG_r) for hydrolysis and iodination of Int_6 to give benzyl alcohol and benzyl iodide respectively.

J. DFT calculated energy profile for the most favourable pathway

Figure S9 DFT calculations on reduction of esters in presence of ADB. Level of theory: M06-2X/6– 311++G**(SMD=Toluene)//M06-2X/6-31+G*

K.¹¹B NMR comparison study with different amounts of iodine

Figure S10. Comparison of ¹¹B NMR spectra of reaction of ammonia borane with different amounts of iodine.

L. Identification of products

Compound 2a

2a; (69mg, 96%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.36-7.30 (5H, m), 4.65 (2H, s), 2.41 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 140.92, 128.61, 127.68, 127.09, 65.24

Compound 2d

2d; (73mg, 88%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.29 (2H, d, J= 8.5 Hz), 6.89 (2H, d, J= 8.5 Hz), 4.61 (2H, s), 3.80 (3H, s), 1.70 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 159.34, 133.24, 128.78, 114.09, 65.17, 55.43

Compound 2e

ОН M

2e; (71mg, 95%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.25 (2H, d, J= 8.0 Hz), 7.18 (2H, d, J= 8.0 Hz), 4.61 (2H, s), 2.37 (3H, s), 2.35 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 138.00, 137.37, 129.27, 127.19, 65.16, 21.22

Compound 2f

2f; (51mg, 60%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 8.17 (2H, d, J= 8.0 Hz), 7.51 (2H, d, J= 8.0 Hz), 4.81 (2H, d, J= 4.5 Hz), 2.33 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 148.37, 147.30, 127.09, 123.80, 64.04.

Compound **2g**

2g; (62mg, 82%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.308 (2H, t, J= 8.0 Hz, 7.03 (2H, t, J= 8.0 Hz), 4.62, (2H, s), 2.09 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 162.40 (d, J= 243.75 Hz), 136.7, 128.63 (d, J=8.12 Hz), 115.47 (d, J=21.5 Hz), 64.66

Compound **2h**

ОН C

2h; (71mg, 92%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.31 (2H, d, J=8.5 Hz), 7.26 (2H, d, J=8.5 Hz), 4.63 (2H, s), 2.20 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 139.35, 133.42, 128.75, 128.39, 64.56

Compound 2i

ОН

2i; (54mg, 62%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.46 (2H, d, J=8.0 Hz), 7.24 (2H, d, J= 8.0 Hz), 4.61 (2H, s), 2.09 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 139.85, 131.71, 128.69, 121.53, 64.60.

Compound 2j

2j; (71mg, 84%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.62 (2H, d, J= 8.25 Hz), 7.12 (2H, d, J= 8.25 Hz), 4.38 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 140.53, 137.69, 128.92, 93.09, 64.70.

Compound 2k

2k; (61mg, 75%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.60 (2H, d, J= 8.0 Hz), 7.45 (2H, d, J= 8.0 Hz), 4.7 (2H, s), 2.16 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 144.85, 129.87 (q, J= 32.5 Hz), 126.94, 124.28 (q, J=127.2 Hz), 64.51.

¹⁹F NMR (CDCl₃, 470.6, ppm) : -62.5.

Compound **2**

2l; (84mg, 96%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.48 (1H, s), 7.39 (1H, d, J= 7.5 Hz), 7.23-7.18 (2H, m), 4.59 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 143.13, 130.65, 130.17, 129.92, 125.40, 122.66, 64.32.

Compound 2m

2m; (42mg, 50%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 8.07 (1H, d, J=8.5 Hz), 7.32 (1H, d, J= 8.5 Hz), 7.65 (1H, t, J= 7.5 Hz), 7.45 (1H, t, J= 7.5 Hz), 4.95 (2H, s), 2.84 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 147.65, 136.97, 134.22, 129.92, 128.53, 125.07, 62.51.

Compound 2n

2n; (55mg, 65%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.31-7.26 (4H, m), 4.83 (1H, q, J= 7.5 Hz), 4.59 (2H, s), 2.25 (1H, s, br), 1.45 (3H, t, J= 7.5 Hz)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 145.26, 140.13, 127.22, 125.66, 70.15, 64.91, 25.24

Compound 20

20; (30mg, 30%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.46 (1H, d, J= 7.5Hz), 7.34 (1H, t. J= 7.5 Hz), 7.30-7.27 (2H, m), 5.12 (1H, q, J=6.5 Hz), 4.75 (1H, d, J= 12.5 Hz), 4.59 (1H, d, J= 12.5 Hz), 3.42 (2H, s, br), 1.55 (3H, d, J=6.5 Hz)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 143.41, 138.07, 129.96, 128.67, 127.95, 125.95, 67.05, 63.72, 22.88

Compound **2p**

2p; (29mg, 41%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.29 (4H, s), 4.60 (4H, s), 3.96 (2H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 139.40, 129.73, 128.57, 63.95.

Compound 2q

2q; (47mg, 58%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.34 (2H, t, J= 7.5 Hz), 7.25 (3H, t, J= 7.5 Hz), 3.83 (2H, t, J=6.5 Hz), 2.868 (2H, t, J= 6.5 Hz), 2.36 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 138.62, 129.06, 128.55, 126.42, 63.58, 39.17.

Compound 2r

2r; (76mg, 90%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.85-7.76 (4H, m), 7.50-7.43 (3H, m), 4.79 (2H, s), 2.51 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 133.41, 132.96, 128.34, 127.96, 127.77, 126.22, 125.94, 125.47, 125.24, 65.34

Compound 2s

2s; (65mg, 90%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.31 (1H, q, J= 2.5 Hz), 7.21 (1H, s), 7.08 (1H, d, J=5.0 Hz), 4.67 (2H, s), 2.12 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 142.33, 126.89, 126.39, 122.08, 60.74.

Compound **2u**

HO, ОН

2u; (14mg, 21%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 3.68 (4H, t, J= 6.0 Hz), 2.32 (1H, s, br), 1.68 (4H, qu, J= 3.0 Hz).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 62.83, 30.00.

Compound **3a**

3a (132mg, 96%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.44 (2H, d, J=8Hz), 7.27 (2H, d, J=8Hz), 4.42 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 138.49, 132.09, 130.47, 121.85, 4.29.

Compound 3b

3b; (76mg, 61%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.20 (2H, d, J= 8 Hz), 7.12 (2H, d, J= 8 Hz), 4.38 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 139.15, 138.10, 130.67, 93.44, 4.37.

Compound **3c**

3c; (132mg, 96%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.52 (1H, s), 7.37 (1H, d, J=8 Hz), 7.30 (1H, d, J=8 Hz), 7.16 (1H, t, J= 8 Hz), 4.38 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 141.59, 131.82, 131.10, 130.46, 127.52, 122.64, 3.69.

Compound 3d

3d; (146mg, 65%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 4.15 (1H, q, J=6.5Hz), 3.19 (2H, q, J= 6.5 Hz), 2.04(1H, qu, J= 3.0 Hz), 1.94-1.87 (5H, m), 1.76 (1H, qu, J=4.5 Hz).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 43.27, 33.45, 29.08, 28.18, 5.47.

Compound **3e**

3e; (83mg, 60%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.29 (2H, t, J=7.5Hz), 7.22-7.05 (3H, m), 3.18 (2H, t, J= 7 Hz), 2.74 (2H, t, J= 7Hz), 2.17-2.11(2H, m).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 140.56, 128.69, 128.64, 126.32, 36.37, 35.04, 6.41.

Compound 3g

Br

3g; (54mg, 35%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 3.19 (2H, t, J=5.5Hz), 1.95 (2H, t, J=3Hz).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 33.99, 4.92.

Compound 3h

3e; (111mg, 96%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.47 (2H, d, J=8.0 Hz), 7.64 (2H, d, J=8.0 Hz), 4.43 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 136.90, 132.09, 130.79, 122.58, 32.51.

Compound 3i

3i; (88mg, 81%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.55 (1H, s), 7.43 (1H, d, J= 8 Hz), 7.31 (1H, d, J= 8Hz), 7.23-7.19 (1H, m), 4.42 (2H, s).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 140.01, 132.17, 131.63, 130.44, 127.75, 122.70, 32.12.

Compound **3**j

Br

3j; (87mg, 55%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 4.16-4.10 (1H, m), 3.44 (1H, t, J= 6.5 Hz), 2.14-2.09(1H, m), 2.02-1.96 (3H, m), 1.73 (3H, d, J=6.5 Hz).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 50.32, 39.49, 32.96, 31.00, 26.71.

Compound 5a

OH

5a; (79mg, 90%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.25 (2H, t, J= 7.5 Hz), 6.96-6.93 (1H, m), 6.85 (2H, d, J= 7.5 Hz), 5.21 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 155.53, 129.81, 120.93, 115.45.

Compound **5b**

5b; (75mg, 82%) ¹H NMR (CDCl₃, 500MHz, ppm): 8.17 (2H, d, J=8.5Hz), 6.93 (2H, d, J = 8.5Hz), 5.87 (1H, s, br).

¹³C NMR (CDCl₃, 125MHz, ppm): 161.48. 141.83, 126.45, 115.87.

Compound 7a

7a; (43mg, 46%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.29 (4H, s), 4.60 (4H, s), 3.96 (2H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 139.40, 129.73, 128.57, 63.95.

Compound 7b

7b; (58mg, 61%) ¹H NMR (CDCl₃, 500MHz, ppm): 7.51(2H, d, J=8.5Hz), 7.45(2H, m), 7.18(2H, d, J=8.5Hz).

¹³C NMR (CDCl₃, 125MHz, ppm): 132.99, 132.71, 126.91, 126.49, 125.75, 120.09, 69.51.

Compound 9

9; (75mg, 91%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.45 (2H, d, J= 5.5 Hz), 7.39 (2H, d, J= 5.5Hz), 3.68 (2H, t, J= 6.5 Hz), 2.77 (2H, t, J= 7.5 Hz), 1.90 (2H, qu, J= 6.5 Hz), 1.70 (1H, s, br)

¹³C-NMR (CDCl₃, 125 MHz, ppm): 142.86, 131.99, 130.80 (q, J=127.5Hz), 128.91, 125.22 (q, J=15 Hz), 124.27 (q, J=1082.5 Hz), 122.98 (q, J=15Hz), 62.00, 34.06, 31.96

¹⁹F NMR (CDCl₃, 470.6, ppm) : -62.57.

Compound 11

11; (61mg, 81%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 7.93 (2H, s), 7.61 (2H, d, J= 8.0 Hz), 7.31 (2H, d, J= 8.0 Hz), 7.15 (2H, t, J= 7.5 Hz), 7.04 (2H, t, J= 7.5 Hz), 6.98 (2H, s), 4.69 (1H, t, J= 7.5 Hz), 3.73 (2H, t, J= 6.5Hz), 2.49 (2H, q, J= 6.5 Hz), 1.64 (1H, s, br).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 136.73, 127.05, 122.01, 121.67, 119.76, 119.73, 119.27, 111.27, 61.87, 38.49, 30.70.

Compound 13

ОН ÓН

13; (51mg, 70%) ¹H-NMR (CDCl₃, 500 MHz, ppm): 3.81 (2H, s), 3.63 (2H, d, J= 19Hz), 3.15 (2H, s, br), 1.67-1.58 (2H, m), 1.49 (2H, t, J= 6.75 Hz), 1.18 (3H, d, J= 6.75 Hz).

¹³C-NMR (CDCl₃, 125 MHz, ppm): 67.95, 62.82, 36.30, 29.16, 23.58.

M. Representative NMR Spectra:

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2a

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2d

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2e

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2f

¹H-NMR, ¹³C{¹H} & ¹⁹F{¹H} (in CDCl₃) spectra of compound 2g

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl_3) spectra of compound 2h

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl₃) spectra of compound 2i

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2j

¹H-NMR, ¹³C{¹H} & ¹⁹F{¹H} (in CDCl₃) spectra of compound 2k

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl₃) spectra of compound **21**

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2m

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2n

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2o

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl_3) spectra of compound 2p

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2q

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2r

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2s

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 2u

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3a

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound $\mathbf{3b}$

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3c

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3d

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3e

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl_3) spectra of compound 3f and $C_2\text{H}_5\text{I}$

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3g

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl₃) spectra of compound 3h

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3i

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 3j

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 5a

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl₃) spectra of compound **5b**

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 7a

 $^1\text{H-NMR}$ & $^{13}\text{C}\{^1\text{H}\}$ (in CDCl₃) spectra of compound 7b

¹H-NMR, ¹³C{¹H} & ¹⁹F{¹H} (in CDCl₃) spectra of compound 9

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 11

¹H-NMR & ¹³C{¹H} (in CDCl₃) spectra of compound 13

N. Computational Studies

All density functional theory (DFT) calculations were carried out using Gaussian 16 Revision C.01.4 software⁴ package. The geometry optimization of all the stationary points was performed in the gas phase using the M06-2X⁵ functional. The iodine (I) atoms were described using a Stuttgart-Dresden Effective Core Potential (SDD)⁶ basis set, while a Pople-type basis set 6- $31+g(d)^7$ was used for all other atoms.

To confirm the nature of the stationary points, the harmonic vibrational frequencies of the normal modes were computed at the same level of theory. The vibrational frequency analysis revealed that all the intermediates corresponded to minima, exhibiting no imaginary frequencies. On the other hand, the transition states were characterized by exactly one imaginary frequency, confirming their nature as transition states. Additionally, the Intrinsic Reaction Coordinates (IRC)⁸ were followed to validate the energy profiles connecting the key transition structures to the associated local minima.

To obtain more accurate single-point energies, the calculations were performed using a SDD basis set for iodine (I) and a higher-level basis set $6-311g^{++}(d, p)$ for the remaining atoms. This basis set includes double polarization and diffusion functions to capture electron correlation effects. In order to account for the influence of the solvent, a continuum solvation model known as the Solvent Model based on Density (SMD)⁹ was employed. Toluene was chosen as the solvent, and

the continuous quantum mechanical charge density of the solute was used as the basis for this model. The three-dimensional structures of the molecules were visualized using CYLview10 software¹⁰.

Coordinates for optimised structures of the ADB mechanism

Ester

.

С	1.23452200	0.38716900	0.00000100
0	1.72803800	1.49170700	-0.00000600
0	1.96700000	-0.73972100	0.00001000
С	-0.23272500	0.11954900	-0.00000100
С	-0.74823800	-1.17929600	-0.00001000
С	-1.09410100	1.21948900	0.00000400
С	-2.12727200	-1.37319400	-0.00001400
Н	-0.06992500	-2.02580700	-0.00001400
С	-2.47108500	1.02092300	0.00000100
Н	-0.66696700	2.21766700	0.00000900
С	-2.98780000	-0.27541200	-0.0000800
Н	-2.53112900	-2.38115700	-0.00002200
Н	-3.14185100	1.87475700	0.00000500
Н	-4.06297600	-0.43025400	-0.00001100
С	3.38101900	-0.54423900	0.00001700
Н	3.81515200	-1.54281900	0.00006600
Н	3.68574600	0.01085500	-0.89003900
Н	3.68572900	0.01093500	0.89002800

ADB

N	0.00001600	0.78926300	0.00002300
Н	0.00000700	1.36278100	0.83526300
Н	0.00001600	1.36283400	-0.83518100
В	0.95709400	-0.44165200	-0.00000800
Н	-0.00003200	-1.38015900	-0.00010400
Н	1.52053800	-0.61343500	-1.03848300
В	-0.95710300	-0.44164100	-0.00002100

Η	-1.52048100	-0.61348200	1.03848100
Н	1.52043600	-0.61353700	1.03850500
Н	-1.52055000	-0.61337900	-1.03850200

$\mathbf{NH}_{2}\mathbf{BH}_{2}$

В	0.00000000	0.00000000	-0.78168300
Ν	0.00000000	0.00000000	0.61303100
Н	0.00000000	-0.84465000	1.16819100
Н	0.00000000	1.04528500	-1.35959100
Н	0.00000000	0.84465000	1.16819100
Н	0.00000000	-1.04528500	-1.35959100

С	-0.02775800	0.72644600	-0.07554600
0	1.00893200	0.08600800	-0.20684200
0	-0.07732700	2.04370700	0.02649400
В	2.99216900	0.11770900	0.20520300
Н	3.33253400	0.85722700	-0.66062900
Ν	3.24794500	-1.33514600	-0.02761000
Н	2.81723700	-1.93871300	0.66822300
Н	2.88239500	0.46154300	1.33930700
Н	2.97470400	-1.66613600	-0.94940100
В	4.91195200	-1.43250900	0.09701700
Н	5.23489100	-0.53611100	0.85465000
Н	5.15185800	-2.52856500	0.55199200
Н	5.32756200	-1.25808400	-1.02638800
С	-1.36244500	0.07678100	-0.02880800
С	-1.42251300	-1.31745900	-0.10473000
С	-2.53473700	0.82986500	0.08824600
С	-2.65528600	-1.95923400	-0.06289000
Н	-0.50017200	-1.88196100	-0.19693800
С	-3.76554700	0.18208600	0.13019700
Н	-2.47684000	1.91130600	0.14616500
С	-3.82613100	-1.20946700	0.05473900

Н	-2.70455100	-3.04194700	-0.12160800
Н	-4.67812600	0.76270500	0.22153400
Н	-4.78867100	-1.71128600	0.08778100
С	1.15789900	2.76895400	-0.08004300
Н	0.87549600	3.81884700	-0.03620000
Н	1.81818300	2.51032800	0.74812000
Н	1.64355100	2.53531700	-1.02864900

С	0.04481900	0.70575400	-0.09385200
0	1.04483400	0.02441700	-0.36583400
0	0.05118800	1.99113700	0.14534400
В	2.66570000	0.12683800	0.03244400
Н	3.16233800	0.82260300	-0.80641600
Ν	3.12587000	-1.32510400	-0.06483400
Н	2.59708400	-1.93819400	0.55454500
Н	2.64921200	0.53020400	1.16415500
Н	3.01949600	-1.69570400	-1.00855800
В	4.71745800	-1.49794100	0.34381100
Н	4.80963300	-1.12577300	1.49585500
Н	4.95839100	-2.68377500	0.21416000
Н	5.34209800	-0.80606100	-0.43378300
С	-1.29186100	0.07899700	-0.03314800
С	-1.38671800	-1.31024000	-0.16711800
С	-2.44077300	0.85487300	0.15673400
С	-2.63323000	-1.92260700	-0.11199100
Н	-0.48397500	-1.89401700	-0.31444200
С	-3.68405400	0.23479900	0.21250900
Н	-2.35416100	1.93101400	0.25973400
С	-3.78002900	-1.15069900	0.07815400
Н	-2.71150200	-3.00007400	-0.21503200
Н	-4.57866400	0.83123800	0.35992600
Н	-4.75293200	-1.63110800	0.12203000
С	1.22449900	2.79121400	-0.12350000

Н	0.86655800	3.81809300	-0.08999800
Н	1.98054400	2.61238300	0.63797100
Н	1.61491000	2.54342300	-1.11038500

С	-0.90008700	-0.65146200	-0.25310400
0	-1.56885700	0.01584200	-1.15855900
0	-1.37464400	-1.78797300	0.22965400
В	-1.87180900	1.02179700	-0.03317300
Н	-1.37367800	0.37565800	0.94883300
С	0.57646600	-0.52559900	-0.15280500
С	1.26978400	0.10579200	-1.18575000
С	1.25249900	-1.02187300	0.96364300
С	2.65274900	0.24553600	-1.09812000
Н	0.72581500	0.46246100	-2.05596800
С	2.63091800	-0.87203000	1.04835800
Н	0.69336200	-1.49706800	1.76374300
С	3.32988800	-0.23727900	0.01974400
Н	3.19921400	0.73230200	-1.89971900
Н	3.16152800	-1.23900100	1.92105800
Н	4.40651000	-0.11661300	0.09313200
С	-2.79695700	-1.97314000	0.19825000
Н	-2.95777800	-3.00913600	0.48877200
Н	-3.25790600	-1.29498500	0.92166100
Н	-3.18437500	-1.77945700	-0.80237700
Ν	-1.07708600	2.32206100	-0.16065400
Н	-1.65295500	3.04372300	-0.59427700
Н	-0.25649900	2.21494900	-0.75769700
В	-0.55322700	2.88295500	1.30011300
Н	-1.53162900	2.90532400	2.01929400
Н	0.27719600	2.06913000	1.66371400
Н	-0.08281800	3.98409100	1.09905400
Н	-3.04476200	1.12780500	0.17059900

С	0.39304900	0.45341900	0.47805900
0	1.23721600	-0.63699300	0.54317300
0	0.84878700	1.26452100	-0.60332200
В	2.59849900	-0.35827700	0.84667700
Н	0.45589300	1.06106900	1.40108500
С	0.15083100	2.48527600	-0.72948900
Н	0.66050600	3.06446700	-1.50104500
Н	-0.89253800	2.32188600	-1.02590200
Н	0.16954500	3.04836400	0.21507400
Ν	3.46520400	-0.07031400	-0.41917800
Н	4.15965800	0.66423300	-0.34797600
Н	2.88083500	0.31036200	1.80243300
Н	2.88672600	0.04783200	-1.24661700
В	3.87851900	-1.51127700	-0.00179900
Н	4.98412100	-1.59108800	0.44263700
Н	3.13006700	-1.56524600	1.11149500
Н	3.42943100	-2.37021900	-0.69668000
С	-1.03017300	-0.00858500	0.25927400
С	-2.06490600	0.46849600	1.05940900
С	-1.31259500	-0.89565300	-0.78222700
С	-3.38041400	0.06251000	0.82710200
Н	-1.84309400	1.15774900	1.87196800
С	-2.62220600	-1.30250900	-1.01519400
Н	-0.49587400	-1.26727500	-1.39483600
С	-3.65900700	-0.82273300	-0.21065900
Н	-4.18272900	0.43566700	1.45693100
Н	-2.83869300	-1.99678100	-1.82204000
Н	-4.68086300	-1.14260500	-0.39312500

В	3.86958000	0.72419200	-0.29659500
Ν	3.43857000	-0.90052500	-0.34526300
Н	4.17815800	-1.41336600	0.13164700

Н	4.98446100	0.75656600	-0.76545400
Н	3.46728700	-1.14339300	-1.33652000
В	2.07760400	-1.17979900	0.21912300
Н	3.82334900	1.04887300	0.86920900
Н	2.01704700	-1.76813200	1.25414400
0	1.01813600	-1.11336300	-0.70397600
С	0.38755300	0.10824300	-0.44342800
Н	0.64890500	0.85072700	-1.21296900
С	1.04494900	1.84160400	1.11960600
Н	0.01678500	2.17295700	1.30396500
Н	1.63818500	1.93550200	2.02797700
Н	1.50931200	2.42517200	0.31876500
0	1.03749900	0.46141400	0.78084500
С	-1.10321500	-0.00688300	-0.27949600
С	-1.63197300	-0.98263600	0.56910000
С	-1.95320600	0.87813000	-0.93766500
С	-3.00694400	-1.06997900	0.75359600
Н	-0.95717800	-1.66895200	1.07425800
С	-3.33422400	0.79276500	-0.75183500
Н	-1.53670000	1.63338700	-1.60098400
С	-3.85954600	-0.18100000	0.09284100
Н	-3.41920100	-1.83021800	1.41042200
Н	-3.99500200	1.48266500	-1.26806100
Н	-4.93363800	-0.25194400	0.23745300
Н	3.04687600	1.28598700	-0.99092100

С	0.12494700	-0.49644300	-1.61768800
0	0.04916900	0.56449800	-2.27824700
0	-0.84141100	-1.36084600	-1.50143900
В	-1.15537700	1.56532800	-2.38089100
Н	-1.47220500	1.61518900	-3.54592600
Ν	-0.54373900	2.91791000	-1.88508500
Н	0.09861900	3.28652600	-2.58651400

Н	-2.02917900	1.22266800	-1.63138500
Н	-1.31560100	3.58489500	-1.85453300
В	0.22225900	2.94424000	-0.42477500
Н	-0.27805900	3.84655500	0.22304100
Н	1.39783700	3.15264800	-0.69063600
С	1.38448200	-0.89497400	-0.97434900
С	2.36981000	0.07437700	-0.76366700
С	1.57638400	-2.21658000	-0.55532700
С	3.55497900	-0.28720200	-0.13335300
Н	2.17998000	1.10165000	-1.05666600
С	2.76590200	-2.56948100	0.07071600
Н	0.79231200	-2.95020800	-0.71114200
С	3.75250900	-1.60450000	0.28205000
Н	4.31878700	0.46243800	0.04740700
Н	2.92367600	-3.59243300	0.39787800
Н	4.67832500	-1.88090000	0.77867600
С	-2.02294900	-1.31262400	-2.32291800
Н	-2.25740100	-2.35562900	-2.53445200
Н	-2.82310900	-0.84572100	-1.75262400
Н	-1.82588900	-0.75777500	-3.24092200
0	0.04798200	1.63476300	0.20733900
С	-0.54541900	1.47404800	1.44723000
0	0.40187400	1.42383900	2.48796800
С	-1.28253700	0.14904100	1.45614800
Н	-1.24067100	2.31232200	1.64020300
С	1.17882200	2.59659200	2.59751200
С	-0.61838400	-1.03052500	1.79817200
С	-2.61375700	0.08981600	1.04306600
Н	1.81443400	2.47008200	3.47618000
Н	1.80185700	2.74553900	1.70782600
Н	0.54005100	3.48083100	2.73332100
С	-1.27513700	-2.25619200	1.70883600
Н	0.41427200	-0.97343400	2.13036000
С	-3.27626300	-1.13510300	0.96285400

Н	-3.13291000	1.00991400	0.78242300
С	-2.60451400	-2.31326300	1.28854200
Н	-0.75038800	-3.17031600	1.97567200
Н	-4.31800600	-1.16934000	0.65345000
Н	-3.11913100	-3.26865900	1.23038500

В	3.16151400	0.93425400	-1.40033000
Ν	3.27454900	-0.35793500	-0.39805400
Н	3.96793300	-0.13903200	0.32131600
Н	4.29512400	1.20069700	-1.73989600
Н	3.71831200	-1.09813200	-0.94581900
В	2.03309200	-1.01003400	0.29731500
Н	2.65214800	1.84677700	-0.77289400
Н	2.33766400	-2.02485400	0.87325800
0	0.89462800	-1.21178200	-0.67372700
С	0.29657900	-0.05996100	-0.54427100
Н	0.79068600	0.83582700	-0.92696500
С	1.87514600	0.96054200	1.93386500
Н	1.08876200	1.55409500	2.40574100
Н	2.44708300	0.44918400	2.71902500
Н	2.53194500	1.61557300	1.35279100
0	1.25956500	-0.01307700	1.11503700
С	-1.14355400	-0.01024000	-0.32689600
С	-1.84358400	-1.16482300	0.04437000
С	-1.81059500	1.20952700	-0.48741900
С	-3.21539800	-1.09396500	0.24867900
Н	-1.29714000	-2.09525100	0.16364200
С	-3.18428600	1.27587900	-0.27938700
Н	-1.24995000	2.09478400	-0.77812300
С	-3.88186900	0.12427900	0.08740100
Н	-3.77019500	-1.98207900	0.53442600
Н	-3.71095500	2.21650800	-0.40470400
Н	-4.95489300	0.17501200	0.24859500

С	-2.53218100	-0.56494100	-0.55766900
0	-1.68701500	-1.32620300	0.24103900
0	-3.85112300	-0.96919500	-0.28939200
В	-1.37336100	-2.63401500	-0.19054500
Н	-2.31527600	-0.73946800	-1.63027100
С	-4.79045300	-0.43262800	-1.19598800
Н	-5.76049300	-0.85505900	-0.93117900
Н	-4.83916000	0.66222900	-1.12609300
Н	-4.54388600	-0.71392100	-2.22997900
Ν	-0.33655200	-3.29445700	0.73945900
Н	-0.50225000	-4.24450200	1.05119500
Н	-2.19523600	-3.35640700	-0.67496900
Н	-0.01988500	-2.67861100	1.49278000
В	0.53671200	-3.09017000	-0.56164900
Н	0.74962700	-4.10425000	-1.15631700
Н	-0.46976800	-2.51183300	-1.26285700
С	-2.29355300	0.89489600	-0.22632500
С	-1.50766700	1.69023400	-1.05720800
С	-2.79750800	1.42150000	0.96464700
С	-1.20633300	3.00412000	-0.69375100
Н	-1.12091000	1.27900900	-1.98837100
С	-2.50037600	2.73222100	1.32757800
Н	-3.41240800	0.78958100	1.60030700
С	-1.69923800	3.52400300	0.50114600
Н	-0.59116400	3.62011600	-1.34391900
Н	-2.88971700	3.13918300	2.25642700
Н	-1.46582800	4.54555600	0.78676700
0	1.61391900	-2.18102900	-0.46502000
С	1.42811300	-0.89761500	0.01848900
0	1.13182500	-1.00251500	1.40960700
Н	0.56396800	-0.41103400	-0.46874000
С	2.67645900	-0.07527800	-0.21040400
---	-------------	-------------	-------------
С	0.71714000	0.22273600	1.98777900
С	2.57647100	1.24801500	-0.63439200
С	3.93295000	-0.62667400	0.04841800
Н	0.35318100	-0.00846100	2.99031800
Н	1.55459600	0.92742200	2.05742800
Н	-0.09675500	0.67355800	1.40475400
С	3.72521600	2.02262100	-0.80362300
Н	1.59375600	1.67554700	-0.82852900
С	5.07954400	0.14310500	-0.12213200
Н	3.99747400	-1.66185400	0.37100400
С	4.97751500	1.46951600	-0.54834500
Н	3.64112300	3.05348700	-1.13571800
Н	6.05652100	-0.28953700	0.07383500
Н	5.87415300	2.06792400	-0.68232100

TS_5

В	3.11723800	-2.15323200	0.03550600
Ν	3.23140300	-0.52337100	-0.07052500
Н	3.82020500	-0.29923600	-0.87426200
Н	4.24788500	-2.58760700	0.01596600
Н	3.74244700	-0.18146200	0.74665100
В	1.93722600	0.28789900	-0.19698500
Н	2.46589900	-2.50786700	-0.93342900
0	1.07321700	0.04950400	1.09893700
С	0.31594400	-0.74435500	0.42000200
Н	0.68027200	-1.75609700	0.20317200
С	-1.09870900	-0.46332800	0.20485500
С	-1.85783800	-1.37368300	-0.54132800
С	-1.69470900	0.67093700	0.77163500
С	-3.21332100	-1.13871900	-0.73893300
Н	-1.37740400	-2.25203200	-0.96603200
С	-3.05219800	0.89375800	0.58189600
Н	-1.08610300	1.34629800	1.36477200

С	-3.80582100	-0.00624000	-0.17704800
Н	-3.80870700	-1.83420300	-1.32142600
Н	-3.52839700	1.76334000	1.02350900
Н	-4.86644100	0.17422800	-0.32621500
С	1.05671300	2.49081100	-0.65911000
Н	0.35808700	2.04274200	-1.38147700
Н	0.51552900	2.69816300	0.27266300
Н	1.42665400	3.43512800	-1.06545200
0	2.16025300	1.65142800	-0.42736000
Н	1.19716800	-0.24101500	-1.08821400
Н	2.55264000	-2.39266100	1.08641700

Int_5

В	1.97358900	2.26639700	0.68381500
Ν	2.67556900	1.29920900	-0.50290700
Н	3.68547500	1.32869900	-0.36570100
Н	2.73125000	3.19280000	0.84380400
Н	2.47196200	1.70106000	-1.41625600
В	2.18513800	-0.09655500	-0.27316400
Н	1.88260200	1.54285300	1.65511900
0	0.97262200	-0.54363000	-0.66042200
С	-0.04436700	0.21673900	-1.31026800
Н	-0.15500800	-0.17982800	-2.32453500
С	-1.34475700	0.09257500	-0.55843000
С	-2.49423200	-0.36538800	-1.20059700
С	-1.40691900	0.45385900	0.79119300
С	-3.70165000	-0.45934400	-0.50742600
Н	-2.44742500	-0.65422800	-2.24839700
С	-2.60916900	0.35373200	1.48490000
Н	-0.51229700	0.81986800	1.28957200
С	-3.75920500	-0.10156400	0.83693100
Н	-4.59167500	-0.81762100	-1.01643100
Н	-2.65172600	0.63712400	2.53248600
Н	-4.69655100	-0.17666300	1.38052000

С	2.64341100	-2.19656200	0.78792000
Н	2.33378300	-2.80283100	-0.06772100
Н	3.49558200	-2.66212000	1.28348400
Н	1.80765700	-2.11346900	1.48807900
0	3.06223900	-0.90475600	0.36227800
Н	0.25109600	1.27033600	-1.36805300
Н	0.89510900	2.59315500	0.24093900

TS_6

В	0.27865500	2.06105700	-0.23066800
Ν	2.46576800	1.19714600	-1.31481100
Н	3.16800700	1.91882600	-1.21813100
Н	0.57738900	3.21697200	-0.16981800
Н	2.06794100	1.15905700	-2.24133600
В	2.51188700	0.09514800	-0.40487300
Н	0.55131300	1.33452000	0.67668400
0	1.70959500	-1.02096600	-0.47977700
С	0.62016400	-1.16438100	-1.35956900
Н	0.74620000	-2.11954500	-1.88432400
С	-0.70482700	-1.16535400	-0.62515300
С	-1.88985500	-0.99819800	-1.34703800
С	-0.77116000	-1.34507800	0.75576400
С	-3.12443000	-1.01348600	-0.70005800
Н	-1.84674700	-0.84127700	-2.42339600
С	-2.00554200	-1.35778000	1.40696300
Н	0.15128600	-1.46095300	1.31624500
С	-3.18566800	-1.19318000	0.68322000
Н	-4.03706800	-0.87822100	-1.27343200
Н	-2.04447300	-1.49743300	2.48382800
Н	-4.14564300	-1.20004500	1.19082400
С	3.37436300	-0.77899000	1.66617000
Н	3.44739900	-1.79892000	1.27602800
Н	4.22322900	-0.57747900	2.32212500
Н	2.44694300	-0.68647100	2.24305200

0	3.41145500	0.17525300	0.62253300
Н	0.60394300	-0.37139600	-2.11756000
Н	-0.22257600	1.63294900	-1.22544600
Ν	-1.92474500	2.14575100	0.73103600
Н	-2.22531100	1.38669800	0.12771600
Н	-1.68164300	1.82447200	1.65941600
В	-2.03984700	3.50454800	0.39635800
Н	-1.76030600	4.32369100	1.21712400
Н	-2.40718200	3.79488300	-0.70109300

Int_6

Ν	3.06064000	-0.88101700	0.84813300
Н	3.74482700	-0.32653300	1.33855500
Н	3.16096600	-1.87604200	0.98641500
В	2.07007600	-0.36774400	-0.02763000
0	1.24452500	-1.26785200	-0.66190100
С	0.16063900	-0.79146900	-1.43383600
Н	-0.13113500	-1.61739900	-2.09183100
С	-1.02369900	-0.37163700	-0.58818500
С	-2.00838400	0.45133700	-1.14047700
С	-1.17126100	-0.81695000	0.72575800
С	-3.12596900	0.81986700	-0.39583500
Н	-1.89451900	0.81337500	-2.16059300
С	-2.28736400	-0.44474500	1.47538500
Н	-0.40716600	-1.45568500	1.15970700
С	-3.26848700	0.37232100	0.91776200
Н	-3.88188400	1.46318000	-0.83739800
Н	-2.38995100	-0.79585600	2.49845300
Н	-4.13676600	0.66208200	1.50236700
С	2.69772000	1.92707200	0.38663600
Н	3.75673000	1.80552300	0.12525200
Н	2.36979300	2.91736900	0.06576800
Н	2.58254300	1.85384400	1.47516300
0	1.89751400	0.97254300	-0.27330300

O. References:

- 1. X. Chen, J.-C. Zhao and S. G. Shore, J. Am. Chem. Soc., 2010, 132, 10658-10659.
- 2. P. V. Ramachandran and P.D. Gagare, Inorg. Chem. 2007, 46, 7810-7817.
- A. Nair, V. Tiwari, A. Verma, P. Saini and A. J. Elias, Org. Chem. Front., 2023, 10, 327-334.
- M. J. Frisch et. al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
- 5. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- K. L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi , J. Chase, J. Li, and T.L. Windus, J. Chem. Inf. Model., 2007, 47, 1045.
- (a) P. C. Hariharan and J. A. Pople. *Theoret. Chimica. Acta* 1973, 28, 213. (b) V.
 Rassolov, J. A. Pople, M. Ratner and T. L. Windus, *J. Chem. Phys.*, 1998, 109, 1223–1229.
- 8. C. Gonzalez and H. B. Schlegel. J. Phys. Chem., 1990, 94, 5523.
- 9. A. V. Marenich, C. J. Cramer and D. G. Truhlar. J. Phys. Chem. B. 2009, 113, 6378.
- 10. CYLview20; Legault, C. Y., Université de Sherbrooke, 2020.