Phosphine catalyzed Rauhut-Currier reaction of γ-alkyl allenoate and trapped by

Diels-Alder reaction

Juan Zhang ${ }^{\text {a }}$, Wei Hao ${ }^{\text {a }}$, Ying Chen ${ }^{\text {a }}$, Zhen Wang*, ${ }^{\text {b }}$, Jinzhong Yao ${ }^{\text {c }}$ and Weijun Yao*,a
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. of China;
${ }^{\mathrm{b}}$ School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P.R. China.
${ }^{\mathrm{c}}$ College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001 (P. R. China)
* Orgywj@zstu.edu.cn; wangz1114@cqu.edu.cn.

Table of contents

A. General information 2
B. Preparation and analytical data of allenoate $\mathbf{1}$ 2
C. Synthesis and analytical data of the RC-adduct 2 3
D. Optimization of the reaction conditions 3
E. General procedure for the one pot two steps reaction 6
F. Analytical data of products 4 6
G. Gram-Scale Synthesis of 4aa 17
H. Transformations of 4aa 17
I. Diels-Alder reaction of the allenoate RC-adduct with DMAD 20
J. X-Ray crystallographic analysis of 4lb 22
K. References 23
L. NMR Spectra 24

A. General information

Unless otherwise specified, all reactions were carried out with dry solvents in anhydrous conditions. Solvents were dried by activated molecular sieve ($3 \AA$). All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates ($60 \mathrm{~F}-254$) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel ($300-400$ mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV400 MHz spectrometer. Chemical shifts were reported in parts per million (ppm). High resolution mass spectra (HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization. Petroleum ether (PE) refers to the fraction with boiling point in the range $60-90{ }^{\circ} \mathrm{C}$. Phosphine catalysts ${ }^{[1]}$ and alkyl allenoate ${ }^{[2]}$ was prepared by our laboratory and Maleimide ${ }^{[3]}$ were prepared according to literature methods.

B. Preparation and analytical data of allenoate 1

Under nitrogen atmosphere, to a solution of Wittig reagent $\mathbf{B}(5.25 \mathrm{mmol}, 1.05$ equiv.) and TEA (5 mmol, 1.0 equiv.) in $\mathrm{DCM}(15.0 \mathrm{~mL})$ was added acyl chloride $\mathbf{A}\left(5.0 \mathrm{mmol}, 1.0\right.$ equiv.) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 12 h . The mixture was concentrated and the residue was purified by flash column chromatography on silica gel (petroleum ether / ethyl acetate $=40$ / 1) to afford the desired product $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ NMR spectra of known compounds were consistent with the literature reported. The analytical data of new compounds ($\mathbf{1 i} \mathbf{i} \mathbf{1} \mathbf{k}$) were as follow.

Benzyl benzyl 4-cyclopropylbuta-2,3-dienoate (1i)

773.3 mg , yield, 72%, Colorless liquid; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32$ $(\mathrm{m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=7.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.51-0.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.9,165.6,136.0,128.4,128.0,127.9,100.1,89.4,66.3,8.3,7.2,6.9 ;$ IR (KBr): 3032, 3006, 1958, 1720, 1631, 1258, 1150, 736, $697\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}=215.1067$, found $=215.1070$.

1.03 g , yield, 71%; colorless liquid; It was an inseparable mixture with alkynoate. The ratio (allenoate : alkynoate:) was 1.62:1 from crude ${ }^{\mathbf{1}} \mathbf{H}$ NMR. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.23$ $-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.66(\mathrm{t}, J=5.50 \mathrm{~Hz}, 1.15 \mathrm{H}$, allenoate), $5.19(\mathrm{~d}, J=3.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.33(\mathrm{~m}, 1 \mathrm{H}$, alkynoate), $2.76-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 212.7$ (allenoate), 168.7 (alkynoate), 166.0 (alkynoate), 141.8 (allenoate), 141.6 (alkynoate), 136.0 (allenoate), 135.5 (alkynoate), 128.5 - 128.1 (m, mixture), 125.8, 95.2 (allenoate), 88.3 (allenoate), 83.5 (alkynoate), 71.8 (alkynoate), 67.1 (alkynoate), 66.4 (allenoate), 35.0 (allenoate), 34.7 (alkynoate), 30.2 (allenoate), 30.2 (alkynoate), 26.8 (allenoate), 26.1 (alkynoate), 18.2 (alkynoate); IR (KBr): 2937, 2859, 1959, 1720, 1631, 1455, 1363, 1150, 744, $698\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=293.1536$, found $=293.1540$.

C. Synthesis and analytical data of the RC-adduct 2

To a dried seal tube with a magnetic stirring bar were added $\mathbf{1 a}$ ($0.4 \mathrm{mmol}, 1.0$ equiv.), toluene (10 mL) and catalyst $\mathbf{C} 1(0.04 \mathrm{mmol}, 0.1$ equiv.) at aroom temperature. The tube was sealed and was stirred for 4 h until the consumption of $\mathbf{1 a}$. The reaction mixture was purified directly by flash column chromatography ($\mathrm{PE} /$ ethyl acetate $=10 / 1$) to obtain compound $2(40.5 \mathrm{mg}, 50 \%$ yield $)$ as a colorless liquid, which of the color got darkened slowly. Once 2 was obtained by flash column chromatography, NMR was test immediately. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 10 \mathrm{H}), 6.11(\mathrm{t}, \mathrm{J}=7.30 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{t}, J=6.40 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 2 \mathrm{H})$, $2.20-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.9$, $170.8,166.1,136.3,136.2,136.0,128.4,128.4,128.1,128.1,127.9,127.6,123.7,98.1,66.3,66.2,35.4$, 22.3, 21.5, 13.6, 13.0; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=405.2060$, found $=$ 405.2060 .

D. Optimization of the reaction conditions

(a) Screening of commercial available catalysts (Table 1)

Entry	Catalyst	Yield (\%) ${ }^{\text {b }}$	$\mathrm{dr}(\%)^{\text {c }}$
1	DPPE	-	-
2	DPPP	-	-
3	$\mathrm{Me}_{2} \mathrm{PhP}$	13	>19:1
4	$\mathrm{Cy}_{3} \mathrm{P}$	-	-
5	$\mathrm{Ph}_{3} \mathrm{P}$	-	-
6	DMAP	-	-
7	DABCO	-	-
${ }^{a}$ Unless otherwise stated, the reaction was carried out using 1a ($0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $10 \mathrm{~mol} \%$ of catalyst in toluene (2 mL) for 4 h at room tempreture, followed by the addition of $\mathbf{3 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and stirred$ for $12 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c}$ The dr value was determined by crude ${ }^{1}$ H NMR.			

(b) Screening of bifunctional phoshine (Table 2)

Entry	Catalyst	Solvent	Ratio (1a/3a)	Yield (\%) b	${\operatorname{dr~}(\%)^{c}}^{c}$	ee (\%) ${ }^{d}$
1	$\mathbf{C 1}$	toluene	$1: 1$	40	$>19: 1$	0
2	$\mathbf{C 2}$	toluene	$1: 1$	14	$>19: 1$	0
3	$\mathbf{C 3}$	toluene	$1: 1$	19	$>19: 1$	0
4	$\mathbf{C 4}$	toluene	$1: 1$	27	$>19: 1$	0
5	$\mathbf{C 5}$	toluene	$1: 1$	30	$>19: 1$	0
6	$\mathbf{C 6}$	toluene	$1: 1$	14	$>19: 1$	0
7	$\mathbf{C} 7$	toluene	$1: 1$	14	$>19: 1$	0

${ }^{a}$ Unless otherwise stated, the reaction was carried out using $\mathbf{1 a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.) and $10 \mathrm{~mol} \%$ of catalyst in toluene (2 mL) for 4 h at room tempreture, followed by the addition of $\mathbf{3 a}(0.2 \mathrm{mmol}, 1.0$ equiv.) and stirred for 12 h. ${ }^{b}$ Isolated yields. ${ }^{c}$ The dr value was determined by crude ${ }^{1}$ H NMR. ${ }^{d}$ The ee values was determined by HPLC analysis with a chiral stationary phase.
(c) Screening of reaction solvents (Table 3)

Entry	Solvent	Ratio (1a/3a)	Yield (\%) ${ }^{\text {b }}$	$\mathrm{dr}(\%)^{\text {c }}$	ee (\%) ${ }^{\text {d }}$
1	toluene	1:1	40	>19:1	0
2	DCM	1:1	31	>19:1	0
3	EA	1:1	18	>19:1	0
4	MeCN	1:1	26	>19:1	0
5	THF	1:1	31	>19:1	0
6	acetone	1:1	24	>19:1	0
7	$\mathrm{Et}_{2} \mathrm{O}$	1:1	31	>19:1	0

${ }^{a}$ Unless otherwise stated, the reaction was carried out using $1 \mathbf{1 a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.) and $10 \mathrm{~mol} \%$ of catalyst $\mathbf{C} \mathbf{1}$ in solvent (2 mL) for 4 h at room tempreture, followed by the addition of $\mathbf{3 a}(0.2 \mathrm{mmol}, 1.0$ equiv.) and stirred for $12 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c}$ The dr value was determined by crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ The ee values was determined by HPLC analysis with a chiral stationary phase.
(d) Screening of the ratio of 1a/3a (Table 4)

Entry	Ratio (1a/3a)	Yield (\%) b	$\mathrm{dr}(\%)^{c}$
1	$1: 1$	40	$>19: 1$
2	$1.5 / 1$	43	$>19: 1$
3	$2: 1$	47	$>19: 1$
4	$2.5 / 1$	62	$>19: 1$
5	$3: 1$	74	$>19: 1$
6	$3.5 / 1$	79	$>19: 1$
7	$4: 1$	86	$>19: 1$
8	$4.5 / 1$	94	$>19: 1$
9	$5: 1$	100	$>19: 1$
10	$1: 1^{d}$	24	$>19: 1$

${ }^{a}$ Unless otherwise stated, the reaction was carried out using $\mathbf{1 a}$ (x eq.) and $10 \mathrm{~mol} \%$ of $\mathbf{C} \mathbf{1}$ in toluene (2 mL) for 4 h at room tempreture, followed by the addition of $\mathbf{3 a}\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv.) and stirred for $12 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c}$ The dr value was determined by crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} \mathbf{1 a}$ and $\mathbf{3 a}$ was added together.

E. General procedure for the one pot two steps reaction

To a dried seal tube with a magnetic stirring bar were added allenoate 1 ($1.0 \mathrm{mmol}, 5.0$ equiv.), toluene (2 mL) and catalyst $\mathbf{C 1}$ ($0.02 \mathrm{mmol}, 0.1$ equiv.) at room temperature. The tube was sealed and the mixture was stirred for 4 h . Then, Maleimide 3 ($0.2 \mathrm{mmol}, 1.0$ equiv.) was added and was stirred for 12 h. After the completely consumption of $\mathbf{3}$ monitored by TLC, the mixture was purified directly by flash column chromatography $(\mathrm{PE} /$ ethyl acetate $=5 / 1)$ to afford compound 4 .

F. Analytical data of products 4

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-1,3-dioxo-2-phenyl-4-propylidene-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylate (4aa)

Yield: $116.0 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.29(\mathrm{~m}, 13 \mathrm{H})$, $7.15(\mathrm{~d}, \mathrm{~J}=8.14 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{t}, \mathrm{J}=7.27 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}$ $=16.64 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=16.78 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=9.14,5.10 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ $(\mathrm{q}, \mathrm{J}=7.78 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.27 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.47 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,175.4,169.7,166.5,146.3,135.6$, $135.4,135.3,131.8,130.5,128.9,128.5,128.4,128.2,128.1,126.5,125.3,66.7,66.6,48.1,43.6,43.4$, $36.9,23.1,21.1,13.3,12.2$; IR (KBr): 2964, 2832, 1712, 1597, 1363, 1184, 776, 749, $695\left(\mathrm{~cm}^{-1}\right)$;
HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=578.2537$, found $=578.2540$.
Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-4-ethylidene-7-methyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylate (4ba)

Yield: $83.1 \mathrm{mg}, 76 \%$, pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 13 \mathrm{H}), 7.16$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{q}, ~ J=7.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{q}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-$ $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=9.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,175.4,169.7,166.4$, 146.7, 135.7, 135.4, 131.8, 130.0, 129.0, 128.5, 128.5, 128.3, 128.2, 128.1, 126.6, 126.5, 66.7, 66.6, $47.9,46.0,36.5,36.3,15.2,13.8$; IR (KBr): 2948, 2832, 1711, 1597, 1363, 1184, 776, 736, $695\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=550.2224$, found $=550.2228$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-4-butylidene-1,3-dioxo-2-phenyl-7-propyl-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylate (4ca)

Yield: $111.3 \mathrm{mg}, 92 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 13 \mathrm{H})$, $7.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.00$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40(\mathrm{dd}, J=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 176.1,175.4,169.7,166.6,146.3,135.7,135.4,133.6,131.8,130.7$, $129.0,128.5,128.5,128.3,128.2,128.2,126.5,125.8,66.7,66.6,43.9,41.9,37.1,31.7,30.2,22.1$, 21.0, 14.1, 13.7; IR (KBr): 2958, 2930, 2871, 1712, 1597, 1499, 1371, 1180, 776, 749, $695\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=606.2850$, found $=606.2848$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-butyl-1,3-dioxo-4-pentylidene-2-phenyl-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylate (4da)

Yield: $112.4 \mathrm{mg}, 88 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 13 \mathrm{H})$, $7.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{q}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{dd}, J=12.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.32-$ $1.25(\mathrm{~m}, 5 \mathrm{H}), 1.22-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,175.4,169.7,166.6,146.4,135.7,135.4,133.7,131.8,130.7,129.0,128.5$, $128.5,128.3,128.2,128.2,126.5,125.6,66.7,66.6,43.9,42.1,31.0,29.9,29.4,27.8,22.7,22.3,13.9$, 13.8; IR (KBr): 2956, 2858, 1712, 1597, 1499, 1455, 1371, 1179, 734, $695\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=634.3163$, found $=634.3170$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-4-hexylidene-1,3-dioxo-7-pentyl-2-phenyl-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylatebenzyl (4ea)

Yield: $114.7 \mathrm{mg}, 86 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 13 \mathrm{H})$, $7.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.24$ $(\mathrm{m}, 8 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 3 \mathrm{H}), 0.87-0.83(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1,175.4,169.7$, 166.6, 146.4, 135.7, 135.4, 133.8, 131.8, 130.7, 129.0, 128.5, 128.5, 128.3, 128.2, 128.2, 126.5, 125.6, 66.7, 66.6, 43.9, 42.1, 31.8, 31.4, 29.7, 28.5, 28.0, 27.5, 22.4, 22.4, 13.9; IR (KBr): 2929, 2857, 1712, 1598, 1499, 1455, 1377, 1177, 749, $695\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ $=662.3476$, found $=662.3477$.
Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-4-heptylidene-7-hexyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylate (4fa)

Yield: $135.2 \mathrm{mg}, 98 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 13 \mathrm{H})$, $7.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.88$ (m, 1H), $3.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{q}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, 10H), $1.10-1.19(\mathrm{~m}, 5 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1,175.4,169.7$, $166.6,146.4,135.7,135.4,133.7,131.8,130.7,128.9,128.5,128.4,128.3,128.2,128.1,126.5,125.6$, $66.7,66.5,43.9,42.1,31.6,31.5,29.8,29.3,28.9,28.8,28.1,27.8,22.5,14.0,14.0$; IR (KBr): 2927, 2855, 1712, 1598, 1499, 1455, 1375, 1253, 1184, 735, $695\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=690.3789$, found $=690.3785$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-isopropyl-4-(2-methylpropylidene)-1,3-dioxo-2-phenyl-2, 3,3a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ga)

Yield: $83.2 \mathrm{mg}, 69 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 11 \mathrm{H})$, $7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.65$ (m, 1H), 5.16 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (d, J $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.79(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=12.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}$, $J=8.9,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 2.25-2.23(\mathrm{~m}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,175.2,169.5$, $166.8,145.2,135.8,135.4,132.0,131.8,128.7,128.5,128.4,128.3,128.3,128.2,128.1,128.0,128.0$, 126.7, 126.4, 124.7, 66.7, 66.4, 49.4, 43.8, 29.7, 26.9, 26.3, 23.3, 22.8, 21.9, 21.7; IR (KBr): 2958, 2869, 1712, 1597, 1499, 1366, 1153, 749, $695\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}=606.2850$, found $=606.2854$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-isobutyl-4-(3-methylbutylidene)-1,3-dioxo-2-phenyl-2,3,3 a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ha)

Yield: $92.1 \mathrm{mg}, 73 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 13 \mathrm{H})$, $7.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{dd}, J$ $=6.6,3.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.1,175.5,169.7,166.6,151.2,146.3,135.8$, $135.5,132.9,131.9,131.0,129.1,128.6,128.5,128.5,128.3,128.3,126.6,126.5,119.7,66.8,66.7$, $44.1,39.7,38.8,37.1,36.9,28.3,25.6,22.8,22.5,22.3,22.2$; IR (KBr): 2955, 2832, 1712, 1592, 1363, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=634.3163$, found $=634.3162$.

Benzyl
(Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-cyclopropyl-4-(cyclopropylmethylene)-1,3-dioxo-2-phenyl-2,3,3a, 4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ia)

Yield: $121.2 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.27(\mathrm{~m}, 13 \mathrm{H})$, $7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=10.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.55(\mathrm{~m}, 4 \mathrm{H}), 0.42(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.22(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.3,175.5,169.8,166.9,145.2,138.4,135.8,135.5$, $131.9,130.2,128.9,128.4,128.3,128.1,128.1,128.1,126.5,124.2,66.6,66.6,48.4,47.6,46.0,36.6$, $12.0,10.1,8.0,7.4,6.0,4.3$; IR (KBr): 3004, 2952, 1716, 1498, 1374, 1188, 751, 695(cm^{-1}); HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=602.2537$, found $=602.2540$.

Benzyl
(Z)-6-(2-(benzyloxy)-2-oxoethyl)-1,3-dioxo-7-phenethyl-2-phenyl-4-(3-phenylpropylidene)-2,3,3a,4,7 ,7a-hexahydro-1H-isoindole-5-carboxylate (4ja)

Yield: $98.3 \mathrm{mg}, 72 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.22(\mathrm{~m}, 15 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.87$ (m, 1H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.9,175.1,169.6,166.2,146.6,141.0,141.0,135.6,135.4$, $132.9,131.8,130.6,129.0,128.5,128.5,128.4,128.3,128.2,128.2,126.8,126.6,126.1,125.9,66.8$, $66.6,43.2,41.3,36.2,34.8,33.8,31.1,29.8$; IR (KBr): 3062, 3028, 2935, 2833, 1712, 1598, 1498, 1365, 1184, 776, 738, $698\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=730.3163$, found $=730.3165$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-1,3-dioxo-2-phenyl-4-(4-phenylbutylidene)-7-(3-phenylprop yl)-2,3,3a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ka)

Yield: $155.7 \mathrm{mg}, 95 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 13 \mathrm{H})$, $7.23-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 8 \mathrm{H}), 6.00(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-$ $5.01(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}=12.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.91$ $-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 176.0,175.3,169.6,166.4,146.1,141.9,141.6,135.6,135.3,133.4,131.8,130.7,129.0$, $128.5,128.5,128.3,128.3,128.2,126.5,126.0,125.9,125.8,66.8,66.6,47.8,43.8,42.0,35.9,35.5$, 30.5, 29.6, 29.4, 27.8; IR (KBr): 2935, 2857, 1716, 1631, 1497, 1372, 1181, 749, 697(cm^{-1}); HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{50} \mathrm{H}_{47} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=758.3476$, found $=758.3486$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-2-(4-bromophenyl)-7-ethyl-1,3-dioxo-4-propylidene-2,3,3a, 4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ab)

Yield: $130.9 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 2H), $7.35-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.04(\mathrm{~d}, ~ J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.06-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ $(\mathrm{q}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.03$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.8,175.0,169.7,166.5$, $146.0,135.7,135.6,135.3,132.1,130.8,130.5,128.5,128.5,128.2,128.2,128.1,125.3,122.2,66.8$, 66.6, 48.5, 43.4, 36.4, 26.9, 23.1, 21.0, 13.3, 12.3; IR (KBr): 2965, 2875, 1712, 1600, 1489, 1370, 1070, 823, 735, $697\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{BrNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=656.1642$, 658.1622 , found $=656.1641,658.1627$.

Benzyl Benzyl

(Z)-6-(2-(benzyloxy)-2-oxoethyl)-2-(3,5-dichlorophenyl)-7-ethyl-1,3-dioxo-4-propylidene-2,3,3a,4,7,7 a-hexahydro-1H-isoindole-5-carboxylate (4ac)

Yield: $128.2 \mathrm{mg}, 99 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}, 11 \mathrm{H})$, $7.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.70$ (m, 2H), $3.64(\mathrm{~d}, ~ J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=$ $13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,174.6,169.7,166.4,145.8,136.0,135.6,135.3$, $135.0,133.6,130.8,128.6,128.5,128.5,128.3,128.3,128.1,128.0,125.3,125.2,66.9,66.6,48.6,43.4$, 36.1, 29.7, 23.1, 21.1, 13.3, 12.3; IR (KBr): 2961, 2832, 1720, 1588, 1362, 1182, $777\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=646.1758$, 648.1729 , found $=646.1761$, 648.1743.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-2-(4-ethylphenyl)-1,3-dioxo-4-propylidene-2,3,3a,4, 7,7a-hexahydro-1H-isoindole-5-carboxylate (4ad)

Yield: $110.3 \mathrm{mg}, 91 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 10 \mathrm{H})$, 7.19 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.97$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.09-$ $4.98(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.51(\mathrm{q}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,175.5,169.8$, 166.6, 146.4, 144.7, 135.7, 135.4, 135.1, 130.5, 129.3, 128.5, 128.5, 128.2, 128.1, 126.3, 125.3, 66.7, 66.6, 43.6, 37.1, 29.7, 28.5, 23.1, 21.1, 15.3, 13.4, 12.3; IR (KBr): 2963, 2832, 1710, 1589, 1514, 1363, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=606.2850$, found $=606.2856$.

Benzyl (Z)-2-benzyl-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-1,3-dioxo-4-propylidene-2,3,3a,4,7,7a-hex ahydro-1H-isoindole-5-carboxylate (4ae)

Yield: $119.8 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 11 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.03(\mathrm{~m}, 4 \mathrm{H}), 4.60-4.50(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ $-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,175.9,169.8,165.9,147.0,135.8,135.7,135.5,135.1,130.3,128.5,128.5$, $128.4,128.4,128.2,128.1,128.0,128.0,127.7,125.6,66.7,66.4,48.4,43.6,42.9,42.3,36.7,29.7$, 23.1, 20.8, 13.3, 12.1; IR (KBr): 2962, 2832, 1702, 1657, 1588, 1362, 1155, $777\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=592.2694$, found $=592.2700$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-2-(4-methoxyphenyl)-1,3-dioxo-4-propylidene-2,3,3 a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4af)

Yield: $117.9 \mathrm{mg}, 97 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 10 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.93 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{t}, J=7.28 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.09(\mathrm{~m}, 2 \mathrm{H})$, $5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=16.63 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=9.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=$ $16.65 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.07,5.03 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.28 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.47 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.3$, $175.6,169.7,166.6,159.3,146.3,135.7,135.4,135.2,130.5,128.5,128.5,128.2,128.2,128.1,127.7$, $125.4,124.4,114.3,66.7,66.6,55.4,43.5,36.9,29.6,23.1,21.1,13.3,12.3$; IR (KBr): 2963, 2832, 1710, 1588, 1536, 1363, 1250, 1182, $777\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ $=608.2643$, found $=608.2646$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-1,3-dioxo-4-propylidene-2-(p-tolyl)-2,3,3a,4,7,7a-he xahydro-1H-isoindole-5-carboxylate (4ag)

Yield: $104.5 \mathrm{mg}, 88 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 10 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.19 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}), 6.01-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.47 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=12.47 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.33 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=12.33 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=16.63$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{q}, ~ J=7.82 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.86$ $(\mathrm{m}, 3 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.27 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.47 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.2,175.5,169.7,166.5,146.4,138.5,135.6,135.4,135.1,130.5,129.6,129.1,128.5$, $128.4,128.2,128.1,126.3,125.3,66.7,66.6,43.6,37.0,29.6,23.1,21.2,21.1,13.3,12.2$; IR (KBr): 2927, 2832, 1711, 1657, 1586, 1362, 1183, $777\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=592.2694$, found $=592.2695$.
Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-2-(4-chlorophenyl)-7-ethyl-1,3-dioxo-4-propylidene-2,3,3a, 4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ah)

Yield: $115.4 \mathrm{mg}, 94 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.27(\mathrm{~m}, 12 \mathrm{H})$, 7.09 (d, $J=8.70 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{t}, J=7.30 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.37 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.37 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=12.37 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=16.66 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.01,5.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{q}, J=7.77 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=13.51,6.07 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ $(\mathrm{q}, J=7.42 \mathrm{~Hz}, 2 \mathrm{H}), 178-171(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.27 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.47 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.9,175.1,169.7,166.5,146.0,135.7,135.6,135.4,134.2,130.6,130.3,129.1$, 128.5, 128.5, 128.2, 128.1, 127.8, 125.3, 66.8, 66.6, 48.5, 43.4, 43.3, 36.4, 23.1, 21.1, 13.4, 12.3; IR (KBr): 2964,2832, 1712, 1657, 1588, 1493, 1363,1182, 777(cm^{-1}); HRMS (ESI-TOF): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{ClNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=612.2147,613.2181$, found $=612.2148,613.2182$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-2-methyl-1,3-dioxo-4-propylidene-2,3,3a,4,7,7a-hex

 ahydro-1H-isoindole-5-carboxylate (4ai)

Yield: $110.8 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 10 \mathrm{H})$, $5.90(\mathrm{t}, J=7.21 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.57 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.56 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.76 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88(\mathrm{~d}, J=16.70 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.69 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=9.03$, $5.44 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=$ $7.30 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.49 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.0,176.4,169.7,166.4$, $146.4,135.6,135.5,134.6,130.7,128.5,128.4,128.2,128.1,128.1,128.0,125.4,66.8,66.4,43.6,37.0$, 29.7, 24.8, 23.1, 21.2, 13.3, 12.3; IR (KBr): 2956, 2832, 2716, 1709, 1592, 1362, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=516.2381$, found $=516.2383$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-2-(2-(tert-butyl)phenyl)-7-ethyl-1,3-dioxo-4-propylidene-2,3, 3a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4aj)

Yield: $33.4 \mathrm{mg}, 26 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\delta 7.48(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}$, $10 \mathrm{H}), 7.29(\mathrm{~d}, J=1.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.51 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=9.05 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{t}, J=7.28$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20-5.06(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~d}, J=15.96 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9.53 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.28$, $1.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=15.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=9.01,3.87 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.55-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.38 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.47 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.3,177.0,169.5,165.8,148.6,147.9,137.7,135.7,135.2,131.7,130.7,129.7,129.6$, $128.5,128.4,128.4,128.3,128.2,128.1,127.4,124.2,66.8,66.6,49.1,45.6,44.0,41.9,35.1,31.1$, 29.7, 23.8, 23.2, 13.3, 12.2; IR (KBr): 2957, 2832, 2716, 1909, 1593, 1362, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=634.3163$, found $=634.3171$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-2-(3-nitrophenyl)-1,3-dioxo-4-propylidene-2,3,3a,4, 7,7a-hexahydro-1H-isoindole-5-carboxylate (4ak)

Yield: $127.7 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.02 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 10 \mathrm{H}), 5.88(\mathrm{t}, J=7.31 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.07-4.98$ $(\mathrm{m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=9.02 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=8.99,5.10 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{q}, J=$ $8.15,7.69 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.25 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.47 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.4,174.8,169.7,166.4,148.3$, 145.7, $136.3,135.6,135.3,132.9,132.6,130.8,129.6,128.5,128.4,128.2,128.2,128.1,125.3,123.0,122.1$, 66.9, 66.6, 49.0, 43.4, 43.3, 35.7, 29.6, 23.2, 21.1, 13.3, 12.3; IR (KBr): 2964, 2832, 1716, 1589, 1532, 1363, 1181, 776, 737, $698\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}=623.2388$, found $=623.2385$.

Benzyl (Z)-2-(benzo[d][1,3]dioxol-5-yl)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-1,3-dioxo-4-propyliden e-2,3,3a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4al)

Yield: $121.6 \mathrm{mg}, 98 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 10 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}), 5.94(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.2,175.5,169.7,166.5,147.9,147.6,146.2,135.6,135.4,135.3,130.5$, $128.5,128.4,128.2,128.1,125.3,120.5,108.2,107.8,101.6,66.8,66.6,43.5,43.3,36.8,26.9,23.1$, 21.1, 13.3, 12.3; IR (KBr): 2965, 2876, 2832, 1720, 1600, $15031353,1245,1037,777,738,698\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+}=622.2435$, found $=622.2441$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-7-ethyl-2-(3-ethynylphenyl)-1,3-dioxo-4-propylidene-2,3,3a, 4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4am)

Yield: $128.1 \mathrm{mg}, 100 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\delta 7.45(\mathrm{~d}, \mathrm{~J}=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}$, $12 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{t}, \mathrm{J}=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H})$, $3.84(\mathrm{~d}, \mathrm{~J}=16.57 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=9.08 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=16.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H})$, $2.48(\mathrm{~d}, \mathrm{~J}=7.03 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.18 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}$ $=7.50 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.8,175.1,169.7,166.5,146.1,135.6,135.5,135.4$, $132.1,131.9,130.6,130.2,129.0,128.5,128.5,128.2,128.1,127.1,125.2,123.1,82.5,78.2,66.8,66.6$, 48.1, 43.5, 43.4, 36.7, 23.1, 21.1, 13.3, 12.3; IR (KBr): 2964, 2832, 1711, 1657, 1589, 1363, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=602.2537$, found $=602.2537$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-2-(3-(Z)-5-(2-(benzyloxy)-2-oxoethyl)-6-((benzyloxy)carbon yl)-4-ethyl-1,3-dioxo-7-propylidene-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl)phenyl)-7-ethyl-1,3-di oxo-4-propylidene-2,3,3a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4an)

Yield: $205.9 \mathrm{mg}, 96 \%$, a pale yellow gel liquid; ${ }^{1} \mathbf{H}$ NMR $\delta 7.34-7.27(\mathrm{~m}, 22 \mathrm{H}), 7.14(\mathrm{t}, J=9.28 \mathrm{~Hz}$, 2H), $5.93(\mathrm{t}, \mathrm{J}=7.42 \mathrm{~Hz}, 2 \mathrm{H}), 5.21-5.09(\mathrm{~m}, 4 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{dd}, J=16.70,7.79 \mathrm{~Hz}$, $2 \mathrm{H}), 3.69(\mathrm{dd}, J=8.85,3.72 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=16.61 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.41(\mathrm{~m}$, 2H), $1.97-1.83(\mathrm{~m}, 6 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=6.70 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.45 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.5,174.9,169.7,166.5,146.2,135.6,135.4,132.1,130.5,129.1,128.5$, $128.4,128.2,128.1,128.1,128.0,126.2,125.2,124.0,66.8,66.5,43.5,43.5,43.3,36.8,23.1,21.0$, 13.3, 12.2; IR (KBr): 2964, 2875, 2832, 1777, 1712, 1601, 1494, 1363, 1183, 776, 739, $697\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{66} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}=1077.4532$, found $=1077.4528$.

Benzyl (Z)-6-(2-(benzyloxy)-2-oxoethyl)-2-(3-(3-(Z)-5-(2-(benzyloxy)-2-oxoethyl)-6-(benzyloxy)carb onyl)-4-ethyl-1,3-dioxo-7-propylidene-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl)benzyl)phenyl)-7-et hyl-1,3-dioxo-4-propylidene-2,3,3a,4,7,7a-hexahydro-1H-isoindole-5-carboxylate (4ao)

Yield: $211.6 \mathrm{mg}, 91 \%$, a pale yellow gel liquid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\delta 7.34-7.26(\mathrm{~m}, 20 \mathrm{H}), 7.14(\mathrm{~d}, J=8.36 \mathrm{~Hz}$, 4H), $7.06(\mathrm{~d}, \mathrm{~J}=8.37 \mathrm{~Hz}, 4 \mathrm{H}), 5.98-5.93(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.08(\mathrm{~m}, 4 \mathrm{H}), 5.07-4.98(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{~s}$, $2 \mathrm{H}), 3.89(\mathrm{~d}, J=16.58 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=9.11 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{q}, J=7.70 \mathrm{~Hz}$, 2H), $1.97-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.25 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.47 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.1,175.4,169.8,166.5,146.3,140.7,135.7,135.4,135.2,130.5,130.0$, $129.5,128.5,128.5,128.2,128.2,128.1,126.5,125.3,66.7,66.6,43.6,43.4,41.1,37.0,26.9,23.1$, 21.1, 13.4, 12.3; IR (KBr): 2964, 2832, 1712, 1597, 1513, 1363, 1182, 776, $741\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{73} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}=1167.5002$, found $=1167.5002$.

Methyl (Z)-2-(4-bromophenyl)-4-ethylidene-6-(2-methoxy-2-oxoethyl)-7-methyl-1,3-dioxo-2,3,3a,4,7, 7a-hexahydro-1H-isoindole-5-carboxylate (4lb)

Yield: $128.1 \mathrm{mg}, 100 \%$, White solid; M.p. $106-107{ }^{\circ} \mathrm{C}$ (Petroleum ether/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\delta 7.57(\mathrm{~d}$, $J=8.66 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.78 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{q}, J=6.86 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=9.08,5.36 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.64(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{~d}, J=7.18 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.8,175.1$, $170.4,167.1,146.6,132.2,130.9,129.9,128.4,128.1,126.6,122.4,52.1,52.0,48.1,46.0,36.5,35.8$, 15.1, 13.9; IR (KBr): 2951, 2832, 1712, 1597, 1490, 1364, 1192, 1069, 1012, 816, 776, 796, $734\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=602.2537$, 478.0683, found $=602.2537$, 478.0695.

G. Gram-Scale Synthesis of 4aa

To a dried round-bottom flask with a magnetic stirring bar were added $\mathbf{1 a}$ ($10 \mathrm{mmol}, 5.0$ equiv.), toluene (20 mL) and catalyst $\mathbf{C 1}(0.2 \mathrm{mmol}, 0.1$ equiv.) at room temperature. The resulting mixture was was stirred for 4 h , Then 3a ($2 \mathrm{mmol}, 1.0$ equiv.) was added and was stirred for 12 h until the consumption of 3 a . The mixture was purified directly by flash column chromatography ($\mathrm{PE} /$ ethyl acetate $=5 / 1$) to afford 1.06 g of $\mathbf{4 a a}(92 \%$ yield $)$.

H. Transformations of 4aa

(a) Oxidation of compound 4aa

Under nitrogen atmosphere, compound 4aa ($115.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to a 15 mL Schlenk tube, followed by adding 1 mL dry DCM, and $85 \% \mathrm{~m}$-CPBA ($69.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added at room temperature. The resulting mixture was stirred for 12 h . After the completely consumption of $\mathbf{4 a a}$ monitored by TLC, the mixture was quenched by saturated NaHCO_{3} aqueous (5 $\mathrm{mL})$ and separated. The aqueous phase was extracted by $\mathrm{DCM}(10 \mathrm{~mL} \times 2)$, and the organic phase was combined, dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated under vacuum to remove solvent and the residue was purified by column chromatography on silica gel with $\mathrm{PE} /$ ethyl acetate $=5 / 1$ as eluent to afford product $\mathbf{5 a}(111.3 \mathrm{mg}, 94 \%)$ as a pale yellow gel liquid. ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO-d d_{6}) $7.42(\mathrm{dd}, J=11.27,7.22 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.20(\mathrm{~d}, J=7.22 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}$, $J=12.62 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.74 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=4.70 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.53-$ $3.44(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{q}, J=7.64 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=8.83,5.20 \mathrm{~Hz}, 2 \mathrm{H}), 1.20-$ $1.12(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.90-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 175.6$, $173.4,169.1,165.3,135.8,135.4,132.0,128.8,128.4,128.3,128.0,128.0,127.8,127.0,66.3,66.1$, $62.6,60.0,41.3,20.7,12.0,10.5$; IR (KBr): 2968, 2832, 1715, 1597, 1499, 1186, 776, 749, $696\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}=594.2486$, found $=594.2495$.

(b) Reduction of compound 4aa

Under nitrogen atmosphere, compound $4 \mathbf{a a}(115.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq})$ and anhydrous $\mathrm{DCM}(1 \mathrm{~mL})$ was added into a 15 mL Schlenk tube, followed by dropwise addition of DIBAL-H ($0.6 \mathrm{~mL}, 0.9 \mathrm{mmol}$, 1.5 M in toluene) at $-78^{\circ} \mathrm{C}$ over 30 min . The mixture was stirred at the same temperature. After 6 hours the compound 4aa was consumed monitored by TLC, and the reaction was quenched by saturated potassium sodium tartrate solution and stirred until the mixture was clear. The mixture was extracted by $\operatorname{DCM}(10 \mathrm{~mL} \times 2)$, and the organic phase was combined, dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated under vacuum to remove solvent and the residue was purified by column chromatography on silica gel with PE / ethyl acetate $=3 / 1$ to $\mathrm{PE} /$ ethyl acetate $=2 / 1$ as eluent to afford product $\mathbf{5 b}$ ($55.7 \mathrm{mg}, 47 \%$) and product $\mathbf{5 c}(18.2 \mathrm{mg}, 25 \%)$ as a pale yellow gel liquid. Characterization data for $\mathbf{5 b}$: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 7 \mathrm{H}), 5.63-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.19-$ 5.03 (m, 4H), 3.92 (d, $J=13.24 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=8.97,6.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=8.78,3.34 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.98,8.89 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 3 \mathrm{H})$, $1.04(\mathrm{t}, J=7.27 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.46 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,170.8,167.9$, 149.7, 139.7, 135.5, 129.5, 129.4, 129.3, 129.2, 128.9, 128.8, 127.5, 126.9, 125.6, 84.5, 68.1, 67.4, 48.2, $45.2,44.8,36.2,30.4,24.0,21.4,14.1,13.0 ;$ IR (KBr):2960, 2832, 1691, 1592, 1536, 1363, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=580.2694$, found $=580.2702$.

Characterization data for $\mathbf{5 c}$: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.73 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}$, $3 \mathrm{H}), 5.69(\mathrm{t}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=13.36,6.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=11.08,4.52 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=13.38 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=8.31,2.88 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=15.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{t}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.02-$ $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.06 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.48 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0$, $163.6,162.0,139.5,136.1,128.7,126.7,125.5,122.9,83.6,65.6,47.5,44.7,43.5,26.2,24.0,20.3$, 13.3, 12.6; IR (KBr): 2963, 1692, 1658, 1596, 1363, $776\left(\mathrm{~cm}^{-1}\right)$; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}=368.1856$, found $=368.1861$.

(c) Aromatization of compound 4aa

To a dried seal tube with a magnetic stirring bar were added 4aa ($0.2 \mathrm{mmol}, 1.0$ equiv.), THF (1 mL) and $\operatorname{DBU}(0.2 \mathrm{mmol}, 1$ equiv.) at room temperature. The resulting mixture was stirred untill $4 \mathbf{a a}$ was consumed monitored by TLC. The reaction mixture was concentrated under vacuum to remove solvent and the residue was purified by flash column chromatography ($\mathrm{PE} /$ ethyl acetate $=5 / 1$) to afford product $\mathbf{5 d}(57.6 \mathrm{mg}, 50 \%)$ as a white solid.; M.p. $82-83^{\circ} \mathrm{C}\left(\right.$ Petroleum ether/EtOAc); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{t}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.72 \mathrm{~Hz}, 5 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $7.62 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=7.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.48 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.30 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4$, $168.0,142.5,141.5,138.3,136.7,134.7,129.3,129.1,129.0,128.8,128.7,128.5,128.4,128.3,128.1$, 126.7, 67.7, 67.1, 35.3, 31.3, 24.6, 21.1, 14.5, 14.3; IR (KBr):2962, 2832, 1713, 1593, 1363, 1172, 776, 741 ; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}=576.2381$, found $=576.2390$.

I. Diels-Alder reaction of the allenoate RC-adduct with DMAD

To a dried seal tube with a magnetic stirring bar were added $\mathbf{1 a}$ ($1.0 \mathrm{mmol}, 5.0$ equiv.), toluene (2 mL) and catalyst $\mathbf{C 1}$ ($0.02 \mathrm{mmol}, 0.1$ equiv.) at room temperature. The tube was sealed and the mixture was stirred for 4 h , Then DMAD ($0.2 \mathrm{mmol}, 1.0$ equiv.) was added and was stirred for 12 h until consumption of DMAD monitored by TLC. The mixture was purified directly by flash column chromatography $(\mathrm{PE} /$ ethyl acetate $=5 / 1)$ to afford $\mathbf{6}(37.2 \mathrm{mg}, 34 \%)$ as a pale yellow gel liquid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.72(\mathrm{t}, J=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.28 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~d}, J=12.18 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=6.27 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=15.71 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, 3H), $3.57(\mathrm{t}, ~ J=5.07 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, ~ J=15.71 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H})$,
$1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.41 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.47 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 169.3,167.8,165.4,140.6,138.0,135.6,135.1,128.6,128.4,128.3,128.1,128.1,127.4,126.9,66.9$, 66.7, 52.5, 52.2, 43.5, 38.1, 27.0, 22.8, 13.4, 9.3; IR (KBr):2953, 2878, 1735, 1631, 1455, 1363, 777, 751, 698; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}=547.2326$, found $=547.2328$.

To a dried seal tube with a magnetic stirring bar were added $\mathbf{6}(0.2 \mathrm{mmol}, 1$ equiv.), THF (1 mL) and DBU ($0.2 \mathrm{mmol}, 1$ equiv.) atroom temperature. The tube was sealed and the mixture was stirred until compound 6a was consumed monitored by TLC. The reaction mixture was concentrated under vacuum to remove solvent and the residue was purified by flash column chromatography ($\mathrm{PE} /$ ethyl acetate $=5$ / 1) to afford product $7(54.7 \mathrm{mg}, 50 \%)$ as a pale yellow gel liquid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ $(\mathrm{d}, J=5.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=5.87 \mathrm{~Hz}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=5.82 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~d}, J=6.06 \mathrm{~Hz}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{q}, J=7.73 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{q}, J=7.69$ $\mathrm{Hz}, 2 \mathrm{H}), 1.10(\mathrm{t}, J=7.61 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{t}, J=7.30 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6$, $168.5,168.5,139.6,137.8,136.3,135.5,134.8,132.0,129.0,128.6,128.6,128.4,128.2,128.1,67.4$, 66.8, 52.4, 35.7, 33.3, 24.7, 23.7, 14.9, 14.2; IR (KBr):2956, 2874, 1735, 1631, 1455, 1363, 1079, 751, 698; HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}=547.2326$, found $=547.2333$.

J. X-Ray crystallographic analysis of 41b

Figure 1. X-ray structure of 41b
The title compound was recrystallized from hexane/DCM, by slow evaporation of solvent.
Table 1. Crystal data and structure refinement for 4lb

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C22 H22 Br N O6
474.32

296 K
$0.71073 \AA$
monoclinic
C 2 /c
$a=26.095(4) \AA \quad \alpha=90$.
$\mathrm{b}=9.3443 \AA \quad \beta=125.058$ (2) (4).
$\mathrm{c}=21.347(4) \AA \quad \gamma=90$.
$4260.9(10) \AA^{3}$
8
$1.479 \mathrm{Mg} / \mathrm{m}^{3}$
$1.965 \mathrm{~mm}^{-1}$
1944
$0.180 \times 0.160 \times 0.140 \mathrm{~mm}^{3}$
1.907 to 27.475°.
$-33<=\mathrm{h}<=33,-12<=\mathrm{k}<=12,-27<=\mathrm{l}<=27$
19336
$4870[\mathrm{R}(\mathrm{int})=0.0408]$
100.0 \%

Full-matrix least-squares on F^{2}
4870/ 0 / 275
1.041
$\mathrm{R} 1=0.0388, \mathrm{wR} 2=0.0966$
$\mathrm{R} 1=0.0648, \mathrm{wR} 2=0.1082$
0.412 and -0.449 e. \AA^{-3}

K.References

[1] Y. Gao, J. Zhang, W. Shan, W. Fei, J. Yao and W. Yao, Org. Lett., 2021, 23, 6377-6381.
[2] W. Fei, P. Xu, J. Hou and W. Yao, Chem. Commun., 2020, 56, 11669-11672.
[3] (a) M. Skrifvars and H.-W. Schmidt, Syn. comm., 2006, 25, 1809-1815; (b) H. Wang, Y. Wei, Y. Li,
S. Long, L.-J. Sun, S. Li and Y.-W. Lin, Org. Lett., 2022, 24, 6494-6498.

L. NMR Spectra

 しNNNNNN「こ「ご

\circ

 s/ il il s ノ ノ 11

$\begin{array}{llllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & & & & \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

앙융	

4ca

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\begin{array}{c}110 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array}$ | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 11 |
| :--- |

ANG ©

[^0]

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |
| $f 1$ | (ppm) | |

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |
| f 1 | (ppm) | |

[^1]

4 ao

 $\underbrace{\text { NNNNNN }}$

 \rightarrow ，

5b

¢		$\bar{\square}$	¢ ${ }^{\text {g }}$	N $\sim^{\text {No }}$	¢	\％	இ®®	®\％
ल응		$\stackrel{+}{\text {＋}}$	¢๐¢	が紂	¢	－	べ	$\stackrel{\dot{j}}{\square}$
111	\cdots	।	\}	\V	1	｜	11	\／

5b

®
$\stackrel{\infty}{\infty}$
i

$\stackrel{\text { ल゙ }}{\sim}$

5c

 ©

[^0]:

[^1]: :00

