Tf₂O/DMSO-mediated dual activation of aryl phosphinate to

access various aryl phosphonates

Hui-Qi Yue,^a Da-Wei Shi,^a Ming Li,^a Si-Qi Gao,^a Mu-Xin Sun,^a Shun Zhang,^a Shang-Dong Yang^b and Bin Yang^{*,a}

^a College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China. *E-mail*: yangbin_hy@ytu.edu.cn

Contents

1. General Information	S2
2. Full Optimization Table S1	S2
3. General Procedure	S3
4. Thermal analysis of DOPO and selected samples	S4
5. Control Experiments	S4
6. Characterization of the Products	S5
7. Reference	S14
8. Charts of Compounds	S15

1. General information

¹H, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra were recorded on a 500M Bruker AVANCE NEO spectrometer and a 400M JEOL ECZ400s in CDCl₃ with TMS as internal standard. High resolution mass spectroscopic (HRMS) and mass spectra were measured using Thermo Scientific DS II mass spectrometer, Thermo Q Exactive Focus and Bruker micro TOF-Q mass spectrometer. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM). Substrates of **2r**,^[1] **2t** ^[2] were prepared according to literature procedure. ^[1, 2] The P(O)-H reagents of **1b-1e**, ^[3] **1aa-1ag**, ^[4a] **1ah** ^[4b] were prepared according to literature procedure. ^[3, 4]

0		< _ОН т	fan DMSN		o
Ph-P-	OEt +			<hr/>	P=0
н			olvent, N ₂ , <i>1</i>		0
1a 2a		2a		:	3a
Entry	Tf ₂ O (eq.)	DMSO (eq.)	Solvent	<i>T</i> (°C)	Yield (%)
1	3.0	2.0	Toluene	90	14
2	3.0	2.0	DCE	90	8
3	3.0	2.0	1,4-dioxane	90	16
4	3.0	2.0	DMF	90	n.r
5	3.0	2.0	MeCN	90	43
6 ^b	3.0	2.0	MeCN	90	20
7 ^c	3.0	2.0	MeCN	90	44
8	3.0	3.0	MeCN	90	11
9	3.0	1.0	MeCN	90	59
10	3.0	0.5	MeCN	90	41
11 ^d	3.0	1.0	MeCN	90	58
12 ^e	3.0	1.0	MeCN	90	66
13 ^f	3.0	1.0	MeCN	90	63
14 ^e	2.5	1.0	MeCN	90	61
15 ^e	3.5	1.0	MeCN	90	70
16 ^e	4.0	1.0	MeCN	90	62
17 ^e	3.5	1.0	MeCN	80	68
18 ^e	3.5	1.0	MeCN	100	70
19 ^e	3.5	1.0	MeCN	110	76
20 ^e	3.5	1.0	MeCN	120	57
21 ^e	TFAA (3.5)	1.0	MeCN	80	n.r
22 ^e	Ac ₂ O (3.5)	1.0	MeCN	80	n.r
23 ^e	3.5	Ph ₂ S(O)1.0	MeCN	100	trace
24 ^e	3.5	ⁿ Bu ₂ S(O)1.0	MeCN	110	52
25 ^e	3.5		MeCN	110	15
26 ^g	3.5	1.0	MeCN	110	65

2. Full Optimization Table S1^a

Conditions: ^{*a*} **1a** (0.2 mmol), **2a** (4.0 eq.), solvent (2.0 mL), N₂, stirred at 90 °C for 11 h, isolated yield; ^{*b*} **2a** (3.0 eq.); ^{*c*} **2a** (5.0 eq.); ^{*d*} MeCN (1.0 mL); ^{*e*} MeCN (3.0 mL); ^{*f*} MeCN (4.0 mL); ^{*g*} Under air.

3. General Procedure

3.1 Phenols and alcohols as substrates

To a Schlenk tube were added 2 (0.8 mmol, 4.0 eq.), (for 2d-2h, 2j-2p and 1ab-1ad, 0.15 eq. TBAB was added), and charged with nitrogen for three times. Then, anhydrous MeCN (3.0 mL), 1 (0.2 mmol, 1.0 eq.), Tf₂O (0.7 mmol, 3.5 eq.) and DMSO (0.2 mmol, 1.0 eq.) were added *via* syringe in turn. The mixture was allowed to stir at 110 °C in oil bath for 11h. At the completion of the reaction, the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9: 1) to afford the products 3 or 5a-5c.

3.2 Thiophenols (4f-4h) as substrates

To a Schlenk tube were added **4f-4h** (0.6 mmol, 3.0 eq.) and charged with nitrogen for three times. Then, anhydrous MeCN (3.0 mL), **1a** (0.2 mmol, 1.0 eq.), Tf₂O (0.3 mmol, 1.5 eq.) and DMSO (0.2 mmol, 1.0 eq.) were added *via* syringe in turn. The mixture was allowed to stir at RT for 11h. At the completion of the reaction, the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9: 1) to afford the products **5f-5h**.

4. Thermal analysis of DOPO and selected samples.

Figure S1 Thermal analysis of DOPO and selected samples. **Table S2.** TG data of DOPO, **3q**, **3r**, **3s** and **3t** under nitrogen atmosphere.

Sample	T -5wt%(℃)	T-50wt% (°C)
DOPO	155.2	289.9
3q	281.5	413.7
3r	117.0	428.7
3s	253.6	340.3
3t	283.7	370.0

5. Control Experiments

6. Characterization of the Products

diphenyl phenylphosphonate. Performed according to the general procedure and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3a** as colorless oil (47.2 mg, 76%): ¹H NMR (400 MHz, CDCl₃): δ 7.99-7.93 (m, 2H), 7.58-7.54 (m, 1H), 7.49-7.44 (m, 2H), 7.29-7.25 (m, 4H), 7.20-7.17 (m, 4H), 7.14-7.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 150.3 (d, $J_{C-P} = 7.0$ Hz), 133.1 (d, $J_{C-P} = 3.0$ Hz), 132.1 (d, $J_{C-P} = 10.0$ Hz), 129.6, 128.5 (d, $J_{C-P} = 16.0$ Hz), 126.8 (d, $J_{C-P} = 192.0$ Hz), 125.0, 120.5 (d, $J_{C-P} = 5.0$ Hz). ³¹P NMR (203 MHz, CDCl₃): δ 11.72. MS (ESI): 311.5 (M+1)⁺.

The analytical data matched those reported in the literature.^[5]

bis(4-fluorophenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3b** as colorless oil (56.8 mg, 82%): ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.91 (m, 2H), 7.65-7.60 (m, 1H), 7.54-7.49 (m, 2H), 7.16-7.12 (m, 4H), 7.00-6.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 159.8 (d, J_{C-F} = 243.0 Hz), 146.0 (dd, J_1 = 3.0 Hz, J_2 = 8.0 Hz), 133.5 (d, J_{C-P} = 3.0 Hz), 132.2 (d, J_{C-P} = 11.0 Hz), 128.7 (d, J_{C-F} = 16.0 Hz), 126.2 (d, J_{C-P} = 192.0 Hz), 122.0 (dd, J_1 = 4.0 Hz, J_2 = 8.0 Hz), 116.3 (d, J_{C-F} = 24.0 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 12.63. ¹⁹F NMR (376 MHz, CDCl₃): δ -117.4. MS (ESI): 347.1 (M+1)⁺. The analytical data matched those reported in the literature.^[5]

bis(4-chlorophenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3c** as colorless oil (61.7 mg, 81%): ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.90 (m, 2H), 7.65-7.60 (m, 1H), 7.54-7.49 (m, 2H), 7.28-7.24 (m, 4H), 7.13-7.11 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 148.7 (d, J_{C-P} = 7.0 Hz), 133.6 (d, J_{C-P} = 4.0 Hz), 132.2 (d, J_{C-P} = 10.0 Hz), 130.7, 129.8, 128.8 (d, J_{C-P} = 16.0 Hz), 126.0 (d, J_{C-P} = 191.0 Hz), 121.9 (d, J_{C-P} = 4.0 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 12.42. HRMS calc. for C₁₈H₁₄Cl₂O₃P (M+H)⁺ = 379.0052, found 379.0055.

bis(4-bromophenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3d** as colorless oil (67.9 mg, 73%): ¹H NMR (500 MHz, CDCl₃): δ 7.95-7.91 (m, 2H), 7.64-7.61 (m, 1H), 7.53-7.49 (m, 2H), 7.41 (d, *J*=8.9 Hz, 4H), 7.07 (d, *J*=8.9 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 149.2 (d, *J*_{C-P} = 7.5 Hz), 133.6

(d, $J_{C-P} = 3.0 \text{ Hz}$), 132.8, 132.2 (d, $J_{C-P} = 10.3 \text{ Hz}$), 128.8 (d, $J_{C-P} = 15.7 \text{ Hz}$), 125.9 (d, $J_{C-P} = 191.3 \text{ Hz}$), 122.3 (d, $J_{C-P} = 4.5 \text{ Hz}$), 118.3 (d, $J_{C-P} = 1.4 \text{ Hz}$). ³¹P NMR (203 MHz, CDCl₃): δ 12.27. HRMS calc. for C₁₈H₁₄Br₂O₃P (M+H)⁺ = 468.9021, found 468.9025.

di-*p***-tolyl phenylphosphonate.** Performed according to the general procedure and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3e** as colorless oil (48.0 mg, 71%): ¹H NMR (500 MHz, CDCl₃): δ 7.96-7.92 (m, 2H), 7.59-7.56 (m, 1H), 7.49-7.45 (m, 2H), 7.06 (s, 8H), 2.27 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 148.1 (d, $J_{C-P} = 7.4$ Hz), 134.6, 133.0 (d, $J_{C-P} = 3.0$ Hz), 132.2 (d, $J_{C-P} = 10.3$ Hz), 130.1, 128.5 (d, $J_{C-P} = 15.6$ Hz), 127.0 (d, $J_{C-P} = 191.0$ Hz), 120.3 (d, $J_{C-P} = 4.5$ Hz), 20.6. ³¹P NMR (203 MHz, CDCl₃): δ 11.87. MS (ESI): 339.2 (M+1)⁺. The analytical data matched those reported in the literature.^[5]

bis(4-(tert-butyl)phenyl) phenylphosphonate0. Performed according to the general procedure and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3f** as colorless oil (57.4 mg, 68%): ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.76 (m, 2H), 7.51-7.46 (m, 1H), 7.41-7.35 (m, 6H), 7.27 (d, *J*=8.0 Hz, 4H), 1.27 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 152.7 (d, *J*_{C-P} = 3.0 Hz), 135.4 (d, *J*_{C-P} = 5.0 Hz), 133.5 (d, *J*_{C-P} = 107 Hz), 132.5 (d, *J*_{C-P} = 4 Hz), 121.6 (d, *J*_{C-P} = 11.0 Hz), 128.3 (d, *J*_{C-P} = 14.0 Hz), 126.4 (d, *J*_{C-P} = 2.0 Hz), 122.7 (d, *J*_{C-P} = 6.0 Hz), 34.7, 31.1. ³¹P NMR (203 MHz, CDCl₃): δ 11.84. HRMS calc. for C₂₆H₃₂O₃P (M+H) ⁺: = 423.2084, found 423.2081.

di([1,1'-biphenyl]-4-yl) phenylphosphonate. Performed according to the general procedure and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3g** as white solid (63.8 mg, 69%): ¹H NMR (400 MHz, CDCl₃): δ 8.05-7.99 (m, 2H), 7.66-7.61 (m, 1H), 7.55-7.50 (m, 10H), 7.42 (t, *J*=5 Hz, 4H), 7.35-7.26 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 149.8 (d, *J*_{C-P} = 8 Hz), 140.2, 138.3, 133.3 (d, *J*_{C-P} = 3 Hz), 132.3 (d, *J*_{C-P} = 11 Hz), 128.8, 128.6, 128.4, 126.8 (d, *J*_{C-P} = 192 Hz), 127.3, 127.0, 120.9 (d, *J*_{C-P} = 5 Hz) ³¹P NMR (162 MHz, CDCl₃): δ 12.74. HRMS calc. for C₃₀H₂₄O₃P (M+H) ⁺: 463.1458, found 463.1458.

bis(3,4-dimethylphenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3h** as colorless oil (62.3 mg, 85%): ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.92 (m, 2H), 7.60-7.55 (m, 1H), 7.50-7.45 (m, 2H), 7.02-7.69 (m, 4H), 6.90-7.87 (m, 2H), 2.18 (s, 6H), 2.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ

148.3 (d, $J_{C-P} = 7.0$ Hz), 138.1, 133.2, 132.9 (d, $J_{C-P} = 3.0$ Hz), 132.3 (d, $J_{C-P} = 10.0$ Hz), 130.4, 128.5 (d, $J_{C-P} = 15.0$ Hz), 127.3 (d, $J_{C-P} = 192.0$ Hz), 121.6 (d, $J_{C-P} = 4.0$ Hz), 117.6 (d, $J_{C-P} = 4.0$ Hz), 19.8, 19.0. ³¹P NMR (203 MHz, CDCl₃): δ 11.67. HRMS calc. for C₂₂H₂₄O₃P (M+H)⁺ = 367.1458, found 367.1457.

bis(3,4-difluorophenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3i** as colorless oil (59.5 mg, 78%): ¹H NMR (500 MHz, CDCl₃): δ 7.95-7.91 (m, 2H), 7.68-7.65 (m, 1H), 7.57-7.53 (m, 2H), 7.12-7.05 (m, 4H), 6.96-6.93 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 149.1 (dd, J_1 = 13.8 Hz, J_2 = 509.6 Hz), 149.0 (t, J_{C-F} = 14.3 Hz), 145.6-145.5 (m), 133.9 (d, J_{C-P} = 3.3 Hz), 132.2 (d, J_{C-P} = 10.6 Hz), 128.9 (d, J_{C-P} = 15.7 Hz), 125.3 (d, J_{C-P} = 191.6 Hz), 117.6 (d, J_{C-P} = 18.6 Hz), 116.6-116.5 (m), 110.7 (dd, J_1 = 4.5 Hz, J_2 = 20.3 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 13.01. ¹⁹F NMR (470 MHz, CDCl₃): δ -133.5 (d, J_{F-F} = 21.7 Hz), -141.2 (d, J_{F-F} = 23.2 Hz). HRMS calc. for C₁₈H₁₂F₄O₃P (M+H)⁺ = 383.0455, found 383.0455.

di(**naphthalen-2-yl**) **phenylphosphonate.** Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3j** as yellow oil (53.3 mg, 65%): ¹H NMR (500 MHz, CDCl₃): δ 8.06-8.02 (m, 2H), 7.80-7.77 (m, 4H), 7.73 (d, *J*=8.0 Hz, 2H), 7.69 (s, 2H), 7.62-7.59 (m, 1H), 7.53-7.49 (m, 2H), 7.47-7.41 (m, 4H), 7.36-7.34 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 148.0 (d, *J*_{C-P} = 7.8 Hz), 133.8, 133.3 (d, *J*_{C-P} = 3.2 Hz), 132.3 (d, *J*_{C-P} = 10.2 Hz), 131.0, 129.9, 128.8, 128.7, 127.6 (d, *J*_{C-P} = 14.5 Hz), 126.7 (d, *J*_{C-P} = 191.0 Hz), 126.6, 125.5, 120.5 (d, *J*_{C-P} = 4.5 Hz), 117.2 (d, *J*_{C-P} = 4.8 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 12.10. HRMS calc. for C₂₆H₂₀O₃P (M+H)⁺ = 411.1145, found 411.1144.

bis(5,6,7,8-tetrahydronaphthalen-2-yl) phenylphosphonate. Performed according to the general procedure and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3k** as colorless oil (64.4 mg, 77%): ¹H NMR (500 MHz, CDCl₃): δ 7.98-7.93 (m, 2H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 2H), 6.95-6.87 (m, 6H), 2.68 (s, 8H), 1.74-1.71 (m, 8H). ¹³C NMR (125 MHz, CDCl₃): δ 147.9 (d, *J*_{C-P} = 7.5 Hz), 138.6, 133.8, 132.9 (d, *J*_{C-P} = 3.2 Hz), 132.3 (d, *J*_{C-P} = 10.2 Hz), 130.0, 128.5 (d, *J*_{C-P} = 15.6 Hz), 127.3 (d, *J*_{C-P} = 191.3 Hz), 120.7 (d, *J*_{C-P} = 4.1 Hz), 117.7 (d, *J*_{C-P} = 4.1 Hz), 29.4, 28.7, 23.1, 22.8. ³¹P NMR (203 MHz, CDCl₃): δ 11.67. HRMS calc. for C₂₆H₂₈O₃P (M+H) ⁺: = 419.1771, found 419.1772.

di-*o*-tolyl phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3l** as colorless oil (42.6 mg, 63%): ¹H NMR (500 MHz, CDCl₃): δ 8.03-7.99 (m, 2H), 7.64-7.60 (m, 1H), 7.54-7.50 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 7.3 Hz, 2H), 7.11-7.08 (m, 2H), 7.04 (t, *J* = 7.3 Hz, 2H), 2.20 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 149.1 (d, *J*_{C-P} = 8.2 Hz), 133.1 (d, *J*_{C-P} = 3.3 Hz), 132.1 (d, *J*_{C-P} = 10.3 Hz), 131.3, 129.5 (d, *J*_{C-P} = 5.6 Hz), 128.6 (d, *J*_{C-P} = 15.6 Hz), 128.5, 126.9, 125.0, 120.5 (d, *J*_{C-P} = 2.6 Hz), 16.5. ³¹P NMR (203 MHz, CDCl₃): δ 11.34. HRMS calc. for C₂₀H₂₀O₃P (M+H) ⁺: = 339.1145, found 339.1140.

bis(2-methoxyphenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3m** as colorless oil (30.4 mg, 41%): ¹H NMR (400 MHz, CDCl₃): δ 8.09-8.03 (m, 2H), 7.60-7.55 (m, 1H), 7.51-7.45 (m, 2H), 7.26-7.22 (m, 2H), 7.12-7.07 (m, 2H), 6.90-6.83 (m, 4H), 3.71 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 150.9 (d, $J_{C-P} = 4$ Hz), 139.7 (d, $J_{C-P} = 8$ Hz), 132.7 (d, $J_{C-P} = 4$ Hz), 132.3 (d, $J_{C-P} = 10$ Hz), 127.7 (d, $J_{C-P} = 195$ Hz), 128.1 (d, $J_{C-P} = 16$ Hz), 125.8, 122.1 (d, $J_{C-P} = 4$ Hz), 112.7, 120.5, 52.7. ³¹P NMR (162 MHz, CDCl₃): δ 13.31. HRMS calc. for C₂₀H₂₀O₅P (M+H) ⁺: 371.1043, found 371.1042.

bis(2-bromophenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3n** as colorless oil (32.6 mg, 35%): ¹H NMR (500 MHz, CDCl₃): δ 8.17-8.12 (m, 2H), 7.66-7.63 (m, 1H), 7.55-7.51 (m, 4H), 7.46 (d, J = 8.2 Hz, 2H), 7.26-7.21 (m, 2H), 7.02 (t, J = 7.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 147.7 (d, $J_{C-P} = 7.3$ Hz), 133.7, 133.6 (d, $J_{C-P} = 3.0$ Hz), 132.6 (d, $J_{C-P} = 10.9$ Hz), 128.7, 128.5, 126.1 (d, $J_{C-P} = 194.3$ Hz), 126.3, 121.9 (d, $J_{C-P} = 2.7$ Hz), 114.9 (d, $J_{C-P} = 7.2$ Hz). ³¹P NMR (203 MHz, CDCl₃): δ 12.40. HRMS calc. for C₁₈H₁₄Br₂O₃P (M+H)⁺ = 468.9021, found 468.9026.

bis(2,5-dimethylphenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **30** as colorless oil (31.5 mg, 43%): ¹H NMR (500 MHz, CDCl₃): δ 8.02-7.97 (m, 2H), 7.63-7.60 (m, 1H), 7.53-7.49 (m, 2H), 7.03 (t, *J* = 8.0 Hz, 4H), 6.85 (d, *J* = 7.6 Hz, 2H), 2.24 (s, 6H), 2.15 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 145.4 (d, *J*_{C-P} = 7.5 Hz), 136.3, 133.9, 133.5 (d, *J*_{C-P} = 2.8 Hz), 132.6 (d, *J*_{C-P} = 10.6 Hz), 129.1, 128.5 (d, *J*_{C-P} = 16.3 Hz), 126.3 (d, *J*_{C-P} = 193.3 Hz), 121.5 (d, *J*_{C-P} = 2.6 Hz), 114.3 (d, *J*_{C-P} = 6.8

Hz), 20.4. ³¹P NMR (203 MHz, CDCl₃): δ 12.48. HRMS calc. for C₂₀H₁₈Br₂O₃P (M+H)⁺ = 496.9334, found 496.9338.

bis(2-bromo-4-methylphenyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3p** as colorless oil (35.5 mg, 36%): ¹H NMR (500 MHz, CDCl₃): δ 8.14-8.09 (m, 2H), 7.63-7.60 (m, 1H), 7.53-7.49 (m, 2H), 7.33 (t, *J* = 10.5 Hz, 4H), 7.01 (d, *J* = 8.3 Hz, 2H), 2.27 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 145.4 (d, *J*_{C-P} = 7.5 Hz), 136.3, 133.9, 133.5 (d, *J*_{C-P} = 2.8 Hz), 132.6 (d, *J*_{C-P} = 10.6 Hz), 129.1, 128.5 (d, *J*_{C-P} = 16.3 Hz), 126.3 (d, *J*_{C-P} = 193.3 Hz), 121.5 (d, *J*_{C-P} = 2.6 Hz), 114.3 (d, *J*_{C-P} = 6.8 Hz), 20.4. ³¹P NMR (203 MHz, CDCl₃): δ 12.48. HRMS calc. for C₂₀H₁₈Br₂O₃P (M+H)⁺ = 496.9334, found 496.9338.

4-phenyldinaphtho[**2**,**1**-**d**:**1**',**2**'-**f**][**1**,**3**,**2**]**dioxaphosphepine 4-oxide.** Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **3q** as white solid (71.0 mg, 87%): ¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, *J* = 8.9 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.68-7.56 (m, 4H), 7.51-7.45 (m, 3H), 7.38-7.28 (m, 5H), 7.00 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 147.5 (d, *J*_{C-P} = 10.4 Hz), 145.7 (d, *J*_{C-P} = 9.8 Hz), 133.5 (d, *J*_{C-P} = 3.1 Hz), 132.4 (d, *J*_{C-P} = 9.8 Hz), 132.1 (d, *J*_{C-P} = 66.6 Hz), 131.5, 131.3, 130.7, 128.5 (d, *J*_{C-P} = 185.7 Hz), 121.8 (d, *J*_{C-P} = 2.4 Hz), 121.7 (d, *J*_{C-P} = 1.7 Hz), 120.8 (d, *J*_{C-P} = 3.1 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 27.19. HRMS calc. for C₂₆H₁₈O₃P (M+H) ⁺ = 409.0988, found 409.0989.

9,14-dibromo-4-phenyldinaphtho[**2,1-d:1',2'-f**][**1,3,2**]**dioxaphosphepine 4-oxide.** Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **3r** as white solid (78.9 mg, 70%): ¹H NMR (500 MHz, CDCl₃): δ 8.15 (d, *J* = 2.0 Hz, 1H), 8.10 (d, *J* = 2.0 Hz, 1H), 8.00 (d, *J* = 8.9 Hz, 1H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.68 (d, *J* = 9.4 Hz, 1H), 7.62-7.58 (m, 3H), 7.44-7.37 (m, 4H), 7.28 (s, 1H), 7.19 (d, *J* = 9.1 Hz, 1H), 7.03 (d, *J* = 8.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 147.8 (d, *J*_{C-P} = 10.3 Hz), 146.1 (d, *J*_{C-P} = 9.9 Hz), 133.8 (d, *J*_{C-P} = 2.8 Hz), 133.0, 132.7, 132.4 (d, *J*_{C-P} = 10.0 Hz), 130.8 (d, *J*_{C-P} = 5.5 Hz), 130.6, 130.5, 130.3 (d, *J*_{C-P} = 3.8 Hz), 130.0, 128.6 (d, *J*_{C-P} = 5.0 Hz), 128.4 (d, *J*_{C-P} = 18.4 Hz), 124.3 (d, *J*_{C-P} = 185.8 Hz), 120.1 (d, *J*_{C-P} = 7.2 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 27.27. HRMS calc. for C₂₆H₁₆Br₂O₃P (M+H) ⁺ = 566.9178, found 566.9178.

6-phenyldibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **3s** as white solid (54.3 mg, 88%): ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.70 (m, 2H), 7.62-7.56 (m, 3H), 7.45-7.34 (m, 6H), 7.12-7.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 147.8 (d, $J_{C-P} = 10.0$ Hz), 133.5 (d, $J_{C-P} = 3.0$ Hz), 132.3 (d, $J_{C-P} = 10.0$ Hz), 130.0 (d, $J_{C-P} = 14.0$ Hz), 128.7, 128.5, 128.3, 126.3, 124.7 (d, $J_{C-P} = 188.0$ Hz), 121.8 (d, $J_{C-P} = 3.0$ Hz). ³¹P NMR (203 MHz, CDCl₃): δ 26.00. HRMS calc. for C₁₈H₁₄O₃P (M+H) ⁺: 309.0675, found 309.0671.

2,10-dibromo-6-phenyldibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **3t** as white solid (73.2 mg, 79%): ¹H NMR (500 MHz, CDCl₃): δ 7.75-7.70 (m, 4H),7.66-7.62 (m, 1H), 7.52 (dd, $J_1 = 2.3$ Hz, $J_2 = 8.7$ Hz, 2H), 7.49-7.45 (m, 2H), 7.00 (d, J = 8.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 146.9 (d, $J_{C-P} = 9.9$ Hz), 133.9 (d, $J_{C-P} = 2.8$ Hz), 133.4, 132.6, 132.3 (d, $J_{C-P} = 10.0$ Hz), 129.5, 128.7 (d, $J_{C-P} = 15.6$ Hz), 124.0 (d, $J_{C-P} = 187.4$ Hz), 123.7 (d, $J_{C-P} = 3.8$ Hz), 119.5 (d, $J_{C-P} = 1.9$ Hz). ³¹P NMR (203 MHz, CDCl₃): δ 26.09. HRMS calc. for C₁₈H₁₂Br₂O₃P (M+H) ⁺: 466.8865, found 466.8867.

12-phenyl-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 4/1) to afford **3u** as white solid (37.5 mg, 50%): ¹H NMR (500 MHz, CDCl₃): δ 7.53 (t, *J* = 7.4 Hz, 1H), 7.47-7.43 (m, 2H), 7.36-7.31 (m, 2H), 7.27 (d, *J* = 7.8 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 7.4 Hz, 1H), 6.82 (t, *J* = 7.8 Hz, 1H), 6.11 (d, *J* = 8.1 Hz, 1H), 3.16-3.09 (m, 2H), 2.93-2.85 (m, 2H), 2.37-2.34 (m, 1H), 2.29-2.26 (m, 1H), 2.14-2.04 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 146.4 (dd, *J*₁ = 1.9 Hz, *J*₂ = 12.9 Hz), 145.7 (d, *J*_{C-P} = 8.5 Hz), 143.3 (d, *J*_{C-P} = 9.3 Hz), 139.7 (dd, *J*₁ = 3.2 Hz, *J*₂ = 22.7 Hz), 133.1 (d, *J*_{C-P} = 3.2 Hz), 132.4 (d, *J*_{C-P} = 9.2 Hz), 128.8, 128.0, 127.9, 124.3 (d, *J*_{C-P} = 186.6 Hz), 123.0 (d, *J*_{C-P} = 1.7 Hz), 122.3 (d, *J*_{C-P} = 2.4 Hz), 122.0 (d, *J*_{C-P} = 2.9 Hz), 121.8 (d, *J*_{C-P} = 3.7 Hz), 59.3, 38.3 (d, *J*_{C-P} = 18.2 Hz), 30.6 (d, *J*_{C-P} = 9.1 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 13.46. HRMS calc. for C₂₃H₂₀O₃P (M+H) ⁺: 375.1145, found 375.1143.

diphenyl *p*-tolylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3aa** as colorless oil (47.4 mg, 73%): ¹H NMR (500 MHz, CDCl₃): δ 7.87-7.82 (m, 2H), 7.31-7.26 (m, 6H), 7.18 (d, *J* = 8.0 Hz, 4H), 7.13 (t, *J* = 7.4 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 150.4 (d, *J*_{C-P} = 7.4 Hz), 143.9 (d, *J*_{C-P} = 3.3 Hz), 132.3 (d, *J*_{C-P} = 10.9 Hz), 129.7, 129.4 (d, *J*_{C-P} = 16.3 Hz), 125.0, 123.5 (d, *J*_{C-P} = 194.0 Hz), 120.6 (d, *J*_{C-P} = 4.4 Hz), 21.7. ³¹P NMR (203 MHz, CDCl₃): δ 12.50. HRMS calc. for C₁₉H₁₈O₃P (M+H) ⁺: 325.0988, found 325.0985.

diphenyl (4-(tert-butyl)phenyl)phosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3ab** as colorless oil (47.6 mg, 65%): ¹H NMR (500 MHz, CDCl₃): δ 8.00-7.96 (m,2H), 7.62-7.59 (m, 1H), 7.52-7.48 (m, 2H), 7.28 (d, J = 8.8 Hz, 4H), 7.10 (d, J = 8.7 Hz, 4H), 1.27 (s, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 156.8 (d, $J_{C-P} = 3$ Hz), 150.5 (d, $J_{C-P} = 7.6$ Hz), 132.1 (d, $J_{C-P} = 10.9$ Hz), 129.6, 125.7 (d, $J_{C-P} = 16.2$ Hz), 125.0, 123.6 (d, $J_{C-P} = 194.7$ Hz), 120.6 (d, $J_{C-P} = 4.5$ Hz), 35.1, 31.0. ³¹P NMR (203 MHz, CDCl₃): δ 12.35. HRMS calc. for C₂₂H₂₄O₃P (M+H) ⁺: 367.1458, found 367.1455.

diphenyl (4-methoxyphenyl)phosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3ac** as colorless oil (42.9 mg, 63%): ¹H NMR (500 MHz, CDCl₃): δ 7.91-7.86 (m, 2H), 7.30-7.26 (m, 4H), 7.19-7.17 (m, 4H), 7.15-7.12 (m, 2H), 6.99-6.97 (m, 2H), 3.85 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.4 (d, *J*_{C-P} = 3.6 Hz), 150.4 (d, *J*_{C-P} = 7.3 Hz), 134.3 (d, *J*_{C-P} = 11.9 Hz), 129.7, 125.0, 120.6 (d, *J*_{C-P} = 4.5 Hz), 117.8 (d, *J*_{C-P} = 199.4 Hz), 114.2 (d, *J*_{C-P} = 17.1 Hz), 55.4. ³¹P NMR (203 MHz, CDCl₃): δ 12.71. HRMS calc. for C₁₀H₁₈O₄P (M+H) ⁺: 341.0937, found 341.0939.

diphenyl [1,1'-biphenyl]-4-ylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3ad** as colorless oil (49.5 mg, 64%): ¹H NMR (500 MHz, CDCl₃): δ 8.05-8.00 (m, 2H), 7.73-7.70 (m, 2H), 7.61 (d, *J* = 8.5 Hz, 2H), 7.48-7.45 (m, 2H), 7.42-7.39 (m, 1H), 7.30 (t, *J* = 8.3 Hz, 4H), 7.23-7.21 (m, 4H), 7.17-7.13 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 150.4 (d, *J*_{C-P} = 7.8 Hz), 145.9 (d, *J*_{C-P} = 3 Hz), 139.6, 132.8 (d, *J*_{C-P} = 10.9 Hz), 129.7, 129.0, 128.4, 127.3 (d, *J*_{C-P} = 16.3 Hz), 127.3, 125.2 (d, *J*_{C-P} = 193.9 Hz), 125.1, 120.6 (d, *J*_{C-P} = 4.4 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 11.92. HRMS calc. for C₂₄H₂₀O₃P (M+H) ⁺ = 387.1145, found 387.1146.

diphenyl naphthalen-2-ylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3ae** as colorless oil (50.4 mg, 70%): ¹H NMR (500 MHz, CDCl₃): δ 8.57 (d, *J* = 16.4 Hz, 2H), 7.96-7.87 (m, 4H), 7.63-7.55 (m, 2H),

7.29-7.21 (m, 8H), 7.14-7.11 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 150.3 (d, $J_{C-P} = 7.4$ Hz), 135.3 (d, $J_{C-P} = 2.8$ Hz), 135.1 (d, $J_{C-P} = 10.9$ Hz), 132.2 (d, $J_{C-P} = 17.7$ Hz), 129.7, 129.1, 128.7, 128.6 (d, $J_{C-P} = 14.8$ Hz), 127.8, 127.1, 126.3 (d, $J_{C-P} = 10.1$ Hz), 125.1, 123.7 (d, $J_{C-P} = 192.0$ Hz), 120.6 (d, $J_{C-P} = 4.5$ Hz). ³¹P NMR (203 MHz, CDCl₃): δ 12.13. HRMS calc. for C₂₂H₁₈O₃P (M+H) ⁺ = 361.0988, found 361.0988.

diphenyl (4-fluorophenyl)phosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3af** as colorless oil (41.4 mg, 63%): ¹H NMR (500 MHz, CDCl₃): δ 8.00-7.95 (m, 2H), 7.30 (t, *J* = 8.0 Hz, 4H), 7.20-7.14 (m, 8H). ¹³C NMR (125 MHz, CDCl₃): δ 165.8 (dd, *J*₁ = 4.2 Hz, *J*₂ = 253.7 Hz), 150.2 (d, *J*_{C-P} = 7.4 Hz), 135.0 (dd, *J*₁ = 9.1 Hz, *J*₂ = 11.8 Hz), 129.7, 125.2, 122.8 (dd, *J*₁ = 3.0 Hz, *J*₂ = 196.6 Hz), 120.5 (d, *J*_{C-P} = 4.5 Hz), 116.1 (dd, *J*₁ = 17.1 Hz, *J*₂ = 21.6 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 10.66. ¹⁹F NMR (470 MHz, CDCl₃): δ -104.1. HRMS calc. for C₁₈H₁₅FO₃P (M+H) ⁺ = 329.0737, found 329.0738.

diphenyl *o*-tolylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **3ag** as colorless oil (27.9 mg, 43%): ¹H NMR (500 MHz, CDCl₃): δ 8.10-8.05 (m, 1H), 7.51-7.48 (m, 1H), 7.35-7.27 (m, 6H), 7.19-7.12 (m, 6H), 2.76 (d, *J* = 1.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 150.4 (d, *J*_{C-P} = 7.9 Hz), 142.1 (d, *J*_{C-P} = 10.3 Hz), 134.5 (d, *J*_{C-P} = 11.0 Hz), 133.3 (d, *J*_{C-P} = 2.8 Hz), 131.5 (d, *J*_{C-P} = 15.6 Hz), 129.7, 125.7 (d, *J*_{C-P} = 166.6 Hz), 125.7 (d, *J*_{C-P} = 15.8 Hz), 125.0, 120.4 (d, *J*_{C-P} = 4.6 Hz), 21.5 (d, *J*_{C-P} = 3.5 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 12.52. HRMS calc. for C₁₉H₁₈O₃P (M+H) ⁺: = 325.0988, found 325.0987.

bis(2,2,2-trifluoroethyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5a** as colorless oil (47.7 mg, 74%): ¹H NMR (500 MHz, CDCl₃): δ 7.85-7.81 (m, 2H), 7.68-7.64 (m, 1H), 7.56-7.52 (m, 2H), 4.51-4.34 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 133.9 (d, J_{C-P} = 3.3 Hz), 131.8 (d, J_{C-P} = 10.9 Hz), 128.9 (d, J_{C-P} = 16.2 Hz), 124.6 (d, J_{C-P} = 194.9 Hz), 122.5 (dd, J_1 = 9.1 Hz, J_2 = 275.9 Hz), 62.3 (qd, J_1 = 4.8 Hz, J_2 = 37.8 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 21.33. ¹⁹F NMR (470 MHz, CDCl₃): δ - 75.2. HRMS calc. for C₁₀H₁₀F₆O₃P (M+H) ⁺: = 323.0266, found 323.0266.

bis(2,2,2-trichloroethyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5b** as colorless oil (66.8 mg, 80%): ¹H NMR (500 MHz, CDCl₃): δ 7.96-7.91 (m, 2H), 7.67-7.64 (m, 1H), 7.56-7.52 (m, 2H), 4.74-4.70 (m, 2H), 4.67-4.63 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 133.6 (d, *J*_{C-P} = 2.9 Hz),

131.9 (d, $J_{C-P} = 10.8$ Hz), 128.8 (d, $J_{C-P} = 15.9$ Hz), 125.6 (d, $J_{C-P} = 194.5$ Hz), 95.0 (d, $J_{C-P} = 10.1$ Hz), 75.8 (d, $J_{C-P} = 4.6$ Hz). ³¹P NMR (203 MHz, CDCl₃): δ 19.19. HRMS calc. for C₁₀H₁₀Cl₆O₃P (M+H) ⁺: = 418.8494, found 418.8499.

bis(2,2,3,3,3-pentafluoropropyl) phenylphosphonate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5c** as colorless oil (63.3 mg, 75%): ¹H NMR (500 MHz, CDCl₃): δ 7.84-7.80 (m, 2H), 7.68-7.64 (m, 1H), 7.56-7.52 (m, 2H), 4.60-4.40 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 133.9 (d, J_{C-P} = 3.3 Hz), 131.8 (d, J_{C-P} = 10.8 Hz), 128.9 (d, J_{C-P} = 16.3 Hz), 124.5 (d, J_{C-P} = 194.5 Hz), 118.3 (dt, J_1 = 34.5 Hz, J_2 = 284.2 Hz), 113.9-109.5 (m), 61.3 (td, J_1 = 4.7 Hz, J_2 = 285.5 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 21.45. ¹⁹F NMR (470 MHz, CDCl₃): δ -83.52, -124.44. HRMS calc. for C₁₂H₁₀F₁₀O₃P (M+H) ⁺: = 423.0202, found 423.0201.

S,S-di-*p*-tolyl phenylphosphonodithioate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5f** as colorless oil (48.2 mg, 65%): ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.75 (m, 2H), 7.47-7.42 (m, 1H), 7.38-7.30 (m, 6H), 7.03 (d, *J* = 8.0 Hz, 4H), 2.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 139.4 (d, *J*_{C-P} = 3.0 Hz), 135.4 (d, *J*_{C-P} = 4.0 Hz), 133.1 (d, *J*_{C-P} = 107.0 Hz), 132.4 (d, *J*_{C-P} = 4.0 Hz), 131.4 (d, *J*_{C-P} = 11.0 Hz), 129.9 (d, *J*_{C-P} = 2.0 Hz), 128.1 (d, *J*_{C-P} = 14.0 Hz), 122.3 (d, *J*_{C-P} = 6.0 Hz), 21.0. ³¹P NMR (203 MHz, CDCl₃): δ 49.92. MS (ESI): 315.1 (M+Na)⁺.

The analytical data matched those reported in the literature.^[6]

S,S-bis(2,5-dimethylphenyl) phenylphosphonodithioate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5g** as colorless oil (24.7 mg, 31%): ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.77 (m, 2H), 7.52-7.47 (m, 1H), 7.42-7.37 (m, 2H), 7.27 (s, 2H), 7.07-7.00 (m, 4H), 2.28 (s, 6H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 139.8 (d, $J_{C-P} = 4$ Hz), 137.5 (d, $J_{C-P} = 4$ Hz), 136.1 (d, $J_{C-P} = 3$ Hz), 134.5 (d, $J_{C-P} = 107$ Hz), 132.4 (d, $J_{C-P} = 4$ Hz), 131.4 (d, $J_{C-P} = 11$ Hz), 130.5, 130.5 (d, $J_{C-P} = 3$ Hz), 128.2 (d, $J_{C-P} = 14$ Hz), 125.5 (d, $J_{C-P} = 6$ Hz), 20.9, 20.6. ³¹P NMR (165 MHz, CDCl₃): δ 49.81. HRMS calc. for C₂₂H₂₄OPS₂ (M+H) ⁺: = 399.1001, found 399.1002.

S,S-bis(4-fluorophenyl) phenylphosphonodithioate. Performed according to the general procedure,

and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5h** as colorless oil (22.7 mg, 30%): ¹H NMR (500 MHz, CDCl₃): δ 7.80-7.75 (m, 2H), 7.55-7.51 (m, 1H), 7.45-7.40 (m, 6H), 6.97 (t, *J* = 8.6 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 163.7 (dd, *J*₁ = 2.9 Hz, *J*₂ = 249.4), 137.7 (dd, *J*₁ = 3.8 Hz, *J*₂ = 8.4 Hz), 132.9 (d, *J*_{C-P} = 3.5 Hz), 132.7 (d, *J*_{C-P} = 107.5 Hz), 131.6 (d, *J*_{C-P} = 10.9 Hz), 128.6 (d, *J*_{C-P} = 14.2 Hz), 121.0 (dd, *J*₁ = 3.4 Hz, *J*₂ = 6.1 Hz), 116.5 (dd, *J*₁ = 1.9 Hz, *J*₂ = 22.0 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 49.52 (d, *J* = 4.9 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ -110.75 (d, *J* = 5.4 Hz). HRMS calc. for C₁₈H₁₄F₂OPS₂ (M+H) ⁺: = 379.0186, found 379.0187.

O-ethyl Se-phenyl phenylphosphonoselenoate. Performed according to the general procedure, and purified by column chromatography (petroleum ether/ethyl acetate = 9/1) to afford **5i** as yellow oil (22.8 mg, 35%): ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.58 (m, 2H), 7.50-7.46 (m, 1H), 7.38-7.26 (m, 5H), 7.20-7.16 (m, 2H), 4.43-4.27 (m, 2H),1.41 (t, *J* = 8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 136.4 (d, *J*_{C-P} = 3 Hz), 132.8 (d, *J*_{C-P} = 138 Hz), 132.4 (d, *J*_{C-P} = 4 Hz), 131.0 (d, *J*_{C-P} = 11 Hz), 129.2 (d, *J*_{C-P} = 2 Hz), 128.7 (d, *J*_{C-P} = 3 Hz), 128.1 (d, *J*_{C-P} = 15Hz), 124.1 (d, *J*_{C-P} = 7 Hz), 62.6 (d, *J*_{C-P} = 7 Hz), 16.2 (d, *J*_{C-P} = 7 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 39.12. HRMS calc. for C₁₄H₁₆O₂PSe (M+H) ⁺: = 327.0048, found 327.0047.

ethyl phenyl phenylphosphonate. ¹H NMR (500 MHz, CDCl₃): δ 7.89-7.85 (m, 2H), 7.59-7.56 (m, 1H), 7.50-7.46 (m, 2H), 7.27 (t, *J* = 8.1 Hz, 2H), 7.15-7.11 (m, 3H),4.29-4.21 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 150.5 (d, *J*_{C-P} = 7.15 Hz), 132.8 (d, *J*_{C-P} = 3.2 Hz), 131.9 (d, *J*_{C-P} = 10.1 Hz), 129.6, 128.5 (d, *J*_{C-P} = 3.15.51 Hz), 127.4 (d, *J*_{C-P} = 190.2 Hz), 124.9, 120.5 (d, *J*_{C-P} = 4.3 Hz), 63.0 (d, *J*_{C-P} = 5.9 Hz), 16.3 (d, *J*_{C-P} = 6.4 Hz). ³¹P NMR (203 MHz, CDCl₃): δ 15.46. MS (ESI): 263.1 (M+1)⁺

The analytical data matched those reported in the literature.^[7]

7. Reference

- 1. L. Y. Kuo, D. C. Baker, A. K. Dortignacq, K. M. Dill, *Organometallics*, **2013**, *32*, 4759–4765.
- 2. J.-N. Volle, D. Filippini, C. Midrier, M. Sobecki, M. Drag, D. Virieux, J.-L. Pirata, *Synthesis*, **2011**, *15*, 2490-2494.
- 3. S.-J. An, G.-F. Tang, Y.-L. Zhong, L. Ma, Q.-C. Liu, J, Chem, Res., 2020 44, 641-645.
- (a) J.-M. Wang, E.-F. He, H.-L. Wang, W.-L. Hou, J. Xu, L. Yu, L.-L. Zhao, Z.-L. Zhang, H.-Q. Zhang, *Chinese, Chem, Lett.*, **2017**, *28*, 383-387; (b) I. Petneh ázy, Z. M. J ászay, A. Szab ó, K. Everaert. *Synth. Commun.*, **2003**, *33*, 1665-1674.
- 5. C.-Y. Li, L.-B. Han, Organometallics, 2020, 39, 3613-3617.
- 6. Y. Nishiyama, Y. Hazama, S. Yoshida, T. Hosoya, Org. Lett., 2017, 19, 3899-390.
- 7. M.-Y. Wang, J. Yang, S. Wang, H. Zhong, Tetrahedron Lett., 2020, 61, 151971.

8. Charts of compounds

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -24(f1 (ppm)

fl (ppm)

³¹P NMR (203 MHz, CDCl₃)

i

0

ppm

