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Computational details

The Gaussian 09 suite of ab initio programs1 was employed to perform the 

ground state and excited state geometry optimizations, vibrational frequency 

calculations, and intrinsic reaction coordinate (IRC) at the B3LYP functional with 

Grimme's GD3 dispersion correction, referring to the benchmark calculations in 

previous studies,2-5 and def2TZVP basis set.6-7 The triplet excited states were 

optimized by using time-dependent density functional theory (TDDFT) at the same 

level. The accuracy of numerical integrations is at the ultrafine grid (99,590) level. The 

solvent effect of N,N-dimethylacetamide (ε = 37.78) was considered by using the 

integral equation formalism polarizable continuum (IEFPCM)8 solvation model with 

the SMD radii.9 The Multiwfn program was used to perform spin population and 

natural population analysis.10



S3

Figure S1 Different paths of N-phenyl-2,2,2-trifluoromethylacetamide defluorination.
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Table S1 The calculated free energy difference using B3LYP-D3 and MP2 between two 
double-bonded carbons coupling with carbon radical in 5D.

ΔΔG (kcal/mol)

B3LYP-D3 3.3

MP2 3.0
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Figure S2 Different paths of hydrogen atom transfer from different additives.
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Figure S3 Different paths of hydrogen atom transfer to regenerate CySH.
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Figure S4 Different paths of photocatalyst regeneration assisted by formate radical.
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Figure S5 The scanning results of potential energy surface for coupling process 
between lithium formate radical and POD• radical.

Figure S6 The scanning results of potential energy surface for coupling process 
between sodium formate radical and POD• radical.
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Figure S7 The scanning results of potential energy surface for coupling process 
between potassium formate radical and POD• radical.

Figure S8 The scanning results of potential energy surface for coupling process 
between lithium formate radical and POD• radical.
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Figure S9 Different paths of N-phenyl-2,2,2-difluoromethylacetamide radical 5D 
hydrodefluorination.
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