Electronic Supplementary Information

Experimental Section

Chemicals and materials

Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), urea (CH₄N₂O), ammonium chloride (NH₄Cl), ammonium fluoride (NH₄F), yttrium chloridehexahydrate (YCl₃·6H₂O), ammoniumchloride-¹⁵N (¹⁵NH₄Cl-¹⁵N), potassium nitrate-¹⁵N (K¹⁵NO₃-¹⁵N), potassium sulfate (K₂SO₄), sulfamic acid, phosphoric acid, p-aminobenzenesulfonamide, N-(1-Naphthyl) ethylenediamine dihydrochloride, potassium sodium tartrate, NaNO₂ and Nessler's reagent and potassium nitrate (KNO₃) were purchased from Aladdin (Shanghai, China). Hydrochloric acid and ethanol (C₂H₅OH) were purchased from Beijing Chemical Works.

Synthesis of Y-Co(OH)F/CF and Co(OH)F/CF

A one-step hydrothermal method with some modifications was applied to prepare Y-Co(OH)F/CF catalysts. First, the cleaned Cu foam $(2 \times 4 \text{ cm}^2)$ was submerged in an aqueous solution with 30 mL of the following: 5 mmol Co(NO₃)₂·6H₂O, 5 mmol urea, 400 mg NH₄F and 0.05 mmol YCl₃·6H₂O. After being transferred into a 50 mL Teflon autoclave, the solution was heated at 120 °C for 12 hours. In the end, deionized water was used to clean up the generated Y-Co(OH)F/CF sample, and then dried at 50 °C in the oven. With the exception of adding 0.05 mmol YCl₃·6H₂O, the Co(OH)F/CF counterpart was synthesized similarly to Y-Co(OH)F/CF.

Materials Characterization

The morphology of Y-Co(OH)F/CF was investigated with a Zeiss Gemini 500 scanning electron microscope. Images from transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron

microscopy (HAADF-STEM) were recorded on a TalosS-FEG. Using a PANalytical X'Pert-PRO X-ray diffractometer with Cu K radiation, the powder X-ray diffraction(XRD) patterns of Y-Co(OH)F/CF were examined. The X-ray photoelectron spectrometer (XPS) manufactured by Kratos Analytical was used for studying the chemical valence states and elemental makeup of Y-Co(OH)F/CF. On a Bruker Avance NEO 600 NMR spectrometer, the spectra of ¹H NMR were analyzed.

Electrochemical NO₃RR measurements

A three-electrode setup was used for the electrochemical technique, and the CHI 660 electrochemical workstation was used for all electrochemical tests. A Pt foil, Y-Co(OH)F/CF (1×1 cm²), and SCE were used in the three-electrode setup as the counter electrode, working electrode and reference electrode, respectively. 35 mL of 0.5 M K₂SO₄ was placed separately to the H-cell's anode and cathode chambers for the nitrate reduction tests. From -0.7 to -1.5 V (vs. SCE), linear sweep voltammetry (LSV) curves were captured at a scan rate of 10 mV s⁻¹. After the LSV curves had stabilized, the 35 ml of 0.5 M K₂SO₄ was swapped out for 0.5 M K₂SO₄ with 200 mg L⁻¹ KNO₃-N. Pass argon gas through the electrolyte for 30 minutes, and two hours of chronoamperometry (i-t) investigates were conducted at various potentials with a 500 rpm mixing rate. Nitrate and ammonia concentrations were determined by UV-VIS spectroscopy. Electrochemical impedance spectroscopy (EIS) measurements were performed in a 0.5 M K₂SO₄ aqueous solution with 200 mg L⁻¹ of NO₃⁻-N at -1.3 V (vs. SCE) with frequency from 0.1 Hz to 100 kHz and an amplitude of 5 mV.

Determination of NO₃⁻-N

First, the electrolyte was withdrawn and diluted to 5 ml according to the measurement range after

the two hours of testing. Than 0.1 mL of HCl solution (1 M) and 0.01 mL of 0.8 wt% sulfamic acid solutionare then added to the electrolyte in sequence. After a thorough shake, the color was produced in drak for ten minutes. The absorbance was measured by UV-Vis spectrophotometry in the wavelength range of 200 nm and 300 nm. The final absorbance of NO_3 -N was calculated by the following formula: A = A220nm-2A275nm. The calibration curve is created by measuring the absorbance corresponding to the reference concentration of KNO₃ solution.

Determination of NO₂⁻-N

First, 5 mL of deionized water was used to dissolve 0.02 g of N-(1-naphthyl) ethylenediamine dihydrochloride and 0.4 g of p-aminobenzene sulfonamide. Add 1 mL of phosphoric acid (= 1.70 g mL⁻¹) next to act as a color developing agent. For 20 minutes, 5 mL of diluted electrolyte was combined with 0.1 mL of color developing agent. UV-Vis spectrophotometry was used to get the peak absorption spectrum at a wavelength of 540 nm. By using NaNO₂ standard solution, the calibration curve was produced.

Determination of NH₃-N

The diluted electrolyte was added Potassium sodium tartrate solution (0.1 mL, ρ =500 g/L) and asprepared Nessler's reagent (0.1 mL). After shaking well, the color was developed for 20 min in drak. UV-Vis spectrophotometry was used to detect the absorbance between the wavelengths of 380 nm and 530 nm. The absorbance at 420 nm is the absorbance of NH₄⁺-N. The calibration curve is created by measuring the absorbance corresponding to the reference concentration of NH₄Cl solution.

¹⁵N Isotope Labeling Experiments

Isotope labelling experiments using K¹⁵NO₃ as the raw nitrogen source. Before the NO₃RR test, a

0.5 M K₂SO₄ electrolyte solution containing 200 mg L⁻¹ K¹⁵NO₃-¹⁵N was added to the cathode chamber as the reactant. The pH of the tested electrolyte was adjusted to 1-2 with 4 M H₂SO₄ solution. In order to further quantify the NH₄⁺–N concentration, a standard curve of ¹⁵NH₄⁺–¹⁵N concentration versus integrated area (¹⁵NH₄⁺–¹⁵N/C₄H₄O₄) was obtained using ¹H NMR with maleic acid (C₄H₄O₄) as the external standard. First, different concentrations of ¹⁵NH₄⁺–¹⁵N (50, 100, 150, 200 and 250 mg L⁻¹) were dissolved in 0.5 M K₂SO₄, using 120 mg L⁻¹ C₄H₄O₄ as a standard solution. Next, 0.05 mL of deuterium oxide (D₂O) was mixed with 0.5 mL of the acidified electrolyte or standard solution and the ¹H NMR spectrum was further obtained by nuclear magnetic resonance detection.

Calculation equations of conversion ratio of NO_3^- , the selectivity of product, the yield rate of NH_4^+ and the Faradaic efficiency (FE):

 $Conversion(_{NO3-}) = \Delta c_{NO3-} / c0 \times 100\%$ (1)

Selectivity_(NH4+)=
$$c_{\text{NH4+}}/\Delta c_{\text{NO3-}} \times 100\%$$
 (2)

$$\operatorname{Yield}_{(\mathrm{NH4+})} = (c_{\mathrm{NH4+}} \times V) / (M_{\mathrm{NH3}} \times t \times S)$$
(3)

$$FE = (8F \times c_{\text{NH4+}} \times V) / (M_{\text{NH4+}} \times Q)$$
(4)

where Δc_{NO3^-} is the concentration difference of NO₃⁻ before and after reduction, c_0 is the initial concentration of NO₃⁻, c_{NH4+} is the measured NH₄⁺ concentration, V is the electrolyte volume in the cathode chamber (35 mL), t is the electrolysis time (2 h), M_{NH3} is the molar mass of NH₃, S is the geometric area of working electrode (1 cm²), F is the Faraday constant (96485 C mol⁻¹), and Q is the total charge during electrolysis.

Fig. S1 Schematic illustration of the synthesis procedures for the Y-Co(OH)F/CF.

Fig. S2 SEM image of Co(OH)F/CF.

Fig. S3 EDS spectrum of the Y-Co(OH)F/CF.

Fig. S4 (a) Full XPS spectrum and (b) high-resolution Co 2p XPS spectrum for Co(OH)F.

Fig. S5 (a) High-resolution O 1s XPS spectrum for Y-Co(OH)F; (b) High-resolution F 1s XPS spectra for different samples.

Fig. S6 The i-t curves of the Y-Co(OH)F/CF in 0.5 M K_2SO_4 with 200 mg L⁻¹ KNO₃-N at different potentials.

Fig. S7 (a) Corresponding calibration curve for calculating the concentration of NH_4^+ –N. (b) Corresponding calibration curve for calculating the concentration of NO_3^- –N.

Fig. S8 (a) Selectivity of NO_2 ⁻-N over the Y-Co(OH)F/CF at different potentials. (b) Calibration curve used to estimate the concentrations NO_2 ⁻-N.

Fig. S9 SEM image of Y-Co(OH)F/CF after NO₃RR testing.

Energy (kEV)

Fig. S10 EDS spectrum of Y-Co(OH)F/CF after NO₃RR testing.

Fig. R11 (a) High-resolution Co 2p XPS spectra, (b) high-resolution Y 3d XPS spectra, (c) high-resolution O 1s XPS spectra, (d) high-resolution F 1s XPS spectra of Y-Co(OH)F/CF before and after NO₃RR testing

Fig. S12 XRD patterns of Y-Co(OH)F/CF before and after NO₃RR testing.

Fig. S13 (a) Yield rates of ammonia from Y-Co(OH)F/CF in a K₂SO₄ electrolyte with and without nitrate. (b) NO_3^- -N and NH₃-N concentrations over the Y-Co(OH)F/CF at -1.3 V vs. SCE change with time. (c) ¹H NMR spectra of the electrolytes after electrolysis using ¹⁵NO₃⁻ and ¹⁴NO₃⁻ as the nitrogen source. (d) UV-Vis and ¹H NMR measurements of generated NH₃ concentrations using ¹⁴NO₃- and ¹⁵NO₃- as nitrogen sources.

Fig. S14 (a) ¹H NMR spectra of ¹⁵NH₄⁺⁻¹⁵N with different concentrations. (b) The standard curve of integral area (15 NH₄⁺⁻¹⁵N/C₄H₄O₄) against ¹⁵NH₄⁺⁻¹⁵N concentration.

Fig. S15 CV curves of (a) Y-Co(OH)F/CF and (c) Co(OH)F/CF at different scanning rates; Capacitance current densities of (b) Y-Co(OH)F/CF and (d) Co(OH)F/CF at -0.53 V (vs. SCE).

Fig. S16 EIS spectra of Y-Co(OH)F/CF, Co(OH)F/CF and CF.

Electrocatalyst	Electrolyte	Faradaic Efficiency (Potential)	Ref.
Y-Co(OH)F/CF	0.5mol K ₂ SO ₄ +	91.81% (-1.3V vs. SCE)	This work
Co ₃ O ₄ /Ti mesh	200 mg L ⁻¹ KNO ₃		
	$0.1 M Na_2 SO_4 +$	1.23% (2.19 V vs. RHE)	1
	100 g L ⁻¹ NO ₃ -		
Co ₃ O ₄ @NiO HNTs	$0.5 mol K_2 SO_4 +$	54.97% (-0.7V vs. RHE)	2
	200 mg L ⁻¹ KNO ₃		
Co/NC-800	$0.1 M Na_2 SO_4 +$	81.2 % (-1.2 V vs. Ag/AgCl)	3
	100 mg L ⁻¹ NO ₃ -		
Co ₃ O ₄ /CF	$50 \text{ mM } \text{Na}_2 \text{SO}_4 +$	22.19% (-1.3 V vs. Ag/AgCl)	4
	50 mg L ⁻¹ NO ₃ -		
[Bim]NTf ₂ -Co ₃ O _{4-x}	$0.1 M Na_2 SO_4 +$	84.74% (-1.41 V vs. Ag/AgCl)	5
	500 mg L ⁻¹ KNO ₃		
PP-Co	0.1 M NaOH +	90.1% (-0.6 V vs. RHE)	6
	0.1 M KNO ₃		
Co ₃ O ₄ /Co	0.1 M Na ₂ SO ₄ +	88.7% (-0.8 vs. RHE)	7
	1 mg mL ⁻¹ NO ₃ -		
Co–CuO _x	$500 \text{ mg } L^{-1} \text{ Na}_2 \text{SO}_4 +$	53.5%(-1.1 V vs. Ag/AgCl)	8
	144.4 mg L^{-1} KNO ₃		

Table S1 Comparison of electrochemical nitrate-to-ammonia performance between the Y-Co(OH)F/CF and some other reported Co-based electrocatalysts.

References

- 1. Y. Wang, Y. Yu, R. Jia, C. Zhang and B. Zhang, Natl. Sci. Rev., 2019, 6, 730-738.
- 2. Y. Wang, C. Liu, B. Zhang and Y. Yu, Sci. China Mater., 2020, 63, 2530-2538.
- 3. H. Liu, J. Qin, J. Mu and B. Liu, J. Colloid Interface Sci., 2023, 636, 134-140.
- 4. W. Fu, X. Du, P. Su, Q. Zhang and M. Zhou, ACS Appl. Mater. Interfaces, 2021, 13, 28348-28358.
- 5. D. Qin, S. Song, Y. Liu, K. Wang, B. Yang and S. Zhang, Angew. Chem., Int. Ed., 2023, 62.
- 6. Q. Chen, J. Liang, Q. Liu, K. Dong, L. Yue, P. Wei, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Z. Jiang and X. Sun, *Chem. Commun.*, 2022, **58**, 4259-4262.
- 7. F. Zhao, G. Hai, X. Li, Z. Jiang and H. Wang, Chem. Eng. J., 2023, 461, 141960.
- 8. Y. Li, J. Ma, Z. Wu and Z. Wang, Environ. Sci. Technol., 2022, 56, 8673-8681.