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Experimental

Sample preparation

The FeOOH sample was obtained by a facile solvothermal method. Firstly, 0.81 g FeCl3 

and 0.8 g NH4Cl were put into 50 mL deionized water with strong agitation. After that, the 

above mixed solution was transferred into a Teflon-linked steel autoclave and keeped at 120 °C 

for 16 h to form FeOOH/CC sample. Then, this sample were further collected and annealed at 

600 °C for 1 h in Ar to obtain FeS2/CC via using sulfur powder as the sulfur source. Afterwards, 

the above sample was annealed at 600 °C under 50 sccm NH3 for 1 h to obtain nitrogen doped 

Fe7S8 (N-Fe7S8).

Materials characterization

Morphologies and microstructures of FeS2 and N-Fe7S8 were investigated by using Field 

emission scanning electron micro-scope (FESEM, Hitachi SU8010) and the transmission 

electron microscope (TEM, JEOL 2100F). X-ray diffraction (XRD) reactor with Cu Kα 

radiation (Rigaku D/Max-2550) was used to check their phase structure. The X-Ray 

photoelectron spectroscopy (XPS) spectra and the Fe L-edge NEXAFS experiments were 

performed at beamline BL10B in the Hefei Light Source of National Synchrotron Radiation 

Laboratory (NSRL) in Hefei, China. The Fe-K edge X-ray absorption fine structure (XAFS) 

spectra were obtained in transmission mode on Table XAFS-500 (Specreation Instruments Co., 

Ltd.).
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Electrochemical measurements

HER performances of the working electrodes were conducted by using an electrochemical 

workstation (CH Instrument 660D) with a standard three-electrode setup at the temperature of 

25 °C, where the carbon rod (D = 8 mm) and saturated calomel electrode (SCE) and were used 

as the counter electrode and reference electrode respectively. The 1 M KOH solution was used 

as the electrolyte. The conversion potential of E(RHE) was obtained according to Eq. (1). 

E(RHE) = E(SCE) + 0.059 × pH + 0.244                       (1) 

The LSV curves were obtained at a scan rate of 5 mV s−1. The Tafel curves were derived by 

LSV curves. The EIS spectra were obtained by testing at the initial voltage within a frequency 

range from 100 kHz to 0.01 Hz, where AC amplitude was set as 5 mV. The HER stability test 

was carried out by a continuous current test at 100 mA cm-2 for 100 h. These results were 

revised by IR-compensation. The TOF values were calculated using a previously reported 

method, where the number of active sites was estimated as the amount of surface sites 

(including N, Fe and S atoms)[1].

Density functional theory (DFT) calculations.

The DFT calculations were performed by using the CASTEP program implemented in the 

Materials Studios package of Accelrys Inc. The electron exchange-correlation potential was 

treated by Perdew–Burke–Ernzerhof functional (PBE) of generalized gradient approximation 

(GGA) method2-3. The plane-wave kinetic energy cutoff and self-consistent field tolerance were 

set to 500 eV and 1.0 × 10-6 eV/atom, respectively. The Brillouin zone was sampled by a 2×2×1 

and 4×4×1 Monkhorst-Pack mesh k-points for surface structural optimization and density of 

states (DOS) calculations, respectively. The convergence criterions for geometry optimization 

were set to 1×10-5 eV/atom for energy, 0.03 eV/Å for maximum force and 1×10-3 Å for 

maximum displacement. DFT simulations were performed based on the crystal structures of 

cubic FeS2 (a=b=c=5.4179 Å, JCPDS No.42-1340) with space group of Pa-3 and hexagonal 

Fe7S8 with the space group of P3121. The FeS2 (001) surface was modeled by a periodic slab 

repeated in a 2×2 surface unit cell with a vacuum region of 15 Å between the slabs along the Z 

axis. The N-Fe7S8 (001) model was constructed by replacing a S atom with N in a pristine Fe7S8 

(001). The H2O absorption energy was calculated by the following equation, ∆EH2O= Esurf-H2O 

- Esurf -EH2O, where Esurf-H2O is the total energy of surface covered with a H2O molecule, Esurf 
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is the energy of clean surface, and EH2O is the energy of a H2O molecule in gas phase. A 

complete LST/QST approach was used to determine the transition state of water dissociation.

     
Scheme S1. Simplified schematics of the preparation process of N-Fe7S8/CC.

Figure S1. SEM images of (a) FeOOH and (b) N-FexSy-400.

     

Figure S2. SEM-TEM images of (a, b) FeS2 and (c) N-Fe7S8 samples. (d) HRTEM image of 
FeS2 sample.
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Figure S3. Elemental mapping images of the N-Fe7S8.

Figure S4. Raman spectra of FeS2@CC and N-Fe7S8@CC.
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Figure S5. Extended X-ray absorption fine structure spectra and fits in R-space at the Fe K-
edge of (a) N-Fe7S8 and (b) FeS2

Table S1. EXAFS fitting parameters at the Fe K-edge of FeS2 and N-Fe7S8 samples samples 

(S0
2=0.83)

samples path C. N.[a] R (Å) [b] σ2 ( 103 Å2) [c]
ΔE (eV) 

[d] 

R 

factor[e]

FeS2 Fe-S 4.7 2.26 4.6 3.4 0.02

Fe-N 0.2 2.01 7.7
N-Fe7S8

Fe-S 4.1 2.31 1.2
7.1 0.02

aC. N.: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; dΔE0: the inner 

potential correction. eR factor: goodness of fit.

Figure S6. LSV curves FeS2, N-FexSy-400 and N-FexSy-600.
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Figure S7. (a)TOF plots of FeS2 and N-Fe7S8 with respect to the overpotential for HER, (b) the 

amount of theoretically calculated (red line) and experimentally measured gas versus time for 

N-Fe7S8 at a constant current density of 10 mA cm−2.

Figure S8. electrochemical stability of the N-Fe7S8@CC electrode.

Figure S9. SEM images of N-Fe7S8 after the stability test.
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Figure S10. DFT calculation of FeS2 and N-Fe7S8: (a-b) The optimized surface structures 
of FeS2 and N-Fe7S8, respectively. (c) The total density of states (TDOS) of FeS2 and N-
Fe7S8. 

Figure S11. The calculated PDOS distribution of (a) FeS2 and (b) N-Fe7S8, respectively.

Figure S12. The detailed partial DOS (PDOS) distribution of the Fe d band in FeS2 and N-
Fe7S8. 
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Figure S13. The relative energy diagram with simplified structural information along the 
reaction coordinate for water adsorption/dissociation on the surface of FeS2 and N-Fe7S8.

Figure S14. The optimized structural configurations for H2O adsorption/dissociation on the 
surface of FeS2.

Figure S15. The optimized structural configurations for H2O adsorption/dissociation on the 
surface of N-Fe7S8 (path1). 

Charge accumulation Charge depletion

a b

Figure S16. The 3D isosurface of electron density difference images of (a) FeS2 and (b) N-
Fe7S8.
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Table S2. A performance comparison with recently published transition metal-based HER 
catalysts.

Material HER η–10(mV) Tafel slope (mV dec-1) Ref.

N-Fe7S8 89 105 This work

FeS/NiS/NF 144 39 [4]

FeS/Ni3S2@NF 130 124 [5]

Ni–Co–P/NF 156 108.4 [6]

Co3S4@FNC-Co3 140 103 [7]

NiCo2S4/Ni3S2/NF 119 105.2 [8]

NF/T(Ni3S2/MnS-O) 116 41 [9]

δ-FeOOH/Ni3S2/NF 106 82.6 [10]

Fe-Mo-S/Ni3S2@NF 141 123 [11]

NiWO4/Ni3S2 136 112 [12]

CuFeS2/rGO 176 216 [13]
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