Supporting Information

Synthesis of Spiropyrans and Arylquinones via ${\bf Ru}({\bf II})\mbox{-}{\bf Catalyzed}$

Conditions-Controlled Coupling of 3-Aryl-2H-benzoxazinones with

Benzoquinones

Mengying Zhang ^{†,a}, Yuhao He ^{†,a}, Song Li ^{†,a}, Yuehua Geng ^a, Xiangyang Liu ^a, Xifa Yang^{a,*}

^a College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China

* yangxifachem@163.com

Contents

1.	General Information	S2
2.	Scale-up Synthesis and derivatization	S3
3.	Mechanistic Studies	S5
4.	Characterization Data	S9
5.	References	S21
6.	NMR Spectra	S23

1. General Information

Unless otherwise noted, all the reactions were carried out in an argon-filled glove box. Anhydrous solvents were purified and dried by standard procedures. All chemicals were obtained from commercial sources and were used as received unless otherwise noted. Benzoxazines,¹ benzoquinones² were prepared by following literature reports. ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 spectrometer (400 MHz for ¹H, 101 MHz for ¹³C). All coupling constants were reported in Hz. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra and the chemical shifts were converted to the TMS scale (CDCl₃: δ ¹H = 7.26 ppm, δ ¹³C = 77.16 ppm). HRMS data were obtained using a TOF mode. Column chromatography was performed on silica gel (200-300 mesh) using ethyl acetate (EA)/petroleum ether (PE).

1.1 General Procedure for Synthesis of 3.

Benzoxazines (0.20 mmol), benzoquinones (0.30 mmol), $[RuCl_2(p-cymene)]_2$ (4 mol %), AgSbF₆ (16 mol %), Zn(OAc)₂ (0.04 mmol), and THF (3.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 80 °C for 16 hours under the nitrogen atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (9:1) to afford compound **3**.

1.2 General Procedure for Synthesis of 4.

Benzoxazines (0.20 mmol), benzoquinones (0.44 mmol), $[RuCl_2(p-cymene)]_2$ (4 mol %), AgSbF₆ (16 mol %), Cu(OAc)₂ (0.1 mmol), and THF (3.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 100 °C for 10 hours under the oxygen atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (12:1) to afford compound **4**.

1.3 Optimization of Reaction Conditions.^{a,b} (Table S1)

	$1a \qquad 2a$	[Ru(<i>p</i> -cymene)Cl ₂] ₂ (4 mmol%) AgSbF ₆ (16 mmol%) additive, solvent T,16 h	HN 3aa OH	or ON 4aa
entry	additive (equiv)	solvent	T(°C)	yield (%) ^{a,b}
				3aa/4aa
1	K ₂ CO ₃ (2.0)	DCE	30	20/8
2	K ₂ CO ₃ (2.0)	MeCN	30	ND
3	K ₂ CO ₃ (2.0)	DCM	30	13/7
4	K ₂ CO ₃ (2.0)	MeOH	30	ND
5	K ₂ CO ₃ (2.0)	THF	30	30/13
6	LiOAc (2.0)	THF	30	ND
7	NaOAc (2.0)	THF	30	10/7
8	MesCOOH (2.0)	THF	30	30/13
9	HOAc (2.0)	THF	30	10/10
10	$Zn(OAc)_2$ (0.2)	THF	30	35/4
11	$Zn(OAc)_2$ (0.2)	THF	60	50/4
12	Zn(OAc) ₂ (0.2)	THF	80	85/trace
13	Cu(OAc) ₂ (0.2)	THF	80	67/20
14	$Zn(OAc)_2(0.5)$	THF	80	60/trace
15	Ag ₂ O (2.0)	THF	80	ND
16	Cu(OAc) ₂ (2.0)	THF	80	52/10
17	Ag ₂ CO ₃ (2.0)	THF	80	trace/15
18 ^c	Cu(OAc) ₂ (2.0)	THF	80	trace/23
19 ^{c,d}	Cu(OAc) ₂ (2.0)	THF	80	trace/52
20 ^{c,d}	Cu(OAc) ₂ (2.0)	THF	100	trace/55
21 ^{c,d}	Cu(OAc) ₂ (0.5)	THF	100	trace/55

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $[RuCl_2(p-cymene)]_2$ (4 mol %), AgSbF₆ (16 mol %), additive, solvent (3.0 mL) under N₂ for 16 hours. ^bIsolated yield after column chromatography. ^c under O₂. ^d**2a** (0.44 mmol) was used.

2. Scale-up Synthesis and derivatization of the product

2.1 Scale-up Synthesis

Benzoxazinones (1.0 mmol), benzoquinone (3.0 mmol), $[RuCl_2(p-cymene)]_2$ (0.02 mmol, 2 mol %), AgSbF₆ (0.08 mmol, 8 mol %), Zn(OAc)₂ (0.2 mmol), and THF (10 mL) were charged into a pressure tube. The reaction mixture was stirred at 80 °C for 16 hours under the nitrogen atmosphere. After the

solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (9:1) to afford compound **3aa** in 76% yield (0.2516 g).

Benzoxazines (1.0 mmol), benzoquinone (2.2 mmol), $[RuCl_2(p-cymene)]_2$ (0.02 mmol, 2 mol %), AgSbF₆ (0.08 mmol, 8 mol %), Cu(OAc)₂ (2.0 mmol), and THF (10 mL) were charged into a pressure tube. The reaction mixture was stirred at 100 °C for 10 hours under the oxygen atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (12:1) to afford compound **4aa** in 44% yield (0.1448 g).

2.2 derivatization of the 4aa

Benzoxazinones (0.20 mmol), benzoquinones (0.44 mmol), $[RuCl_2(p-cymene)]_2$ (4 mol%), AgSbF₆ (16 mol%), Cu(OAc)₂ (0.4 mmol), and THF (3.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 100 °C for 10 hours under the oxygen atmosphere.³ After the reaction vessel was cooled to room temperature, the solvent was removed by decompression concentration, then Ethyl acrylate (2.0 equiv) and CH₃COOH (2 mL) were charged into the pressure tube, and the reaction mixture was stirred at 100 °C for 16 h under the nitrogen atmosphere. And then quenched with water, the mixture was diluted with DCM. The organic phase was separated and washed with brine and then dried over anhydrous MgSO₄. The organic phase was removed under reduced pressure and the residue was purified by silica gel chromatography with PE/EA (5:1) to afford the desired product **6aa** in 33% yield (28.2 mg).

4aa (65.8 mg, 0.2 mmol, 1.0 equiv.), NaBH₄ (15.1 mg, 0.4 mmol, 2.0 equiv.) and MeOH (4.0 mL) were charged into a pressure tube. The reaction mixture was stirred at room temperature for 16 h, and then quenched with water. After a half of solvent was evaporated *in vacuo*, the mixture was diluted with EtOAc (15 mL), washed with brine, and then dried over anhydrous MgSO₄, and solvent was removed under reduced pressure, the obtained residue was purified by column chromatography using PE/EA (10:1) as eluent to afford the desired product **7aa** in 80 % yield (52.9 mg).

In a glovebox, **4aa** (65.8 mg, 0.2 mmol) were refluxed in 10% KOH-MeOH solution (2.0 mL) for 30 min.⁴ After the reaction was cooled to the room temperature, the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (3:1) to afford the desired product **8aa** in 40% yield (24 mg).

3. Mechanistic Studies

3.1 Synthesis of ruthenium complexes 11.

Benzoxazines **1a** (0.11 mmol, 2.2 equiv), $[RuCl_2(p-cymene)]_2$ (0.05 mmol, 1.0 equiv), AgSbF₆ (0.2 mmol, 4.0 equiv), NaOAc (0.44 mmol, 4.4 equiv), and EtOAc (1.0 mL) were charged into a pressure tube. The reaction mixture was stirred at room temperature for 24 h in the nitrogen atmosphere. After the solvent was removed under reduced pressure, the residue was dissolved with dichloromethane and recrystallized to get the pure product **11a** in 49 % yield (24.4 mg).

3.2 H/D exchange under conditions A

1a (0.20 mmol), $[RuCl_2(p-cymene)]_2$ (4 mol %), $AgSbF_6$ (16 mol %), 0.04 mmol Zn(OAc)_2, 0.2 mL D₂O, and THF (3 mL) were charged into a pressure tube, and the mixture was heated at 80 °C for 16 h, no H/D exchange was observed on the basis of ¹H NMR analysis, indicating that the C-H activation was largely irreversible in the catalytic system.

3.3 KIE Experiments

Two independent reactions with **1a** or deuterated substrate **1a**- d_5 under the standard conditions were performed. **1a** (0.1 mmol) or **1a**- d_5 (0.1 mmol), **2a** (0.15 mmol), AgSbF₆ (16 mol %), Zn(OAc)₂ (0.02 mmol), [RuCl₂(*p*-cymene)]₂ (4 mol %), and THF (3.0 mL) were stirred side-by-side at 80 °C for 3 h under nitrogen. Both reactions were quenched and these two mixtures were rapidly combined, and the volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography with 25 mg of **3aa** and *d*-**3aa** were recovered. KIE value (k_H/k_D = 2.1:1) was determined on the basis of ¹H NMR analysis. suggesting the C-H activation is probably involved in the rate-determining step.

1a + 2a
$$\xrightarrow{\text{Conditions A}}$$
 3aa
80 °C, 3 h
1a- d_5 + 2a $\xrightarrow{\text{Conditions A}}$ d-3aa
80 °C, 3 h

Two independent reactions with **1s** or **1t** under the standard conditions were performed. **1s** (0.1 mmol) or **1t** (0.1 mmol), **2a** (0.15 mmol), AgSbF₆ (16 mol %), Zn(OAc)₂ (0.02 mmol), [RuCl₂(*p*-cymene)]₂ (4 mol %), and THF (3.0 mL) were stirred side-by-side at 80 °C for 3 hours under nitrogen. Both reactions were quenched and these two mixtures were rapidly combined, and the volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography with 35 mg of **3sa** and **3ta** were recovered. KIE value ($k_{tsa}/k_{3sa} = 1.7$:1) was determined on the basis of ¹H NMR analysis.

3.5 Interconvertible experiment

3aa (66.2 mg,0.2 mmol), $[RuCl_2(p-cymene)]_2$ (4 mol%), AgSbF₆ (16 mol%), Cu(OAc)₂ (0.4 mmol), and THF (3.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 100 °C for 10 hours under the oxygen atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (12:1) to afford compound **4aa** (85%, 55.6 mg).

4aa (65.8 mg, 0.2 mmol, 1.0 equiv.), $B_2(OH)_4$ (89.6 mg, 1 mmol, 5.0 equiv), NaHCO₃ (3.4 mg, 0.04 mmol, 0.2 equiv), H_2O (0.3 mL) and THF (0.6 mL) were charged into a pressure tube. The reaction mixture was stirred at 60 °C for 6 hours.⁵ Then extracted with EtOAc and H_2O , the organic phase was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (3:1) to afford the desired product **3aa** in 76% yield. (50.3 mg).

4. Characterization Data

OH White solid, 56.3 mg, 85 % yield, mp: 206 – 207 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.29 (s, 1H), 8.52 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.0 Hz, 2H), 7.53 – 7.45 (m, 1H), 7.28 (s, 1H), 7.19 (dd, J = 8.1, 1.3 Hz, 1H), 7.14 – 7.05 (m, 2H), 6.99 – 6.91 (m, 1H), 6.64 – 6.61 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.5, 152.9, 142.5, 140.2 130.7, 130.3, 130.2, 129.2, 128.3, 126.5, 125.1, 122.3, 121.8, 120.2, 117.9, 116.6, 115.9, 115.8, 109.4, 84.8. HRMS [M+H]⁺ calculated for C₂₀H₁₄NO₄⁺ = 332.0917, found: 332.0914.

SDa OH White solid, 57.1 mg, 78 % yield, mp: 206 – 209 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.32 (s, 1H), 8.69 (s, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.59 (m, 2H), 7.53 – 7.45 (m, 1H), 7.38 (d, *J* = 2.3 Hz, 1H), 7.29 (d, *J* = 2.1 Hz, 1H), 7.19 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.67 – 6.62 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.0, 153.1, 142.3, 140.5, 130.7, 130.4, 129.4, 128.8, 128.4, 126.5, 125.0, 123.5, 122.3, 121.8, 118.0, 117.0, 116.7, 116.0, 109.5, 84.4. HRMS [M+H]⁺ calculated for C₂₀H₁₃ClNO₄⁺ = 366.0528, found: 366.0541.

OH White solid, 65.6 mg, 80 % yield, mp: $197 - 200 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO- d_6)

δ 9.33 (s, 1H), 8.71 (s, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.53 – 7.45 (m, 2H), 7.32 – 7.29 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H), 6.68 – 6.66 (m, 2H).¹³**C** NMR (101 MHz, DMSO- d_6) δ 159.0, 153.1, 142.4, 140.8, 130.7, 130.5, 129.8, 128.8, 128.4, 127.8, 126.5, 122.4, 121.8, 118.7, 118.0, 117.5, 116.8, 110.7, 109.5, 84.5. HRMS [M+H]⁺ calculated for C₂₀H₁₃BrNO₄⁺ = 410.0022, found: 410.0035.

OH White solid, 50.37 mg, 73% yield, mp: 195 - 196 °C. ¹H NMR (400 MHz, DMSO- d_6)

δ 9.31 (s, 1H), 8.38 (s, 1H), 7.91 – 7.89 (m, 1H), 7.61 – 7.58 (m, 2H), 7.50 – 7.46 (m, 1H), 7.28 (s, 1H), 7.02 – 6.91 (m, 3H), 6.67– 6.65 (m, 2H), 2.28 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 159.7, 152.9, 142.6, 140.1, 130.8, 130.2, 129.5, 129.4, 128.3, 127.6, 126.4, 125.6, 122.2, 121.9, 117.9, 116.6, 116.1, 115.7, 109.4, 84.9, 20.2. **HRMS** [M+H]⁺ calculated for C₂₁H₁₆NO₄⁺ = 346.1074, found: 346.1061.

OH White solid, 53.2 mg, 76 % yield, mp: 238 - 240 °C. ¹H NMR (400 MHz, DMSO-

*d*₆) δ 9.34 (s, 1H), 8.76 (s, 1H), 7.92 (s, 1H), 7.61 – 7.59 (m, 2H), 7.51 – 7.49 (m, 1H), 7.29 – 7.20 (m, 2H), 6.84 – 6.78 (m, 2H), 6.65 – 6.63 (m, 2H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 159.2, 159.0 (d, *J* = 239.4 Hz), 153.0 (d, *J* = 14.3 Hz), 142.3, 136.6, 131.5 (d, *J* = 8.5 Hz), 130.6, 130.4, 128.8 (d, *J* = 4.7 Hz), 128.3, 126.4, 122.3, 121.7, 117.9, 117.2 (d, *J* = 10.1 Hz), 116.7 (d, *J* = 9.1 Hz), 109.4 (d, *J* = 7.7 Hz), 106.4 (d, *J* = 24.1 Hz), 102.4 (d, *J* = 28.0 Hz), 84.1 (d, *J* = 7.4 Hz). **HRMS** [M+H]⁺ calculated for C₂₀H₁₃FNO₄⁺ = 350.0823, found: 350.0831.

OH White solid, 57.1 mg, 78 % yield, mp: 222 – 224 °C. ¹H NMR (400 MHz, DMSO-

 d_6) δ 9.33 (s, 1H), 8.74 (s, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.66 – 7.57 (m, 2H), 7.52 – 7.48 (m, 1H), 7.29 – 7.28 (m, 1H), 7.25 (d, J = 8.6 Hz, 1H), 7.06 (d, J = 2.4 Hz, 1H), 6.99 (dd, J = 8.6, 2.5 Hz, 1H), 6.65 – 6.64 (m, 2H).¹³**C NMR** (101 MHz, DMSO- d_6) δ 159.0, 153.1, 142.2, 139.1, 131.6, 131.5, 130.6, 130.5, 128.8, 128.4, 126.5, 122.3, 121.7, 119.8, 118.0, 117.5, 116.7, 115.2, 109.4, 84.2. **HRMS** [M+H]⁺ calculated for C₂₀H₁₃ClNO₄⁺ = 366.0528, found: 366.0537.

DH White solid, 69.7 mg, 85 % yield, mp: 222 – 223 °C. ¹H NMR (400 MHz, DMSO-

 d_6) δ 9.33 (s, 1H), 8.73 (s, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.63 – 7.48 (m, 2H), 7.52 – 7.48 (m, 1H), 7.29 (s, 1H), 7.21 – 7.18 (m, 2H), 7.13 – 7.10 (m, 1H), 6.66 – 6.66 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.0, 153.1, 142.2, 139.5, 131.9, 130.6, 130.5, 128.8, 128.4, 126.5, 122.7, 122.4, 121.7, 118.0, 118.0, 117.9, 116.7, 116.7, 109.5, 84.2. **HRMS** [M+H]⁺ calculated for C₂₀H₁₃BrNO₄⁺ = 410.0022 found: 410.0032.

White solid, 62.8 mg, 77 % yield, mp: 228 – 230 °C.¹H NMR (400 MHz, DMSOd₆) δ 9.31 (s, 1H), 8.65 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.55 – 7.43 (m, 3H), 7.39–7.35 (d, J = 7.3 Hz, 1H), 7.32 – 7.28 (m, 3H), 7.24 (dd, J = 2.1 Hz, 1H), 6.70 – 6.60 (m, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 159.4, 142.5, 139.8, 139.6, 137.4, 130.8, 130.5, 130.4, 130.4, 129.0, 128.4, 127.5, 126.5, 122.3, 121.8, 118.7, 117.9, 116.6, 116.5, 116.4, 113.9, 113.8, 109.4, 84.8. HRMS [M+H]⁺ calculated for C₂₆H₁₈NO₄⁺ = 408.1230, found: 408.1236.

^{OH} White solid, 47.7 mg, 69 % yield, mp: 234 – 235 °C. ¹H NMR (400 MHz, DMSO-

*d*₆) δ 9.30 (s, 1H), 8.44 (s, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.50 – 7.47 (m, 1H), 7.29 (d, *J* = 2.3 Hz, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.75 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.65-6.61 (m, 2H), 2.27 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 159.6, 152.9, 142.6, 138.2, 134.4, 130.8, 130.3, 129.8, 129.4, 128.3, 126.5, 122.3, 121.8, 120.7, 117.9, 116.6, 116.1, 115.6, 109.4, 84.9, 20.7. **HRMS** [M+H]⁺ calculated for C₂₁H₁₆NO₄⁺ = 346.1074, found: 346.1084.

SJA OH White solid, 52.1 mg, 72 % yield, mp: 249 – 250 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.30 (s, 1H), 8.49 (s, 1H), 7.91 (dd, J = 7.8, 1.9 Hz, 1H), 7.60 (t, J = 7.4 Hz, 2H), 7.52 – 7.44 (m, 1H), 7.28 (d, J = 1.9 Hz, 1H), 7.12 (dd, J = 8.9, 1.9 Hz, 1H), 6.71 – 6.48 (m, 4H), 3.73 (d, J = 1.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.6, 156.6, 152.9, 142.5, 134.4, 130.9, 130.8, 130.3, 129.3, 128.3, 126.4, 122.3, 121.8, 117.9, 116.6, 116.4, 109.4, 105.2, 101.2, 84.7, 55.3. HRMS [M+H]⁺ calculated for C₂₁H₁₆NO₅⁺ = 362.1023, found: 362.1023.

5Ka OH White solid, 62.6 mg, 83 % yield, mp: 245 – 247 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.32 (s, 1H), 8.74 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.65 – 7.56 (m, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.29 (s, 1H), 7.27 – 7.22 (m, 1H), 6.83 (dd, J = 9.5, 3.0 Hz, 1H), 6.77 (td, J = 8.7, 2.9 Hz, 1H), 6.64 (d, J = 1.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.2, 153.1, 142.3, 136.6, 131.6, 130.7, 130.4, 128.9, 128.4, 126.4, 122.3, 121.7, 118.0, 116.7, 109.5, 106.5, 106.3, 102.6, 102.3, 84.2. HRMS

 $[M+H]^+$ calculated for $C_{20}H_{13}N_2O_6^+ = 377.0768$, found: 377.0846.

White solid, 56.0 mg, 80 % yield, mp: 246 – 248 °C. ¹H NMR (400 MHz, DMSO-

*d*₆) δ 9.33 (s, 1H), 8.75 (s, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.74 – 7.56 (m, 2H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.30 (s, 1H), 7.28 – 7.20 (m, 1H), 6.87 – 6.81 (m, 1H), 6.81 – 6.73 (m, 1H), 6.65 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.2, 159.3 (d, *J* = 239.3 Hz), 153.0, 142.3, 136.6 (d, *J* = 2.1 Hz), 131.5 (d, *J* = 11.8 Hz), 130.6, 130.4, 128.9, 128.4, 126.4, 122.3, 121.7, 117.9, 117.2 (d, *J* = 10.2 Hz), 116.7, 109.4, 106.4 (d, *J* = 24.0 Hz), 102.5 (d, *J* = 27.6 Hz), 84.2. **HRMS** [M+H]⁺ calculated for C₂₀H₁₃FNO₄⁺ = 350.0823, found: 350.0826.

3ma OH White solid, 27.9 mg, 40 % yield, mp:175 – 177 °C. ¹H NMR (400 MHz, DMSO-*d*₆)

 δ 9.36 (s, 1H), 8.48 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.66 – 7.54 (m, 1H), 7.39 – 7.26 (m, 2H), 7.22 (d, J = 8.1 Hz, 1H), 7.11 – 7.03 (m, 1H), 6.93 (t, J = 7.8 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 6.73 (d, J = 8.8 Hz, 1H), 6.65 (d, J = 8.6 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 159.5, 158.7 (d, J = 248.1 Hz), 152.9, 141.3, 140.0, 131.9 (d, J = 9.2 Hz), 131.5, 131.5, 128.7, 125.5, 119.4, 119.4 (d, J = 140.1 Hz), 118.0, 117.8, 116.9 (d, J = 13.1 Hz), 116.2, 115.4, 115.1, 109.7, 82.3 (d, J = 2.5 Hz). **HRMS** [M+H]⁺ calculated for C₂₀H₁₃O4NF⁺ = 350.0823, found: 350.0835.

3na OH White solid, 35.1 mg, 48 % yield, mp: 217 – 219 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.36 (s, 1H), 8.60 (s, 1H), 7.99 – 7.92 (m, 1H), 7.69 – 7.63 (m, 2H), 7.28 (d, J = 2.2 Hz, 1H), 7.20 (dd, J = 8.1, 1.3 Hz, 1H), 7.15 – 7.11 (m, 1H), 7.06 (dd, J = 7.9, 1.7 Hz, 1H) 6.98 – 6.94 (m, 1H), 6.68 – 6.61 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.0, 153.1, 142.4, 140.1, 132.7, 131.0, 130.3, 129.9, 129.8, 126.4, 125.2, 124.5, 121.0, 120.3, 118.1, 117.1, 115.9, 115.9, 109.5, 84.4. HRMS [M+H]⁺ calculated for C₂₀H₁₃ClNO₄⁺ = 366.0528, found: 366.0531.

OH White solid, 44.8 mg, 64 % yield, mp: 237 – 238 °C. ¹H NMR (400 MHz,

DMSO- d_6) δ 9.35 (s, 1H), 8.56 (s, 1H), 7.79 (dd, J = 10.2, 2.6 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.39 – 7.27 (m, 2H), 7.20 (d, J = 8.0 Hz, 1H), 7.16 – 7.03 (m, 2H), 6.99 – 6.91 (m, 1H), 6.70 – 6.60 (m, 2H). ¹³**C** NMR (101 MHz, DMSO- d_6) δ 163.5 (d, J = 245.8 Hz), 159.4, 153.0, 142.8, 140.2, 133.6 (d, J = 8.8 Hz), 130.0, 129.2 (d, J = 8.9 Hz), 125.5 (d, J = 2.9 Hz), 125.2, 121.1, 121.1, 120.3, 118.0, 117.5, 115.9, 115.1 (d, J = 22.1 Hz), 110.0, 109.2 (d, J = 23.4 Hz), 84.7. HRMS [M+H]⁺ calculated for C₂₀H₁₃FNO₄⁺ = 350.0823, found: 350.0829.

White solid, 52.7 mg, 72 % yield, mp: 238 – 240 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.34 (s, 1H), 8.58 (s, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.54 (dd, J = 8.4, 2.1 Hz, 1H), 7.33 (d, J = 2.6 Hz, 1H), 7.20 (dd, J = 8.1, 1.3 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.06 (dd, J = 7.9, 1.7 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.70 – 6.61 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.3, 153.1, 142.7, 140.1, 135.4, 133.0, 129.9, 128.7, 128.0, 128.0, 125.2, 122.1, 120.7, 120.3, 118.1, 117.5, 115.9, 115.9, 109.9, 84.6. **HRMS** [M+H]⁺ calculated for C₂₀H₁₃ClNO₄⁺ = 366.0528, found: 366.0536.

3qa OH White solid, 58.2 mg, 71 % yield, mp: 233 – 234 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.33 (s, 1H), 8.57 (s, 1H), 8.11 (d, J = 2.0 Hz, 1H), 7.69 – 7.67 (m, 1H), 7.56 – 7.54 (m, 1H), 7.33 (d, J = 2.7 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.14 – 7.11 (m, 1H), 7.06 (dd, J = 7.9, 1.6 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.72 – 6.60 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.2, 153.1, 142.7, 140.1, 133.2, 131.0, 129.9, 128.9, 128.3, 125.2, 125.0, 124.1, 120.6, 120.3, 118.1, 117.5, 115.9, 115.9, 109.8, 84.6. HRMS [M+H]⁺ calculated for C₂₀H₁₃BrNO₄⁺ = 410.0022, found: 410.0025.

3ra OH White solid, 51.2 mg, 74 % yield, mp: 226 – 228 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.25 (s, 1H), 8.47 (s, 1H), 7.72 (s, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.32 – 7.21 (m, 2H), 7.18 (d, J = 8.1 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.95 – 6.92 (m, 1H), 6.64 – 6.59 (s, 2H), 2.44(s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.6, 152.9, 142.7, 140.2, 139.8, 130.6, 130.2, 128.9, 126.5, 126.4, 125.1, 122.6, 121.9, 120.1, 117.8, 116.5, 115.9, 115.8, 109.4, 84.8, 21.0. HRMS [M+H]⁺ calculated for C₂₁H₁₆NO₄⁺ = 346.1074, found: 346.1071.

3sa OH White solid, 42.7 mg, 59 % yield, mp: 220 – 222 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.28 (s, 1H), 8.46 (s, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.39 (d, J = 2.6 Hz, 1H), 7.31 (d, J = 2.6 Hz, 1H), 7.17 (dd, J = 8.0, 1.3 Hz, 1H), 7.13 – 7.02 (m, 3H), 6.96 – 6.91 (m, 1H), 6.67 – 6.57 (m, 2H), 3.89 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 160.7, 159.8, 152.9, 142.9, 140.2, 132.4, 130.2, 128.0, 125.1, 121.8, 121.7, 120.1, 117.8, 116.8, 115.9, 115.8, 114.2, 109.7, 107.1, 84.8, 55.5. HRMS [M+H]⁺ calculated for C₂₁H₁₆NO₅⁺ = 362.1023, found: 362.1028.

3ta OH White solid, 49.5 mg, 62% yield, mp: 156 – 157 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.37 (s, 1H), 8.65 (s, 1H), 8.24 (s, 1H), 7.88 – 7.84 (m, 2H), 7.45 (d, J = 2.6 Hz, 1H), 7.22 (dd, J = 8.2, 1.3 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.06 (dd, J = 7.9, 1.6 Hz, 1H), 6.99 – 6.95 (m, 1H), 6.75 – 6.64 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.1, 153.2, 141.4 (d, J = 248.0 Hz), 133.0, 132.1, 131.0 (d, J = 32.1 Hz), 129.7, 128.0, 125.3, 125.3, 124.8, 122.6, 120.6, 120.4, 119.2, 119.1, 118.2, 117.8, 116.0 (d, J = 6.9 Hz), 110.0, 84.6. **HRMS** [M+H]⁺ calculated for C₂₁H₁₃F₃NO₄⁺ = 400.0791, found: 400.0800.

White solid, 40.5 mg, 53 % yield, mp: 210 – 212 °C. ¹H NMR (400 MHz,

DMSO- d_6) δ 10.07 (s, 1H), 8.68 (s, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.57 – 7.49 (m, 1H), 7.46 – 7.39 (m, 2H), 7.38 – 7.33 (m, 1H), 7.31 (s, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.17 – 7.07 (m, 2H), 7.38 – 7.33 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.7, 148.6, 140.5, 137.3, 131.0, 130.5, 130.2, 128.9, 128.2, 126.7, 126.6, 125.8, 125.6, 125.5, 125.2, 122.4, 122.2, 120.6, 120.4, 116.2, 116.1, 115.7, 101.9, 85.1. HRMS [M-H]⁻ = calculated for C₂₄H₁₄NO₄⁻ = 380.0928, found: 380.0926.

White solid, 52.6 mg, 73 % yield, mp: 217 - 218 °C. ¹H NMR (400 MHz,

DMSO- d_6) δ 9.13 (s, 1H), 8.46 (s, 1H), 7.80 – 7.73 (m, 1H), 7.64 – 7.55 (m, 2H), 7.48 – 7.44 (m, 1H), 7.20 (dd, J = 8.0, 1.3 Hz, 1H), 7.16 – 7.04 (m, 3H), 6.99 – 6.94 (m, 1H), 2.01 (s, 3H), 1.68 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 160.0, 150.5, 140.6, 140.1, 131.4, 130.5, 130.2, 129.1, 127.7, 126.2, 126.2, 125.0, 125.0, 121.9, 120.4, 118.9, 116.1, 115.5, 106.2, 84.4, 12.1, 11.0. HRMS [M+H]⁺ calculated for C₂₂H₁₈NO₄⁺ = 360.1230, found: 360.1225.

White solid, 32.5 mg, 42% yield, mp: 217 - 220 °C. ¹H NMR (400 MHz,

DMSO- d_6) δ 9.13 (s, 1H), 8.52 (s, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.49 – 7.45 (m, 1H), 7.15 – 7.06 (m, 4H), 6.96 – 6.62 (m, 1H), 6.66 (d, J = 2.8 Hz, 1H), 0.98 (s, 9H). ¹³**C** NMR (101 MHz, DMSO- d_6) δ 159.6, 151.9, 141.2, 140.2, 139.3, 131.2, 130.6, 130.2, 128.8, 128.1, 126.1, 125.2, 122.6, 121.9, 120.2, 115.9, 115.9, 114.8, 107.2, 84.5, 34.0, 29.4. **HRMS** [M+H]⁺ calculated for C₂₄H₂₂NO₄⁺ = 388.1543, found: 388.1550.

4aa Yellow solid, 36.3 mg, 55 % yield, mp: 156 – 157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.05 (m, 1H), 7.66 – 7.56 (m, 3H), 7.53 – 7.49 (m, 1H), 7.45 – 7.40 (m, 1H), 7.35 – 7.30 (m, 2H), 6.84 (d, J = 2.5 Hz, 1H), 6.77 (dd, J = 10.1, 2.5 Hz, 1H), 6.67 (d, J = 10.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 186.2, 152. 7, 152.3, 148.8, 146.6, 136.7, 136.6, 133.9, 133.3, 132.9, 131.7, 131.2, 131.0, 130.8, 130.8, 129.8, 129.1, 125.8, 116.6. HRMS [M+H]⁺ calculated for C₂₀H₁₂NO₄⁺ = 330.0761, found: 330.0758.

Yellow solid, 34.2 mg, 47 % yield, mp: $180 - 183 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 - 8.02 (m, 1H), 7.67 - 7.57 (m, 2H), 7.51 (d, $J = 8.4 \,\text{Hz}$, 1H), 7.47 - 7.39 (m, 1H), 7.35 - 7.26 (m, 2H), 6.84 (d, $J = 2.6 \,\text{Hz}$, 1H), 6.78 (dd, J = 10.1, 2.6 Hz, 1H), 6.66 (d, $J = 10.0 \,\text{Hz}$, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 186.2, 152.6, 151.5, 148.5, 146.9, 137.5, 136.6, 133.7, 133.2, 133.1, 131.2, 130.8, 130.8, 129.8, 129.8, 126.4, 116.9 (two signals was missing due to overlap). HRMS [M+H]⁺ calculated for C₂₀H₁₁ClNO₄⁺ = 364.0371, found: 364.0367.

Yellow solid, 39.9 mg, 58 % yield, mp: 156 - 157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 8.05 (m, 1H), 7.62 - 7.54 (m, 2H), 7.45 (d, J = 8.1 Hz, 1H), 7.41 - 7.39 (m, 1H), 7.16 - 7.10 (m, 1H), 7.09 (s, 1H), 6.80 (d, J = 2.6 Hz, 1H), 6.75 (dd, J = 10.1, 2.5 Hz, 1H), 6.65 (d, J = 10.1 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 186.1, 152.4, 151.3, 148.8, 146.4, 143.2, 136.7, 136.5, 134.0, 133.2, 132.8, 130.7, 130.7, 129.7, 129.2, 128.6, 126.9, 116.6, 21.9. HRMS [M+H]⁺ calculated for C₂₁H₁₄NO₄⁺ = 344.0917, found: 344.0920.

4**ta** Yellow solid, 34.9 mg, 48 % yield, mp: 118 – 120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.02 (m, 1H), 7.63 – 7.61 (m, 2H), 7.57 (d, J = 2.5 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.26 (d, J = 8.6 Hz, 1H), 6.85 (d, J = 2.6 Hz, 1H), 6.80 (dd, J = 10.1, 2.6 Hz, 1H), 6.67 (d, J = 10.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 186.2, 153.9, 151.7, 148.4, 145.2, 136.7, 136.6, 133.6, 133.2, 133.2, 131.7, 131.6, 131.3, 130.9, 130.9, 130.9, 129.8, 128.4, 117.8. HRMS [M+H]⁺ calculated for C₂₀H₁₁ClNO₄⁺ = 364.0371, found: 364.0380.

4ia Yellow solid, 29.6 mg, 43 % yield, mp: 120 – 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.03 (m, 1H), 7.63 – 7.56 (m, 2H), 7.45 – 7.39 (m, 1H), 7.37 (s, 1H), 7.34 – 7.27 (m,

1H), 7.19 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 2.5 Hz, 1H), 6.77 (dd, J = 10.1, 2.5 Hz, 1H), 6.67 (d, J = 9.9 Hz, 1H), 2.41 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 187.6 186.1, 152.6, 152.5, 148.7, 144.5, 136.7, 136.5, 135.8, 134.1, 133.2, 132.9, 132.7, 131.0, 130.8, 130.8, 130.7, 129.8, 128.9, 116.2, 20.9. **HRMS** [M+H]⁺ calculated for C₂₁H₁₄NO₄⁺ = 344.0917, found: 344.0919.

Yellow solid, 34.1 mg, 49 % yield, mp: 147 – 148 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 3H), 7.38 – 7.29 (m, 3H), 7.29 – 7.21 (m, 1H), 6.94 – 6.90 (m, 1H), 6.75 – 6.71 (m, 1H), 6.59 (dd, J = 10.1, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 185.9, 161.0 (d, J = 251.8 Hz), 151.5, 151.1, 146.8, 146.0 (d, J = 2.5 Hz), 136.5, 135.1, 134.9 (d, J = 3.3 Hz), 132.2, 132.2, 132.1, 130.9, 129.3, 126.2 (d, J = 3.2 Hz), 125.7, 122.8 (d, J = 16.3 Hz), 117.8 (d, J = 22.0 Hz), 116.8. HRMS [M+H]⁺ calculated for C₂₀H₁₁FNO₄⁺ = 348.0667, found: 348.0670.

Yellow solid, 44.1 mg, 64 % yield, mp: 156 – 157 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.7 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.51 – 7.45 (m, 2H), 7.37 – 7.32 (m, 2H), 7.24 (dd, J = 7.5, 1.4 Hz, 1H), 6.81 (d, J = 2.5 Hz, 1H), 6.67 (dd, J = 10.1, 2.6 Hz, 1H), 6.57 (d, J = 10.1 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.6, 186.0, 161.6, 152.4, 151.4, 149.6, 146.4, 136.9, 136.6, 135.5, 133.0, 132.2, 131.2, 131.2, 128.8, 126.2, 125.7, 116.9, 116.5, 114.6, 55.8. HRMS [M+H]⁺ calculated for C₂₁H₁₄NO₄⁺ = 344.0917, found: 344.0920.

40a Yellow solid, 38.6 mg, 53 % yield, mp: 176 - 178 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.60 – 7.50 (m, 3H), 7.41 (d, J = 2.2 Hz, 1H), 7.37 – 7.29 (m, 2H), 6.84 – 6.78 (m, 2H), 6.69 (d, J = 9.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.2, 185.7, 152.1, 151.4, 147.8, 146.6, 137.2, 136.7, 136.7, 135.1, 133.0, 132.3, 132.2, 132.0, 131.1, 130.7, 129.8, 129.1, 125.9, 116.7. HRMS [M+H]⁺ calculated for C₂₀H₁₁ClNO₄⁺ = 364.0371, found: 364.0365.

Yellow solid, 33.7 mg, 49 % yield, mp: 172 - 174 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 1H), 7.56 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.41 (dd, J = 8.1, 1.8 Hz, 1H), 7.36 – 7.27 (m, 2H), 7.22 (d, J = 1.8 Hz, 1H), 6.83 – 6.74 (m, 2H), 6.67 (d, J = 9.9 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.6, 186.3, 152.3, 152.3, 149.2, 146.5, 141.6, 136.8, 136.6, 133.4, 132.5, 131.5, 131.2, 131.1, 130.9, 130.5, 129.0, 125.7, 116.5, 21.6. HRMS [M+H]⁺ calculated for C₂₁H₁₄NO₄⁺ = 344.0917, found: 344.0915.

Yellow solid, 34.6 mg, 48 % yield, mp: 156 – 157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.8 Hz, 1H), 7.52 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.56 – 7.43 (m, 2H), 7.35 – 7.25 (m, 2H), 7.10 (dd, J = 8.8, 2.7 Hz, 1H), 6.91 (d, J = 2.6 Hz, 1H), 6.81 – 6.76 (m, 2H), 6.74 – 6.67 (m, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.3, 186.4, 155.1, 152.1, 147.5, 146.8, 138.1, 136.5, 136.4, 135.0, 133.5, 133.3, 132.5, 131.8, 130.8, 130.1, 129.3, 128.1, 125.8, 116.8, 20.5. HRMS [M+H]⁺ calculated for C₂₁H₁₄NO₅⁺ = 360.0866, found: 360.0873.

4ta Yellow solid, 34.1 mg, 43 % yield, mp: 156 – 157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.2 Hz, 1H), 7.86 (dd, J = 8.4, 1.8 Hz, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.61 (dd, J = 7.9, 1.6 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.41 – 7.31 (m, 2H), 6.88 (d, J = 2.5 Hz, 1H), 6.80 (dd, J = 10.1, 2.5 Hz, 1H), 6.69 (d, J = 10.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 185.6, 152.0, 151.5, 147.4, 146.7, 137.1 (d, J = 1.5 Hz), 136.8, 136.6, 134.0, 133.5, 132.8 (q, J = 33.2 Hz), 132.4, 131.4, 131.1, 129.4, 127.6 (d, J = 3.9 Hz), 126.5 (d, J = 3.7 Hz), 126.1, 123.5 (q, J = 272.8 Hz), 116.8. HRMS [M+H]⁺ calculated for C₂₁H₁₁F₃NO₄⁺ = 398.0635, found: 398.0623.

Yellow solid, 31.8 mg, 42 % yield, mp:108–111 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.08 – 8.03 (m, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.89 – 7.79 (m, 1H), 7.76 – 7.73 (m, 2H), 7.70 – 7.65 (m, 2H), 7.63 – 7.59 (m, 1H), 7.54 – 7.47 (m, 1H), 7.42 – 7.40 (m, 1H), 7.26 – 7.15 (m, 2H), 7.11 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.4, 184.1, 153.1, 152.0, 149.8, 146.1, 135.1, 134.3, 134.2, 133.7, 133.6, 131.6, 131.4, 131.3, 130.6, 130.5, 130.4, 128.9, 128.1, 126.2, 125.6, 125.4, 116.1. **HRMS** [M+Na]⁺ calculated for C₂₄H₁₃O₄NNa⁺ = 402.0737, found: 402.0747.

Yellow solid, 28.2 mg, 33 % yield, mp: 123 – 126 °C. ¹H NMR (400

MHz, CDCl₃) δ 7.82 (d, J = 7.9, 1H), 7.71 – 7.64 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.53 (m, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.40 – 7.32 (m, 2H), 6.78 (d, J = 2.5 Hz, 1H), 6.69 (dd, J = 10.1, 2.5 Hz, 1H), 6.60 (d, J = 10.1 Hz, 1H), 6.41 (d, J = 15.7 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.0, 186.0, 166.3, 153.3, 152.2, 146.8, 146.8, 141.6, 136.5, 136.4, 135.5, 135.0, 134.1, 133.5, 132.3, 131.7, 130.9, 130.4, 129.5, 128.6, 126.0, 122.1, 116.9, 60.8, 14.3. HRMS [M+Na]⁺ calculated for C₂₅H₁₇O₆NNa⁺ = 450.0948, found: 450.0941.

Yellow solid, 52.9 mg, 80 % yield, mp: 175 – 177 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.45 (s, 1H), 9.38 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.47 – 7.44 (m, 2H), 7.39 (d, J = 2.3 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.98 – 6.92 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.72 – 6.67 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.2, 144.1, 139.9, 132.4, 131.7, 130.0, 129.2, 128.3, 127.6, 122.0, 121.8, 121.2, 119.5, 118.2, 116.9, 116.4, 114.9, 109.1, 87.0, 84.9. HRMS [M+Na]⁺ calculated for C₂₀H₁₃O₄NNa⁺ = 354.0737, found: 354.0739.

Red solid, 24 mg, 40 % yield, mp: 95 –97 °C. ¹H NMR (400 MHz, Acetone- d_6) δ 7.96 (d, J = 7.5 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.18 – 7.14 (m, 1H), 7.06 – 7.00 (m, 3H), 6.99 – 6.92 (m, 3H), 6.90 (d, J = 7.7 Hz, 1H), 6.70 (d, J = 8.7 Hz, 1H). ¹³C NMR (101 MHz, Acetone- d_6) δ 169.0, 151.9, 148.2, 147.0, 144.2, 137.7, 135.6, 133.3, 131.9, 127.6, 127.1, 126.9, 125.1, 125.1, 123.5, 121.8, 120.8, 118.5, 117.3. HRMS [M+H]⁺ calculated for C₁₉H₁₂O₃N⁺ = 302.0812, found: 302.0810.

Red solid, 49 % yield, ¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, J = 8.2, 1.6

Hz, 1H), 8.85 (dd, J = 8.0, 1.5 Hz, 1H), 8.26 (dd, J = 7.6, 1.2 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.46 (m, 1H), 7.36 (dd, J = 8.0, 1.6 Hz, 1H), 7.23 (dd, J = 7.5, 1.5 Hz, 1H), 7.17 – 7.12 (m, 1H), 5.76 (dd, J = 6.2, 1.4 Hz, 1H), 5.70 (dd, J = 6.1, 1.4 Hz, 1H), 5.30 – 5.26 (m, 2H), 2.29 – 2.22 (m, 1H), 2.13 (s, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.5 (C_q), 158.4 (C_q), 150.2 (C_q), 144.2 (C_q), 142.7 (C_q), 139.3 (CH), 133.9 (C_q), 133.8 (CH), 131.0 (CH), 130.6 (CH), 128.7 (CH), 125.2 (CH), 123.5 (CH), 116.5 (CH), 103.9 (C_q), 102.8 (C_q), 95.6 (CH), 92.4 (CH), 85.3 (CH), 85.2 (CH), 31.1 (CH), 22.7 (CH₃), 21.7 (CH₃), 18.9 (CH₃). **HRMS** [M+Na]⁺ calculated for C₂₄H₂₂ClNNaO₂Ru⁺ = 516.0275, found: 516.0281.

Rufous solid, 19 % yield, ¹H NMR (400 MHz, CDCl₃) δ 9.08 (s, 1H), 8.85

(d, J = 8.0 Hz, 1H), 8.28 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.15 (t, J = 7.6 Hz, 1H), 5.83 (d, J = 6.1 Hz, 1H), 5.77 (d, J = 6.1 Hz, 1H), 5.21 (d, J = 6.2 Hz, 1H), 5.11 (d, J = 6.1 Hz, 1H), 2.36 – 2.20 (m, 1H), 2.19 (s, 3H), 1.63 (s, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.76 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.0 (C_q), 158.7 (C_q), 149.6 (C_q), 143.2 (C_q), 142.5 (C_q), 139.5 (CH), 134.7 (C_q), 134.1 (CH), 133.0 (CH), 131.4 (CH), 131.3 (CH), 123.6 (CH), 117.9 (CH), 117.6 (C_q), 105.3 (C_q), 104.7 (C_q), 97.1 (CH), 92.6 (CH), 85.1 (CH), 82.2 (CH), 31.2 (CH), 23.3 (CH₃), 21.1 (CH₃), 18.9 (CH₃). HRMS [M+K]⁺ calculated for C₂₄H₂₁BrClKNO₄Ru+ = 609.9119, found: 609.9178. **5.** References

1. Zhang, Y.; Huang, T.; Li, X.; Zhang, M.; Song, Y.; Huang, K.; Su, W. RSC Adv. 2020, 10, 22216-22221.

2. Moriarty, R. M.; Prakash, O. Org. React. 2001, 57, 327-415.

3. Schischko, A.; Kaplaneris, N.; Rogge, T.; Sirvinskaite, G.; Son, J.; Ackermann, L. Nat Commun. 2019, 10, 3553-3561.

4. Saitz, C.; Rodríguez, H.; Márquez, A.; Canete, A.; Jullian, C.; Zanocco, A. Rodriguez, H. Synth. Commun. 2001, 31, 135-140.

5. Peng, H.; Li, T.; Tian, D.; Yang, H.; Xu, G.; Tang W. Org. Biomol. Chem. 2021, 19, 4327-4337.

6. NMR Spectra

¹H and ¹³C NMR Spectra of compound **3aa**

¹H and ¹³C NMR Spectra of compound **3ba**

110 100 f1 (ppm) 200 190 130 120

¹H and ¹³C NMR Spectra of compound **3fa**

¹H and ¹³C NMR Spectra of compound **3ha**

¹H and ¹³C NMR Spectra of compound **3ia**

¹H and ¹³C NMR Spectra of compound **3ka**

110 100 f1 (ppm)

¹H and ¹³C NMR Spectra of compound **3la**

¹H and ¹³C NMR Spectra of compound **3ma**

¹H and ¹³C NMR Spectra of compound **3na**

¹H and ¹³C NMR Spectra of compound **30a**

¹H and ¹³C NMR Spectra of compound **3pa**

¹H and ¹³C NMR Spectra of compound **3ab**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of compound 3ac

¹H and ¹³C NMR Spectra of compound 4aa

¹H and ¹³C NMR Spectra of compound **4ba**

¹H and ¹³C NMR Spectra of compound **4ma**

¹H and ¹³C NMR Spectra of compound **4pa**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of compound 4sa

¹H and ¹³C NMR Spectra of compound **4ta**

110 100 90 80 f1 (ppm)

130 120 110 100 f1 (ppm)

¹H and ¹³C NMR Spectra of compound 8aa

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 ^1H and ^{13}C NMR Spectra of compound 11a

