Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd₈Pt₈ nano-Saturn complexes

Lipeng He,^{†ab} Lijie Li,^{†ac} Shi-Cheng Wang,^a and Yi-Tsu Chan^{*a}

^a Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
 ^b Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
 ^c School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
 [†] Equal contribution.

*Correspondence: ytchan@ntu.edu.tw

Table of Contents

General Information	
Materials	S2
NMR Spectroscopy	S2
Mass Spectrometry and Traveling Wave Ion Mobility (TWIM) Experiments	S2
Molecular Modeling and Collision Cross Sections (CCSs)	S2
Synthesis of Ligands	S3
Self-Assembly of Complexes	S31
Cavity Volume Calculation	S76
References	S77

General Information

Materials

Unless otherwise noted, reagents and solvents were purchased from Fisher Scientific, AK Scientific, and Sigma-Aldrich without further purification. Column chromatography was conducted using silica gel (75-200 μ m) from Fuji Silysia GS series or basic Al₂O₃ (50-200 μ m) from Acros Organics. The mixed solvent of toluene/H₂O/*t*-BuOH (3/3/1, v/v/v) and 1,4-dioxane were degassed with N₂ for 30 min before used. All reaction conditions dealing with air- and/or moisture-sensitive compounds were conducted in a N₂ atmosphere.

NMR Spectroscopy

¹H and ¹³C NMR spectra were recorded at 25 °C on Bruker DPX-400, Bruker AVIII-400, and Bruker AVIII-500 NMR spectrometers. COSY, ROESY, DOSY, ³¹P NMR, and ¹¹³Cd NMR spectra were recorded at 25 °C on a Bruker AVIII-500 NMR spectrometer. ¹¹³Cd NMR spectra were referenced to an external standard of Cd(ClO₄)₂ (δ = 0 ppm).

Mass Spectrometry and Traveling Wave Ion Mobility (TWIM) Experiments

ESI mass spectrometry and TWIM experiments were conducted on a Waters Synapt HDMS G2 instrument with a LockSpray ESI source using the literature parameters.¹ MALDI-TOF spectrometry was conducted on a Bruker autoflexTM speed MALDI TOF/TOF mass spectrometer with a 355 nm frequency tripled Nd:YAG SmartBeam® laser.

Molecular Modeling and Collision Cross Sections (CCSs)

Energy-minimized structures were obtained following the settings in the literature.¹ Calculations were proceeded with Geometry Optimization and followed by Anneal in the Forcite module of Materials Studio version 7.0 program (Accelrys Software, Inc.). For each structure, 200 conformations were generated after annealing and converted into the theoretical CCSs using projection approximation (PA) and trajectory method (TM) in MOBCAL.² The experimental calibration of CCS curve was established according to the reported protocol,³ and the CCS values in He drift gas were used for calibration. A plot of corrected drift times versus corrected cross sections of calibrants fitted with power functions was used as a calibration curve for cross section measurements. **Note**: In the calculation of theoretical CCSs of nano-Saturn complexes, the coordination geometry of *trans*-Pt^{II} might be transformed to undesired structures during the annealing process. Hence, the *trans*-Pt^{II} coordination geometry was preferentially fixed.

Synthesis of Ligands

S1,⁴ S2,⁵ S3,⁶ S4,⁷ S5a,⁸ S5b,⁹ S10,¹⁰ L¹,¹¹ and L⁴¹² were synthesized according to the literature and showed identical ¹H NMR spectra to those reported.

Scheme S1. Synthesis of ligand L¹.

Scheme S2. Synthesis of ligand L^2 .

Ligand L²: To a degassed Schlenk tube containing S3 (1.0 mmol, 410.0 mg), S4 (2.2 mmol, 776.0 mg), Pd(PPh₃)₄ (0.1 mmol, 116.0 mg), and Na₂CO₃ (12.3 mmol, 1.3 g), a mixed solvent (70 mL) of toluene/H₂O/*t*-BuOH (3/3/1, v/v/v) was added. The mixture was stirred at 80 °C for 24 h. After cooling to 25 °C, the mixture was poured into water and then extracted with CH₂Cl₂ for three times. The organic phase was evaporated to dryness under reduced pressure. The crude product was purified by flash column chromatography (Al₂O₃) using CH₂Cl₂/MeOH (25:1, v/v) as eluent. The further purification was achieved through recrystallization from CH₂Cl₂/MeOH (1:3, v/v) to give L² as a white solid in 75% yield (0.8 mmol, 650.0 mg). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.85 (s, 4H), 8.77 (d, *J* = 4.0 Hz, 4H), 8.71 (d, *J* = 7.9 Hz, 4H), 8.49 (d, *J* = 1.6 Hz, 2H), 8.07 (d, *J* = 8.3 Hz, 4H), 7.93-7.89 (m, 8H), 7.83 (dd, *J* = 8.5, 1.8 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.38 (ddd, *J* = 7.4, 4.8, 1.2 Hz, 4H), 4.38 (t, *J* = 7.2 Hz, 2H), 1.95 (t, *J* = 7.5 Hz, 2H), 1.46 (dd, *J* = 14.6, 7.4 Hz, 2H), 1.39-1.31 (m, 4H), and 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.52, 156.10, 150.08, 149.29, 142.87, 140.80, 136.98, 136.48, 131.76, 127.87, 127.78, 125.50, 123.92, 123.74, 121.52, 119.15, 118.79, 109.37, 43.55, 31.76, 29.19, 27.16, 22.72, and 14.19. MALDI-TOF-MS (*m*/z): calcd for [C₆₀H₄₇N₇ + H]⁺: 866.3966,

found: 866.3975; calcd for $[C_{60}H_{47}N_7 + Na]^+$: 888.3785, found: 888.3794; calcd for $[C_{60}H_{47}N_7 + K]^+$: 904.3525, found: 904.3534.

Scheme S3. Synthesis of ligands L^{3a} and L^{3b} .

Compound S6: To an acetone solution (20 mL) containing 3,6-dibromocarbazole (2.0 mmol, 650.0 mg) and **S5** (2.4 mmol), KOH (6.0 mmol, 828.0 mg) was added. The mixture was refluxed for 12 h. After cooling to 25 °C, the mixture was extracted with CH_2Cl_2 and washed successively with H_2O and brine. The combined organic layer was dried over MgSO₄, and then evaporated to dryness under reduced pressure. The residue was subjected to column chromatography (SiO₂, EA/Hexane = 30:1, v/v) to give **S6**.

S6a was obtained as a liquid in 70% yield (1.4 mmol, 714.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.10 (d, J = 1.9 Hz, 2H), 7.55 (dd, J = 8.7, 1.9 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 4.25 (t, J = 7.3 Hz, 2H), 3.61 (t, J = 6.0 Hz, 2H), 1.95-1.87 (m, 2H), 1.56-1.50 (m, 2H), 0.88 (s, 9H), and 0.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 139.36, 129.09, 123.53, 123.33, 112.05, 110.52, 62.63, 43.29, 30.25, 26.06, 25.65, 18.42, and -5.19. MALDI-TOF-MS (*m/z*): calcd for [C₂₂H₂₉Br₂NOSi + H]⁺: 512.0437; found: 512.0405. **S6b** was obtained as a liquid in 68% yield (1.4 mmol, 732.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.14 (d, J = 1.6 Hz, 2H), 7.56 (dd, J = 8.7, 1.9 Hz, 2H), 7.28 (d, J = 8.7, 3H), 4.24 (t, J = 7.2 Hz, 2H), 3.55 (t, J = 6.3 Hz, 2H), 1.87-1.80 (m, 2H), 1.55-1.43 (m, 2H), 1.38-1.32 (m, 4H), 0.87 (s, 9H), and 0.02 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 139.39, 129.11, 123.54, 123.36, 112.06, 110.48, 63.09, 43.36, 32.73, 28.98, 27.12, 26.11, 25.73, 18.50, and -5.15. MALDI-TOF-MS (*m/z*): calcd for [C₂₄H₃₃Br₂NOSi + H]⁺: 540.0750; found: 540.0719.

Compound S7: To a degassed Schlenk tube containing **S6** (1.0 mmol, 292.5 mg), **S4** (2.2 mmol, 776.0 g), $Pd(PPh_3)_4$ (0.1 mmol, 116.0 mg), and Na_2CO_3 (12.3 mmol, 1.3 g), a mixed solvent (70.0 mL) of toluene/H₂O/*t*-BuOH (3/3/1, v/v/v) was added. The reaction mixture was stirred at 80 °C for 24 h. After cooling to room temperature, the mixture was poured into water and then extracted with CH₂Cl₂ for three times. The combined organic layer was washed with H₂O and brine, dried over MgSO₄, and evaporated to dryness under reduced pressure. The residue was purified by recrystallization from CH₂Cl₂/MeOH to afford **S7**.

S7a was obtained as a brown solid in 72% yield (0.7 mmol, 697.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.84 (s, 4H), 8.76 (d, J = 3.9 Hz, 4H), 8.70 (d, J = 8.0 Hz, 4H), 8.48 (d, J = 1.6 Hz, 2H), 8.06 (d, J = 8.4 Hz, 4H), 7.91-7.87 (m, 8H), 7.82 (dd, J = 8.5, 1.8 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.36 (ddd, J = 7.4, 4.8, 1.1 Hz, 4H), 4.42 (t, J = 7.1 Hz, 2H), 3.67 (t, J = 6.1 Hz, 2H), 2.08-2.01 (m, 2H), 1.68-1.62 (m, 2H), 0.91 (s, 9H), and 0.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.46, 156.05, 150.09, 149.26, 142.88, 140.77, 137.03, 136.45, 131.78, 127.87, 127.79, 125.52, 123.94, 123.74, 121.55, 119.16, 118.81, 109.41, 62.81, 43.39, 30.48, 26.12, 25.88, 18.49, and -5.14. MALDI-TOF-MS (m/z): calcd for [C₆₄H₅₇N₇OSi + H]⁺: 968.4467; found: 968.4412.

S7b was obtained as a yellowish solid in 70% yield (0.7 mmol, 698.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.84 (s, 4H), 8.77 (d, J = 4.2 Hz, 4H), 8.70 (d, J = 8.1 Hz, 4H), 8.49 (s, 2H), 8.06 (d, J = 8.3Hz, 4H), 7.91-7.87 (m, 8H), 7.83 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.37 (t, J = 5.6 Hz, 4H), 4.38 (t, J = 6.7 Hz, 2H), 3.60 (t, J = 6.3 Hz, 2H), 2.00-1.93 (m, 2H), 1.56-1.50 (m, 2H), 1.47-1.42 (m, 4H), 0.90 (s, 9H), and 0.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.49, 156.06, 150.03, 149.27, 142.84, 140.76, 136.95, 136.45, 131.75, 127.84, 127.75, 125.49, 123.90, 123.72, 121.50, 119.13, 118.76, 109.33, 63.19, 43.42, 32.81, 29.22, 27.25, 26.13, 25.82, 18.51, and -5.12. MALDI-TOF-MS (*m/z*): calcd for [C₆₆H₆₁N₇OSi + H]⁺: 996.4780; found: 996.4793.

Compound S8: To a THF solution (20 mL) of **S7** (0.6 mmol), tetrabutylammonium fluoride (2 mL, 1.0 M in THF) was added at 0 °C. After the mixture was stirred at 25 °C for 12 h, the solvent was evaporated under reduced pressure. The residue was purified by recrystallization from CH₂Cl₂/MeOH to give **S8**. **S8a** was obtained as a yellowish solid in 90% yield (0.5 mmol, 461.2 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.83 (s, 4H), 8.76 (d, J = 4.8 Hz, 4H), 8.70 (d, J = 7.9 Hz, 4H), 8.48 (s, 2H), 8.05 (d, J = 8.2

Hz, 4H), 7.92-7.87 (m, 8H), 7.82 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.37 (t, J = 6.4 Hz, 4H), 4.45 (t, J = 7.1 Hz, 2H), 3.70 (q, J = 6.1 Hz, 2H), 2.11-2.03 (m, 2H), and 1.73-1.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.48, 156.05, 150.05, 149.27, 142.79, 140.71, 137.03, 136.44, 131.82, 127.85, 127.77, 125.55, 123.95, 123.74, 121.57, 119.16, 118.79, 109.37, 62.57, 43.24, 30.44, and 25.78. MALDI-TOF-MS (m/z): calcd for [C₅₈H₄₃N₇O + H]⁺: 854.3602; found: 854.3624.

S8b was obtained as a yellowish solid in 92% yield (0.6 mmol, 488.8 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.84 (s, 4H), 8.76 (d, J = 4.0 Hz, 4H), 8.70 (d, J = 7.9 Hz, 4H), 8.49 (d, J = 1.6 Hz, 2H), 8.06 (d, J = 8.3 Hz, 4H), 7.94-7.87 (m, 8H), 7.83 (dd, J = 8.5, 1.7 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 7.37 (ddd, J = 7.3, 4.8, 1.0 Hz, 4H), 4.39 (t, J = 7.1 Hz, 2H), 3.64 (q, J = 6.2 Hz, 2H), 2.02-1.93 (m, 2H), 1.61-1.55 (s, 2H), and 1.50-1.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.45, 156.01, 149.99, 149.23, 142.77, 140.70, 136.98, 136.37, 131.67, 127.81, 127.71, 125.44, 123.91, 123.68, 121.53, 119.06, 118.74, 109.30, 62.78, 43.33, 32.71, 29.14, 27.21, and 25.71. MALDI-TOF-MS (*m/z*): calcd for [C₆₀H₄₇N₇O + H]⁺: 882.3915; found: 882.3933.

Compound S9: To a THF solution (10 mL) of **S8** (0.5 mmol), 2,6-dibromo-4-*tert*-butylphenol (1.0 mmol, 306.0 mg), and triphenylphosphine (1.0 mmol, 263.0 mg), diisopropyl azodicarboxylate (1.0 mmol, 202.0 mg) was added at 0 °C. After the resulting solution was stirred at 25 °C for 12 h, the reaction mixture was evaporated to dryness under reduced pressure. The residue was purified by recrystallization from $CH_2Cl_2/MeOH$ to give **S9**.

S9a was obtained as a yellowish solid in 85% yield (0.4 mmol, 485.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.84 (s, 4H), 8.76 (d, J = 3.9 Hz, 4H), 8.70 (d, J = 7.9 Hz, 4H), 8.50 (d, J = 1.7 Hz, 2H), 8.06 (d, J = 8.3 Hz, 4H), 7.93-7.87 (m, 8H), 7.84 (dd, J = 8.4, 1.7 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 7.49 (s, 2H), 7.37 (ddd, J = 7.6, 4.9, 1.2 Hz, 4H), 4.55 (t, J = 7.0 Hz, 2H), 4.05 (t, J = 5.9 Hz, 2H), 2.35-2.28 (m, 2H), 2.02-1.95 (m, 2H), and 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.45, 156.02, 150.79, 150.07, 150.00, 149.25, 142.79, 140.76, 136.95, 136.40, 131.78, 130.02, 127.82, 127.75, 125.54, 123.90, 123.75, 121.50, 119.11, 118.74, 117.95, 109.51, 72.85, 43.34, 34.73, 31.27, 27.89, and 26.12. MALDI-TOF-MS (m/z): calcd for [C₆₈H₅₃Br₂N₇O + H]⁺: 1144.2731; found: 1144.2764.

S9b was obtained as a yellowish solid in 80% yield (0.4 mmol, 468.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.84 (s, 4H), 8.76 (ddd, J = 4.9, 1.8, 0.9 Hz, 4H), 8.70 (dt, J = 8.0, 1.0 Hz, 4H), 8.49 (d, J =1.5 Hz, 2H), 8.06 (d, J = 8.5 Hz,, 4H), 7.92-7.87 (m, 8H), 7.83 (dd, J = 8.5, 1.8 Hz, 2H), 7.53 (d, J =8.5 Hz, 2H), 7.47 (s, 2H), 7.36 (ddd, J = 7.4, 4.8, 1.2 Hz, 4H), 4.41 (t, J = 7.1 Hz, 2H), 3.96 (t, J = 6.3Hz, 2H), 2.01 (q, J = 7.3 Hz, 2H), 1.87 (p, J = 6.5 Hz, 2H), 1.70-1.62 (m, 2H), 1.59-1.51 (m, 2H), and 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.47, 156.04, 151.00, 150.00, 149.84, 149.25, 142.83, 140.75, 136.93, 136.40, 131.72, 129.96, 127.81, 127.74, 125.49, 123.88, 123.72, 121.49, 119.11, 118.74, 117.96, 109.36, 73.14, 43.38, 34.68, 31.27, 29.91, 29.10, 27.15, and 25.83. MALDI-TOF-MS (*m/z*): calcd for [C₇₀H₅₇Br₂N₇O + H]⁺: 1172.3044; found: 1172.3065. **Compound S11**: To a degassed Schlenk tube containing **S10** (3.0 mmol, 930.0 mg), bis(pinacolato)diboron (3.6 mmol, 915.0 mg), Pd(dppf)Cl₂ (150.3 µmol, 110.0 mg), and CH₃COOK (9.0 mmol, 880.0 mg), 20 mL of 1,4-dioxane was added. Under N₂, the reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the mixture was poured into water and then extracted with DCM for three times. The combined organic phase was washed with H₂O and brine, dried over MgSO₄, and evaporated to dryness under reduced pressure. The residue was purified by recrystallization from CH₂Cl₂/hexane to afford **S11** as a white solid in 75% yield (2.3 mmol, 800.0 mg). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.68 (d, *J* = 5.6 Hz, 2H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 2.3 Hz, 4H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 5.6 Hz, 2H), and 1.37 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.32, 148.02, 142.92, 141.93, 137.30, 135.51, 128.04, 127.53, 126.49, 121.64, 84.04, and 25.03. MALDI-TOF-MS (*m*/*z*): calcd for [C₂₃H₂₄BNO₂ + H]⁺: 358.1973; found: 358.1914.

Ligand L³: To a degassed Schlenk tube containing **S9** (0.3 mmol), **S11** (0.7 mmol, 250.0 mg), Pd(PPh₃)₄ (30.3 µmol, 35.0 mg), and Na₂CO₃ (5.0 mmol, 530.0 mg), a mixed solvent (35 mL) of toluene/H₂O/*t*-BuOH (3/3/1, v/v/v) was added. The reaction mixture was stirred at 80 °C for 24 h. After cooling to room temperature, the mixture was poured into water and then extracted with CH₂Cl₂ for three times. The combined organic layer was washed with H₂O and brine, dried over MgSO₄, and evaporated to dryness under reduced pressure. The residue was purified by flash column chromatography (Al₂O₃) using CH₂Cl₂/MeOH (30:1, v/v) as eluent. The crude product was purified by recrystallization from CH₂Cl₂/MeOH to afford L³.

L^{3a} was obtained as a yellowish solid in 80% yield (0.2 mmol, 347.0 mg). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.83 (s, 4H), 8.77 (ddd, J = 4.8, 1.9, 0.9 Hz, 4H), 8.71 (dt, J = 8.0, 1.1 Hz, 4H), 8.64 (d, J = 6.2 Hz, 4H), 8.37 (d, J = 1.7 Hz, 2H), 8.03 (d, J = 8.3 Hz, 4H), 7.91 (td, J = 7.7, 1.8 Hz, 4H), 7.83 (d, J = 8.3 Hz, 4H), 7.73 (d, J = 8.3 Hz, 4H), 7.69 (s, 10H), 7.65 (d, J = 8.4 Hz, 4H), 7.57-7.54 (m, 4H), 7.42 (s, 2H), 7.38 (ddd, J = 7.5, 4.7, 1.2 Hz, 4H), 7.33 (d, J = 8.5 Hz, 2H), 4.13 (t, J = 7.0 Hz, 2H), 3.35 (t, J = 5.7 Hz, 2H), 1.76-1.68 (m, 2H), 1.41 (s, 9H), and 1.36-1.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.45, 156.12, 151.83, 150.42, 149.92, 149.29, 147.79, 147.28, 142.73, 141.58, 140.63, 138.98, 138.89, 137.02, 136.99, 136.52, 134.91, 131.67, 130.28, 127.87, 127.78, 127.72, 127.61, 127.53, 126.82, 125.38, 123.98, 123.64, 121.56, 121.49, 119.09, 118.71, 109.33, 72.76, 43.01, 34.74, 31.68, 27.59, and 25.87. MALDI-TOF-MS (m/z): calcd for [C₁₀₂H₇₇N₉O + H]⁺: 1445.6357; found: 1445.6310.

L^{3b} was obtained as a white solid in 78% yield (0.2 mmol, 345.0 mg). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.84 (s, 4H), 8.77 (ddd, J = 4.8, 1.8, 0.9 Hz, 4H), 8.71 (dt, J = 8.0, 1.0 Hz, 4H), 8.63 (d, J = 6.2 Hz, 4H), 8.41 (d, J = 1.6 Hz, 2H), 8.04 (d, J = 8.4 Hz, 4H), 7.90 (td, J = 7.8, 1.8 Hz, 4H), 7.85 (d, J = 8.4 Hz, 4H), 7.80-7.67 (m, 14H), 7.65 (d, J = 8.5 Hz, 4H), 7.53 (d, J = 6.3 Hz, 4H), 7.42 (s, 2H), 7.39-7.34 (m, 6H), 4.16 (t, J = 7.2 Hz, 2H), 3.32 (t, J = 5.9 Hz, 2H), 1.70 (q, J = 7.3 Hz, 2H), 1.41 (s, 9H), 1.29-1.22 (m, 2H), and 1.16-1.06 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 156.44, 156.10, 152.00,

150.00, 149.63, 149.28, 148.55, 147.14, 142.70, 141.83, 140.65, 139.18, 138.75, 137.09, 136.63, 136.56, 134.92, 131.70, 130.32, 127.92, 127.77, 127.71, 127.64, 127.57, 126.80, 125.43, 124.00, 123.66, 121.68, 121.59, 119.11, 118.80, 109.25, 73.26, 43.27, 34.73, 31.69, 29.86, 28.99, 26.93, and 25.77. MALDI-TOF-MS (*m/z*): calcd for [C₁₀₄H₈₁N₉O + H]⁺: 1473.6670; found: 1473.6687.

Scheme S4. Synthesis of [Pt₂L⁴](OTf)₂.

[Pt₂L⁴]I₂: To a 100 mL Schlenk flask containing 2,5-diethynylthiophene (0.7 mmol, 92.4 mg) and *trans*diiodobis(triethylphosphine)platinum(II) (2.2 mmol, 1.5 g), 40 mL of anhydrous THF and 10 mL of anhydrous Et₂NH were added under N₂. The solution was stirred at room temperature for 10 min, and then CuI (69.8 µmol, 13.3 mg) was added. After being stirred for an additional 3 h at room temperature, the solvent was removed under reduced pressure. The residue was purified by column chromatography (SiO₂) using EA/hexane (3/100-3/50, v/v) as eluent to give [Pt₂L⁴]I₂ as a yellow solid in 75% yield (0.5 mmol, 660.0 mg).¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.67 (s, 2H), 2.23-2.17 (m, 24H), and 1.19-1.12 (m, 36H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 127.43, 126.89, 95.13, 93.26, 16.81, and 8.44. ³¹P NMR (202 MHz, CDCl₃): δ (ppm) 8.60 (s, $J_{Pt-P} = 2306.8$ Hz). MALDI-TOF-MS (*m/z*): calcd for [C₃₂H₆₂I₂P₄Pt₂S + H]⁺: 1246.0959; found: 1246.0935.

 $[Pt_2L^4](OTf)_2$: To a CH₂Cl₂ solution (20 mL) of $[Pt_2L^4]I_2$ (0.1 mmol, 125.0 mg) in a Schlenk tube, AgOTf (0.2 mmol, 57.0 mg) was added. After being stirred at room temperature for 2 h, the suspension was filtered through a glass fiber filter and the volume of the solution was reduced to ~5 mL. Subsequent addition of diethyl ether resulted in the precipitation of $[Pt_2L^4](OTf)_2$ as a tawny solid. $[Pt_2L^4](OTf)_2$ was prepared just before self-assembly of the heterobimetallic complex Cd₈Pt₈ and used without further purification.

864

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of ligand L¹.

1.37 3.85 0.91 06 06 03 03 .92 .92 .91 6.06 90 82 82 53 36 .35 .35 .33 .32 37 ξ. .32

Figure S2. ¹H NMR spectrum (500 MHz, CDCl₃) of ligand L².

Figure S3. ¹³C NMR spectrum (100 MHz, CDCl₃) of ligand L².

Figure S4. Partial COSY spectrum (500 MHz, CDCl₃) of ligand L^2 .

Figure S5. Partial COSY spectrum (500 MHz, CDCl₃) of ligand L².

Figure S6. Partial ROESY spectrum (500 MHz, $CDCl_3$) of ligand L^2 .

Figure S7. High-resolution MALDI-TOF-MS spectrum of ligand L².

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃) of S6a.

Figure S9. ¹³C NMR spectrum (100 MHz, CDCl₃) of S6a.

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃) of S6b.

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃) of S7a.

S14

Figure S14. ¹H NMR spectrum (400 MHz, CDCl₃) of S7b.

Figure S16. ¹H NMR spectrum (400 MHz, CDCl₃) of S8a.

Figure S18. ¹H NMR spectrum (400 MHz, CDCl₃) of S8b.

Figure S20. ¹H NMR spectrum (400 MHz, CDCl₃) of S9a.

Figure S21. ¹³C NMR spectrum (100 MHz, CDCl₃) of S9a.

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃) of S9b.

Figure S23. ¹³C NMR spectrum (100 MHz, CDCl₃) of S9b.

Figure S24. ¹H NMR spectrum (400 MHz, CDCl₃) of S11.

Figure S25. ¹³C NMR spectrum (100 MHz, CDCl₃) of S11.

Figure S26. ¹H NMR spectrum (500 MHz, CDCl₃) of ligand L^{3a}.

Figure S27. ¹³C NMR spectrum (100 MHz, CDCl₃) of L^{3a}.

Figure S28. Partial COSY spectrum (500 MHz, CDCl₃) of ligand L^{3a} .

Figure S29. Partial COSY spectrum (500 MHz, CDCl₃) of igand L^{3a}.

Figure S30. Partial ROESY spectrum (500 MHz, CDCl₃) of ligand L^{3a}.

Figure S31. Partial ROESY spectrum (500 MHz, CDCl₃) of L^{3a}.

Figure S32. High-resolution MALDI-TOF-MS spectrum of L^{3a}.

Figure S33. ¹H NMR Spectrum (500 MHz, CDCl₃) of ligand L^{3b}.

Figure S34. ¹³C NMR spectrum (125 MHz, CDCl₃) of ligand L^{3b}.

Figure S35. Partial COSY spectrum (500 MHz, CDCl₃) of ligand L^{3b}.

Figure S36. Partial COSY spectrum (500 MHz, CDCl₃) of ligand L^{3b} .

Figure S37. Partial ROESY spectrum (500 MHz, CDCl₃) of ligand L^{3b}.

Figure S38. Partial ROESY spectrum (500 MHz, CDCl₃) of ligand L^{3b} .

Figure S39. High-resolution MALDI-TOF-MS spectrum of ligand L^{3b} .

Figure S40. ¹H NMR spectrum (500 MHz, CDCl₃) of [Pt₂L⁴]I₂.

Figure S41. $^{13}\mathrm{C}$ NMR spectrum (125 MHz, CDCl₃) of $[\mathrm{Pt}_{2}\mathrm{L}^{4}]\mathrm{I}_{2}.$

Figure S43. High-resolution MALDI-TOF-MS spectrum of $[Pt_2L^4]I_2$.

Self-Assembly of Complexes

General Procedure for $[Cd_8L^1_2L^2_4]$: To a CHCl₃ solution (5 mL) of ligands, a MeOH solution (5 mL) of Cd(NO₃)₂·4H₂O was added. Subsequently, MeCN (5 mL) was added in order to improve the solubility of the resulting mixture. The reaction mixture was stirred at 60 °C for 12 h to give a homogeneous solution. A 20-fold excess of NH₄PF₆ in MeOH was added to exchange the counterion. After being stirred at 25 °C for 30 mins, the solution was evaporated to dryness under reduced pressure. A white suspension was obtained after the addition of water, which was filtered, washed with H₂O and MeOH, and then dried *in vacuo*. The resultant solid was then dissolved in CD₃CN (6 mg mL⁻¹) and heated at 80 °C for 8 h. ¹H NMR and ESI-MS were employed to monitor the complexation reaction.

Scheme S5. Self-assembly of dimeric sphere $[Cd_8L^{1}_2L^{2}_4]$.

[Cd₈L¹₂L²₄]: By the general procedure, after 8 h of heating at 80 °C, [Cd₈L¹₂L²₄] was obtained in quantitative yield from L¹ (6.0 µmol, 18.8 mg), L² (12.0 µmol, 10.4 mg), Cd(NO₃)₂·4H₂O (24.0 µmol, 7.4 mg) and NH₄PF₆ (960.0 µmol, 156 mg). ¹H NMR (400 MHz, CD₃CN): δ (ppm) 9.09 (s, 16H), 8.81 (s, 8H), 8.77 (d, J = 8.2 Hz, 16H), 8.53 (d, J = 8.2 Hz, 16H), 8.44 (s, 16H), 8.35 (d, J = 8.2 Hz, 16H), 8.26-8.20 (m, 32H), 8.18-8.07 (m, 32H), 8.07-7.96 (m, 24H), 7.89 (s, 8H), 7.78 (d, J = 8.7 Hz, 8H), 7.58 (d, J = 8.1 Hz, 16H), 7.46 (br, 16H), 7.16 (d, J = 7.0 Hz, 16H), 6.78 (t, J = 8.4 Hz, 16H), 5.86 (d, J = 8.6 Hz, 32H), 5.48 (d, J = 6.8 Hz, 8H), 5.03 (t, J = 7.8 Hz, 8H), 4.63 (d, J = 6.6 Hz, 8H), 4.53 (br, 8H), 2.83 (s, 96H), 2.69 (br, 16H), 2.02-1.93 (m, 8H), 1.62-1.55 (m, 48H), 1.46-1.27 (m, 24H), 1.09 (t, J = 7.0 Hz, 24H), 0.90 (t, J = 7.1 Hz, 12H). ¹¹³Cd NMR (111 MHz, CD₃CN): δ (ppm) 242.64.

ESI-MS	(m/z):
--------	--------

Charge state	Composition	Theoretical m/z	Experimental m/z
5+	$[M - 5PF_6]^{5+}$	2446.0096	2446.0552
6+	$[M - 6PF_6]^{6+}$	2014.0162	2014.0487
7+	$[M - 7PF_6]^{7+}$	1705.7312	1705.7497
8+	$[M-8PF_6]^{8+}$	1474.2717	1474.2790
9+	$[M - 9PF_6]^{9+}$	1294.3608	1294.3633
10+	$[M - 10PF_6]^{10+}$	1150.4254	1150.4232
11+	$[M - 11PF_6]^{11+}$	1032.6589	1032.6554
12+	$[M-12PF_6]^{12+}$	934.5265	934.5188
13+	$[M - 13PF_6]^{13+}$	851.4906	851.4779

Figure S44. ¹H NMR spectrum (400 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{2}_4]$. S32

Figure S45. Partial COSY spectrum (400 MHz, CD₃CN) of $[Cd_8L^1_2L^2_4]$.

Figure S46. Partial COSY spectrum (400 MHz, CD₃CN) of $[Cd_8L^1_2L^2_4]$.

Figure S47. Partial ROESY spectrum (400 MHz, CD₃CN) of [Cd₈L¹₂L²₄].

Figure S49. DOSY spectrum (500 MHz, CD₃CN) of $[Cd_8L^1_2L^2_4]$.

Figure S50. (a) ESI-MS spectrum and (b) TWIM-MS Plot of $[Cd_8L^{1}_2L^{2}_4].$

Figure S51. Experimental and theoretical isotope patterns of $[Cd_8L^{1}_2L^{2}_4]$.

Charge state	m/z	Drift time (ms)	Experimental CCS (Å ²)
6+	2014.0	14.11	1300.2
7+	1705.8	10.8	1269.9
8+	1474.3	9.04	1285.7
8+	1474.3	10.03	1380.8
9+	1294.4	8.60	1397.7
10+	1150.4	7.39	1396.1
11+	1032.7	6.95	1470. 1
12+	934.5	6.62	1548.6
13+	851.5	6.06	1572.6
		Average CCS	1394.0 ± 144.6
			Theoretical CCS (Å ²)
		PA CCS	1411.6 ± 35.6
		TMCCS	1622 1 + 186 7

Table S1. Drift times and collision cross sections (CCSs) for $[Cd_8L^1_2L^2_4]$.

Figure S52. Geometry-optimized structures of $[Cd_8L^1_2L^2_4]$.

General Procedure for $[Cd_8L^1_2L^3_4]$: To a CHCl₃ solution (6 mL) of ligands, a MeOH solution (6 mL) of Cd(OTf)₂ was added. The reaction mixture was stirred at 60 °C for 12 h to give a homogeneous solution. A yellow solid was obtained in quantitative yield after the solvent mixture was evaporated to dryness under reduced pressure. The resultant solid was then dissolved in CD₃CN (6 mg mL⁻¹) and the solution was stirred at 80 °C for 8 h. ¹H NMR and ESI-MS were employed to monitor the complexation reaction.

Scheme S6. Self-assembly of complex [Cd₈L¹₂L³₄].

Complex [Cd₈L¹₂L^{3a}₄]: By the general procedure, after 8 h of heating at 80 °C, [Cd₈L¹₂L^{3a}₄] was obtained in quantitative yield from L¹ (5.0 µmol, 15.6 mg), L^{3a} (10.0 µmol, 14.4 mg), and Cd(OTf)₂ (21.0 µmol, 8.6 mg). ¹H NMR (500 MHz, CD₃CN): δ (ppm) 9.13 (s, 16H), 8.82 (d, *J* = 8.6 Hz, 16H), 8.79 (d, *J* = 1.9 Hz, 8H), 8.64 (d, *J* = 6.2 Hz, 16H), 8.56 (d, *J* = 8.2 Hz, 16H), 8.43-8.37 (m, 32H), 8.18-8.07 (m, 64H), 7.99 (dd, *J* = 5.1, 1.8 Hz, 16H), 7.93 (dd, *J* = 8.5, 1.8 Hz, 8H), 7.87 (br, 8H), 7.82 (d, *J* = 8.5 Hz, 16H), 7.72 (d, *J* = 8.4 Hz, 16H), 7.69-7.59 (m, 56H), 7.57 (d, *J* = 7.8 Hz, 16H), 7.45 (m, 24H), 7.14 (d, *J* = 7.0 Hz, 16H), 6.75 (t, *J* = 8.4 Hz, 16H), 5.85 (d, *J* = 8.6 Hz, 32H), 5.47 (d, *J* = 6.1 Hz, 8H), 5.02 (t, *J* = 7.7 Hz, 8H), 4.61 (d, *J* = 7.1 Hz, 8H), 4.29 (br, 8H), 3.30 (br, 8H), 2.82 (s, 96H), 2.68 (br, 16H), 1.65-1.55 (m, 56H), 1.45-1.41 (m, 8H), 1.39 (s, 36H), and 1.08 (t, *J* = 7.1 Hz, 24H). ¹¹³Cd NMR (111 MHz, CD₃CN): δ (ppm) 242.33.

ESI-MS (<i>m/z</i>):
----------	---------------

Charge state	Composition	Theoretical m/z	Experimental m/z
6+	$[M-60Tf]^{6+}$	2406.6553	2406.6643
7+	$[M-70Tf]^{7+}$	2041.5652	2041.5795
8+	$[M - 8OTf]^{8+}$	1767.7515	1767.7583
9+	$[M - 9OTf]^{9+}$	1554.7836	1554.7777
10+	$[M - 100Tf]^{10+}$	1384.4155	1384.4086
11+	$[M - 11OTf]^{11+}$	1245.0142	1245.0068
12+	$[M - 12OTf]^{12+}$	1128.8503	1128.8306
13+	$[M - 13OTf]^{13+}$	1030.5585	1030.5366
14+	$[M - 14OTf]^{14+}$	946.3797	946.3555
15+	$[M - 15OTf]^{15+}$	873.2930	873.2669

Figure S53. ¹H NMR spectrum (500 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{3a}_4]$.

Figure S54. Partial COSY spectrum (500 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{3a}_4]$.

Figure S55. Partial COSY spectrum (500 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{3a}_4]$.

Figure S56. Partial ROESY spectrum (500 MHz, CD₃CN) of [Cd₈L¹₂L^{3a}₄].

Figure S57. Partial ROESY spectrum (500 MHz, CD₃CN) of [Cd₈L¹₂L^{3a}₄].

Figure S58. ¹¹³Cd NMR spectrum (111 MHz, CD₃CN) of [Cd₈L¹₂L^{3a}₄].

Figure S59. DOSY spectrum (500 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{3a}_4]$.

Figure S60. (a) ESI-MS spectrum and (b) TWIM-MS plot of $[Cd_8L^{1}_2L^{3a}_4]$.

Figure S61. Experimental and theoretical isotope patterns of [Cd₈L¹₂L^{3a}₄].

Charge state	m/z	Drift time (ms)	Experimental CCS (Å ²)
7	2041.6	12.9	1429.4
8	1767.8	10.47	1420.8
9	1554.8	10.36	1587.4
10	1384.4	8.82	1579.9
11	1245.0	7.83	1599.4
12	1128.8	7.83	1745.3
13	1030.5	7.17	1776.4
		Average CCS	1591.3 ± 137.5
			Theoretical CCS (Å ²)
		PA CCS	1614.8 ± 75.3
		TM CCS	1911.1 ± 143.8

Table S2. Drift times and collision cross sections (CCSs) for $[Cd_8L^{1}_2L^{3a}_4]$.

Figure S62. Geometry-optimized structures of $[Cd_8L^{1}_2L^{3a}_4]$.

Complex [Cd₈L¹₂L^{3b}₄]: By the general procedure, after 8 h of heating at 80 °C, [Cd₈L¹₂L^{3b}₄] was obtained in quantitative yield from L¹ (5.0 µmol, 15.6 mg), L^{3b} (10.0 µmol, 14.7 mg), and Cd(OTf)₂ (21.0 µmol, 8.6 mg). ¹H NMR (500 MHz, CD₃CN): δ (ppm) 9.13 (s, 16H), 8.82 (dd, J = 8.2, 1.0 Hz, 16H), 8.78 (d, J = 1.9 Hz, 8H), 8.59 (d, J = 6.2 Hz, 16H), 8.56 (d, J = 8.2 Hz, 16H), 8.43 (s, 16H), 8.40 (d, J = 7.8 Hz, 16H), 8.19 (d, J = 8.1 Hz, 16H), 8.16-8.07 (m, 48H), 8.01-7.96 (m, 24H), 7.88 (br, 8H), 7.73-7.62 (m, 72H), 7.58 (m, 32H), 7.48-7.43 (m, 24H), 7.14 (d, J = 7.6 Hz, 16H), 6.77 (t, J = 8.4 Hz, 16H), 5.85 (d, J = 8.6 Hz, 32H), 5.46 (d, J = 5.8 Hz, 8H), 5.02 (t, J = 7.6 Hz, 8H), 4.61 (d, J = 5.8 Hz, 8H), 4.32 (br, 8H), 3.26 (t, J = 5.8 Hz, 8H), 2.82 (s, 96H), 2.69 (br, 16H), 1.60 (m, 56H), 1.39 (s, 36H), 1.25-1.11 (m, 24H), and 1.08 (t, J = 7.1 Hz, 24H). ¹¹³Cd NMR (111 MHz, CD₃CN): δ (ppm) 242.98. ESI-MS (*m/z*):

Charge state	Composition	Theoretical m/z	Experimental m/z
5+	$[M-5OTf]^{5+}$	2940.7986	2940.7566
6+	$[M - 60Tf]^{6+}$	2425.5068	2425.4814
7+	$[M - 70Tf]^{7+}$	2057.7317	2057.7087
8+	$[M - 8OTf]^{8+}$	1781.8922	1781.8691
9+	$[M - 90Tf]^{9+}$	1567.4685	1567.4458
10+	$[M - 100Tf]^{10+}$	1395.6265	1395.6162
11+	$[M - 110Tf]^{11+}$	1255.2074	1255.2061
12+	$[M - 12OTf]^{12+}$	1138.1941	1138.1925
13+	$[M - 13OTf]^{13+}$	1039.1835	1039.1755
14+	$[M - 14OTf]^{14+}$	954.2480	954.2458
15+	$[M - 15OTf]^{15+}$	880.6978	880.6941
16+	$[M - 16OTf]^{16+}$	816.4076	816.4156

Figure S63. ¹H NMR spectrum (500 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{3b}_4]$.

Figure S64. Partial COSY spectrum (500 MHz, CD₃CN) of [Cd₈L¹₂L^{3b}₄].

Figure S65. Partial COSY spectrum (500 MHz, CD₃CN) of [Cd₈ $L^{1}_{2}L^{3b}_{4}$].

Figure S66. Partial ROESY spectrum (500 MHz, CD₃CN) of [Cd₈L¹₂L^{3b}₄].

Figure S67. Partial ROESY spectrum (500 MHz, CD₃CN) of [Cd₈L¹₂L^{3b}₄].

Figure S69. DOSY spectrum (500 MHz, CD₃CN) of $[Cd_8L^{1}_2L^{3b}_4]$.

Figure S70. (a) ESI-MS spectrum and (b) TWIM-MS plot of $[Cd_8L^{1}_2L^{3b}_4]$.

Figure S71. Experimental and theoretical isotope patterns of [Cd₈L¹₂L^{3b}₄].

Charge state	m/z	Drift time (ms)	Experimental CCS (Å ²)
7	2057.7	12.68	1413.1
8	1781.9	10.80	1450.9
8	1781.9	11.38	1502.9
9	1567.4	10.14	1564.4
10	1395.6	8.60	1552.4
11	1255.2	7.39	1535.0
12	1138.2	7.39	1675.1
13	1039.2	6.73	1697.0
		Average CCS	1548.9 ± 98.9
			Theoretical CCS (Å ²)
		PA CCS	1595.3 ± 92.8
		TM CCS	1903.4 ± 124.3

Table S3. Drift times and collision cross sections (CCSs) for $[Cd_8L^{1}_2L^{3b}_4]$.

Figure S72. Geometry-optimized structures of $[Cd_8L^{1}_2L^{3b}_4]$.

General Procedure for Heterobimetallic Nano-Saturn Complexes: To a CD_3NO_2 solution of $[Cd_8L^1_2L^3_4]$ (~0.4 mM), metalloligand $[Pt_2L^4](OTf)_2$ was added. The reaction mixture was stirred at 25 °C for 8 h to give a homogeneous solution. ¹H NMR and ESI-MS were employed to monitor the complexation reaction.

Scheme S7. Self-assembly of heterobimetallic nano-Saturn [$Cd_8Pt_8L^{1}_2L^{3}_4L^{4}_4$].

Heterobimetallic Nano-Saturn [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄]: By the general procedure, after being stirred at 25 °C for 8 h, the complex [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄] was obtained in quantitative yield from [Cd₈L¹₂L^{3a}₄] (0.8 µmol, 12.1 mg), metalloligand [Pt₂L⁴](OTf)₂ (3.2 µmol, 4.1 mg). ¹H NMR (500 MHz, CD₃NO₂): δ (ppm) 9.12 (br, 16H), 8.82 (d, J = 7.9 Hz, 16H), 8.69 (m, 24H), 8.63 (d, J = 8.0 Hz, 16H), 8.53 (br, 16H), 8.32 (br, 16H), 8.20 (m, 32H), 8.16-8.10 (m, 48H), 8.07-7.88 (m, 88H), 7.86 (br, 8H), 7.62 (s, 8H), 7.57 (m, 24H), 7.50 (t, J = 6.0 Hz, 16H), 7.21 (d, J = 7.3 Hz, 16H), 6.85 (t, J = 8.3 Hz, 16H), 6.73 (br, 8H), 5.93 (d, J = 8.3 Hz, 32H), 5.59 (br, 8H), 5.09 (br, 8H), 4.72 (br, 8H), 4.24 (br, 8H), 3.50 (br, 6H), 2.89 (s, 96H), 2.65 (br, 16H), 2.14 (br, 8H), 1.88-1.80 (m, 96H), 1.64-1.50 (m, 48H), 1.46 (s, 36H), 1.41 (br, 8H), 1.15-1.12 (m, 144H), and 1.04 (t, J = 7.2 Hz, 24H). ¹¹³Cd NMR (111 MHz, CD₃NO₂): δ (ppm) 241.62. ³¹P NMR (202 MHz, CD₃NO₂): δ (ppm) 15.77 (s, 16P, ¹⁹⁵Pt satellites, ¹ $J_{PLP} = 2306.8$ Hz).

L_{01}^{-1}

Charge state	Composition	Theoretical m/z	Experimental m/z
8+	$[M-80Tf]^{8+}$	2413.0938	2413.1174
9+	$[M - 9OTf]^{9+}$	2128.6440	2128.6536
10+	$[M - 100Tf]^{10+}$	1900.8861	1900.8956
11+	$[M - 110Tf]^{11+}$	1714.6301	1714.6249
12+	$[M - 12OTf]^{12+}$	1559.2451	1559.2478
13+	$[M - 13OTf]^{13+}$	1427.8495	1427.8431
14+	$[M - 14OTf]^{14+}$	1315.2158	1315.2120
15+	$[M - 150Tf]^{15+}$	1217.2760	1217.2734
16+	$[M - 160Tf]^{16+}$	1132.1333	1132.1271
17+	$[M - 170Tf]^{17+}$	1056.7166	1056.7108

Figure S73. ¹H NMR spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄].

Figure S74. Partial COSY spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄].

Figure S75. Partial COSY spectrum (500 MHz, CD₃NO₂) of $[Cd_8Pt_8L^{1}_2L^{3a}_4L^{4}_4]$.

Figure S76. Partial ROESY spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄].

Figure S77. Partial ROESY spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄].

Figure S78. ¹¹³Cd NMR spectrum (111 MHz, CD_3NO_2) of $[Cd_8Pt_8L^{1}_2L^{3a}_4L^{4}_4]$.

S62

Figure S80. DOSY spectrum (500 MHz, CD_3NO_2) of $[Cd_8Pt_8L^{1}_2L^{3a}_4L^{4}_4]$.

Figure S81. (a) ESI-MS spectrum and (b) TWIM-MS plot of $[Cd_8Pt_8L^{1}_2L^{3a}_4L^4_4].$

Figure S82. Experimental and theoretical isotope patterns of [Cd₈Pt₈L¹₂L^{3a}₄L⁴₄].

Charge state	m/z	Drift time (ms)	Experimental CCS (Å ²)
8	2413.1	18.08	2035.8
9	2128.7	14.11	1949.5
9	2128.7	15.10	2037.9
10	1900.9	12.57	2007.0
11	1714.6	10.80	1994.7
11	1714.6	11.25	2050.3
12	1559.2	9.59	2007.4
12	1559.2	9.92	2054.4
12	1559.2	11.91	2324.3
13	1427.8	9.92	2226.1
13	1427.8	10.92	2376.0
14	1315.2	9.81	2379.7
		Average CCS	2120.3 ± 159.3
			Theoretical CCS (Å ²)
		PA CCS	2271.7 ± 7.3

TM CCS

 2610.4 ± 36.84

Table S4. Drift times and collision cross sections (CCSs) for $[Cd_8Pt_8L^{1}_2L^{3a}_4L^{4}_4]$.

Figure S83. Geometry-optimized structures of $[Cd_8Pt_8L^{1}_2L^{3a}_4L^4_4]$.

Heterobimetallic Nano-Saturn [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄]: By the general procedure, after being stirred for 8 h at 25 °C, the complex [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄] was obtained in quantitative yield from [Cd₈L¹₂L^{3b}₄] (770.0 nmol, 11.9 mg), metalloligand [Pt₂L⁴](OTf)₂ (3.1 µmol, 4.0 mg). ¹H NMR (500 MHz, CD₃NO₂): δ (ppm) 9.14 (s, 16H), 8.83 (d, J = 8.1 Hz, 16H), 8.71 (m, 24H), 8.64 (d, J = 8.2 Hz, 16H), 8.54 (s, 16H), 8.34 (d, J = 7.4 Hz, 16H), 8.27-8.08 (m, 80H), 8.07-7.91 (m, 72H), 7.87 (d, J = 8.3 Hz, 16H), 7.80 (br, 8H), 7.61-7.54 (m, 32H), 7.51 (t, J = 5.9 Hz, 16H), 7.22 (d, J = 7.4 Hz, 16H), 6.86 (t, J = 8.5 Hz, 16H), 6.76 (s, 8H), 5.94 (d, J = 8.6 Hz, 32H), 5.59 (br, 8H), 5.10 (br, 8H), 4.72 (br, 8H), 4.24 (br, 8H), 3.40 (br, 8H), 2.90 (s, 96H), 2.65 (br, 16H), 2.22 (br, 8H), 1.93-1.75 (m, 96H), 1.65-1.59 (m, 32H), 1.54-1.49 (m, 16H), 1.46-1.39 (m, 42H), 1.31-1.23 (m, 16H), 1.17-1.13 (m, 144H), and 1.04 (t, J = 7.2 Hz, 24H). ¹¹³Cd NMR (111 MHz, CD₃NO₂): δ (ppm) 241.82. ³¹P NMR (202 MHz, CD₃NO₂): δ (ppm) 15.75 (s, 16P, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2294.7 Hz). ESI-MS (*m*/*z*):

Charge state	Composition	Theoretical m/z	Experimental m/z
7+	$[M - 70Tf]^{7+}$	2795.9741	2795.9619
8+	$[M - 80Tf]^{8+}$	2427.7344	2427.7317
9+	$[M - 90Tf]^{9+}$	2141.4385	2141.4282
10+	$[M - 100Tf]^{10+}$	1911.8955	1911.8965
11+	$[M - 110Tf]^{11+}$	1724.3625	1724.3643
12+	$[M - 12OTf]^{12+}$	1568.5029	1568.5005
13+	$[M - 13OTf]^{13+}$	1436.2402	1436.2332
14+	$[M - 14OTf]^{14+}$	1323.1544	1323.1527
15+	$[M - 15OTf]^{15+}$	1225.0167	1225.0198
16+	$[M - 160Tf]^{16+}$	1139.0161	1139.0067

Figure S84. ¹H NMR spectrum (500 MHz, CD₃NO₂) of $[Cd_8Pt_8L_2^{1}L_4^{3b}L_4^{4}]$.

Figure S85. Partial COSY spectrum (500 MHz, CD₃NO₂) of $[Cd_8Pt_8L^{1}_2L^{3b}_4L^{4}_4]$.

Figure S86. Partial COSY spectrum (500 MHz, CD₃NO₂) of $[Cd_8Pt_8L^{1}_2L^{3b}_4L^{4}_4]$.

Figure S87. Partial ROESY spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄].

Figure S88. Partial ROESY spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄].

Figure S89. ¹¹³Cd NMR spectrum (111 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄].

Figure S91. DOSY spectrum (500 MHz, CD₃NO₂) of [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄].

Figure S92. (a) ESI-MS spectrum and (b) TWIM-MS plot of $[Cd_8Pt_8L_2^{1}L_3^{3b}L_4^{4}]$.

Figure S93. Experimental and theoretical isotope patterns of [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄].

Charge state	m/z	Drift time (ms)	Experimental CCS (Å ²)
10	1911.9	12.57	2006.9
11	1724.4	10.69	1980.9
12	1568.5	9.70	2023.1
13	1436.2	8.71	2035.4
14	1323.2	8.16	2094.8
15	1225.0	7.50	2115.0
16	1139.0	7.17	2185.1
		Average CCS	2063.0 ± 71.7
			Theoretical CCS (Å ²)
		PA CCS	2281.0 ± 9.4
		TM CCS	2624.5 ± 46.3

Table S5. Drift times and collision cross sections (CCSs) for [Cd₈Pt₈L¹₂L^{3b}₄L⁴₄].

Figure S94. Geometry-optimized structures of $[Cd_8Pt_8L^{1}_2L^{3b}_4L^{4}_4]$.

Figure S95. Cartoon representation of the octagonal metallomacrocycle derived from $[Pt_2L^4]$ and *bis*py ligands. The formula for calculating the sum of interior angles of a polygon is $S = (N - 2) \times 180^\circ$, where *N* is the number of vertices of a polygon. The interior angle sum of an octagon is 1080° . The ring of nano-Saturn complexes is a metallomacrocycle formed from four 149° -bent $[Pt_2L^4]$ motifs and four 120° -bent *bis*-py moieties, which is very close to an ideal octagon.

Cavity Volume Calculation

Figure S96. Cavity volume (purple surface) in the geometry-optimized model of $[Cd_8L^1_2L^2_4]$ is estimated to be 6,368 Å³ by the 3V web server.¹³ The calix[4]resorcinarene-based nano-Saturn complexes with such a large cavity would have potential applications in construction of 2D or 3D porous materials through selective coordination chemistry.

References

- Y. T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome and C. Wesdemiotis, J. Am. Chem. Soc., 2011, 133, 11967–11976.
- M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz and M. F. Jarrold, *J. Phys. Chem.*, 1996, 100, 16082–16086.
- K. Thalassinos, M. Grabenauer, S. E. Slade, G. R. Hilton, M. T. Bowers and J. H. Scrivens, *Anal. Chem.*, 2009, 81, 248–254.
- 4. C. B. Aakeroy, N. Schultheiss and J. Desper, Org. Lett., 2006, 8, 2607-2610.
- S. Y. Wang, J. Y. Huang, Y. P. Liang, Y. J. He, Y. S. Chen, Y. Y. Zhan, S. Hiraoka, Y. H. Liu, S. M. Peng and Y. T. Chan, *Chem. Eur. J.*, 2018, 24, 9274-9284.
- P. Wen, Z. Gao, R. Zhang, A. Li, F. Zhang, J. Li, J. Xie, Y. Wu, M. Wu and K. Guo, *J. Mater. Chem. C*, 2017, 5, 6136-6143.
- Z. Zhang, H. Wang, X. Wang, Y. Li, B. Song, O. Bolarinwa, R. A. Reese, T. Zhang, X. Q. Wang, J. Cai, B. Xu, M. Wang, C. Liu, H. B. Yang and X. Li, *J. Am. Chem. Soc.*, 2017, 139, 8174-8185.
- 8. H. Tan, H. Liu, X. Chen, H. Chen and S. Qiu, Org. Biomol. Chem., 2015, 13, 9977-9983.
- C. S. Jiang, R. Zhou, J. X. Gong, L. L. Chen, T. Kurtan, X. Shen and Y. W. Guo, *Bioorg. Med. Chem. Lett.*, 2011, 21, 1171-1175.
- G. Zhan, M.-A. Dubois, Y. Makoudi, S. Lamare, J. Jeannoutot, X. Bouju, A. Rochefort, F. Palmino and F. Chérioux, *J. Phys. Chem. C*, 2017, **121**, 8427-8434.
- L. He, S. C. Wang, L. T. Lin, J. Y. Cai, L. Li, T. H. Tu and Y. T. Chan, J. Am. Chem. Soc., 2020, 142, 7134-7144.
- 12. S. S. Roy, S. R. Chowdhury, S. Mishra and S. K. Patra, *Chem. Asian J.*, 2020, **15**, 3304-3313.
- 13. N. R. Voss and M. Gerstein, *Nucleic Acids Res.*, 2010, **38**, W555-W562.