Supporting Information

Stable deep blue FAPbBr₃ quantum dots facilitated by amorphous

metal halide matrixes

Wei Shen,^{‡*a} Yue Qiu,^{‡a} Jiayu Jiang,^a Zhihua Chen,^a Yanxing He,^a Hao Cui,^a Lihui Liu,^a Gang Cheng,^b

Andrey N. Aleshin,^c Shufen Chen*a

^a State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.

E-mail: <u>iamwshen@njupt.edu.cn;</u> <u>iamsfchen@njupt.edu.cn</u>

^b State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China). ^c Loffe Institute, St. Petersburg 194021, Russia.

‡ W. S. and Y. Q. contributed equally to this work.

Experimental section

Chemical Materials. Formamidine acetate (FA–Ac, 99.9%), lead bromide (PbBr₂, 99%), n-Octylamine (OTAm, 99%), octanoic acid (OTA, 99%), nickel bromide hydrate (NiBr₂•xH₂O, 96%) and N,N-Dimethylformamide (DMF, 99.9%) were purchased from Aladdin. Toluene (99.5%) was purchased from Nanjing Chemical Reagent Co. Ltd. All materials and solvents were directly used without further purification.

Synthesis of FAPbBr₃ NCs. FAPbBr₃ NCs were synthesized by the following method. FA-Ac (0.12 mmol), PbBr₂ (0.3 mmol), OTA (3.6 mmol) and OTAm (0.18 mmol) were dissolved in 5 mL of DMF to prepare precursor solution. Then, 80 μ L of the precursor solution was injected into 4 mL of toluene under vigorous stirring at room temperature. After the FAPbBr₃ crude solution was centrifuged at 5000 rpm for 3 min, we discarded the bottom sediment. 2 mL toluene was added into the supernatant, then the mixture was centrifuged 5 min at 12000 rpm. After discarding the supernatant, the precipitate was FAPbBr₃ NCs, which were redispersed into 2 mL toluene for further characterization.

Synthesis of FAPbBr₃ QDs based on metal halide matrix. FAPbBr₃ QDs were synthesized by the following method. In a typical ligand-assisted reprecipitation method, FA-Ac (0.12 mmol), OTA (3.6 mmol), OTAm (0.18 mmol) and different ratios of PbBr₂/NiBr₂•xH₂O (Ni/Pb = 0, 0.5, 0.7, 1, 1.5, 2 and 2.75) were dissolved in 5 mL of DMF to prepare precursor solution. Then, 80 μ L of the precursor solution was injected into 4 mL of toluene under vigorous stirring at room temperature. Centrifugal purification steps were the same as the steps of FAPbBr₃ NCs.

Characterization. The ultraviolet-visible (UV-vis) absorption spectra of QDs solutions were recorded using a PerkinElmer Lambda 35S instrument in transmission mode. PL spectra were recorded using a RF6000 spectrofluorometer with an excitation wavelength of 365 nm. The morphology and size of QDs were confirmed by transmission electron microscopy (TEM) (Hitachi, HT7700) and high-resolution TEM (HRTEM) (Talos, F200X). The chemical compositions were determined using a PerkinElmer NexION 2000 inductively coupled plasma mass spectrometer (ICP-MS).

X-ray diffraction (XRD) data were collected using a Bruker D8 Advance X-ray powder diffractometer with Cu K α radiation ($\lambda = 0.154$ nm). The PL lifetimes of QDs were measured using an FLS920 fluorescence spectrometer with a pulse laser at 375 nm. The photoluminescence fluorescence quantum yield (PLQY), which is defined as the ratio of emitted photons to absorbed ones, was determined using a FLS920 fluorescence spectrometer equipped with an integrating sphere.

Figure S1. TEM images of FAPbBr₃ NCs and Ni²⁺-doped FAPbBr₃ QDs: (a) Ni/Pb=0, (b) Ni/Pb=0.44%, (c) Ni/Pb=0.60%, (d) Ni/Pb=0.80%, (e) Ni/Pb=1.36%, (f) Ni/Pb=4.86%, (g) Ni/Pb=7.96%. TEM images with larger scanning areas: (h) Ni/Pb=1.36%, (i) Ni/Pb=4.86%, (j) Ni/Pb=7.96%.

Figure S2. Particle size of deep blue $FAPbBr_3 QDs. (Ni/Pb = 4.86\%)$

Figure S3. TEM images of deep blue FAPbBr₃ QDs (Ni/Pb=4.86%).

Figure S4. HAADF-STEM images of Figure S3 and the corresponding elemental mapping of N, Pb, Br, and Ni.

Figure S5. XRD patterns Ni²⁺ based metal halide matrix. (a) XRD patterns from 1-10°, (b) from 5-50°.

Samples	Ni (ppb)	Pb (ppb)	Actual Ni/Pb ratio
В	0.282	64.091	0.44%
С	0.411	68.500	0.60%
D	0.539	67.375	0.80%
Е	0.729	53.603	1.36%
F	1.906	39.218	4.86%
G	4.802	60.327	7.96%

Table S1. The actual ratios of the Ni/Pb by ICP-MS for different Ni/Pb feed ratios

 Table S2. PL lifetime of blue light component for Ni/Pb=4.86% and Ni/Pb=7.96%

Samples	Ni/Pb=4.86%	Ni/Pb=7.96%
$\tau_1(ns)$	0.70	0.74
$\tau_2(ns)$	5.98	6.32
$\tau_{3}^{}(ns)$	65.19	56.04
A1	0.97 (60.6%)	0.98 (86.8%)
A2	0.10 (6.3%)	0.10 (8.8%)
A3	0.53 (33.1%)	0.05 (4.4%)
$\tau_{avg}(ns)$	62.98	38.82