Supporting Information

Ag(I)-Catalyzed Dearomatizing Spirocyclization/Nucleophile Addition Cascade Reactions of Indole-tethered Ynones

Debojyoti Bag^{a,b}, and Sanghapal D. Sawant^{a,b}*

^aNatural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

Correspondence to: sdsawant@iiim.res.in, sdsawant@iiim.ac.in

Table of Contents

Contents Page No. 1. General Methods..... S-2 2. Synthesis of Starting Materials..... S-3 3. General Experimental Procedures..... S-4 4. Characterization data for compounds **2a-3c**..... S-4 5. Special Notes..... S-17 6 X-Ray structures..... S-18 7. References..... S-21 8. NMR Spectra..... S-18

1. General Methods:

Materials: All glassware was oven-dried (90 °C). Unless mentioned, chemicals & solvents were purchased in high purity grade from commercial suppliers and used without further purification.

Chromatography: Thin layer chromatography (TLC) was carried out on Merck silica plates (60F–254), and components were visualized by observation under UV light or by treating the plates with p-anisaldehyde followed by heating. Silica gel chromatography was performed using silica gel (60–120 or 100-200 mesh).

Characterization: NMR spectra for the characterization of compounds were recorded on Bruker Avance DPX FT-NMR 400 MHz instrument (¹H) at 400 MHz and (¹³C) at 100 MHz respectively. ¹⁹F NMR was recorded at 376 MHz. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in DMSO-d₆ ($\delta_H = 2.50$ and $\delta_C = 39.52$ ppm), CDCl₃ ($\delta_H = 7.26$ and $\delta_C = 77.16$ ppm), CD₃OD ($\delta_H = 3.31$ and $\delta_C = 49.00$ ppm) and as internal reference and coupling constants (*J*) are given in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, ddd = doublet of doublets of doublets, t = triplet, q = quartet, m = multiplet. High-Resolution Mass Spectra (HRMS) were recorded using a Waters XEVO-G2-XS-Q-TOF mass spectrometer.

Experimental details. Unless mentioned, reactions were performed in an open atmosphere at room temperature (25-30 °C) in a 5 mL glass vial.

Figure S1: Indole-tethered ynones utilized in this study

Figure S2: C-Nucleophiles utilized in this study

2. Synthesis of Starting Materials (Scheme S1):

Indole-tethered ynones utilized in this study were synthesized in two steps according to the previously reported literature procedures.^{1,2}

Scheme S1: Synthesis of indole-tethered ynones

General procedure for the synthesis of Weinreb amides: To a suspension under Ar of carboxylic acids (1.0 equiv.) in CH_2Cl_2 was added portion-wise at 0 °C CDI (1.2 equiv.) and the resulting mixture was stirred at RT for 2 h. The mixture was then cooled to 0 °C and N,O-dimethylhydroxylamine hydrochloride (1.5 equiv.) was added portionwise and the resulting mixture was stirred at RT for additional 12 h. The mixture was diluted with water, extracted with CH_2Cl_2 and the aqueous phase was then discarded. The combined organic layers were washed with 1 N HCl and the acidic aqueous phase was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. Obtained solids were washed with petroleum ether twice which afforded the desired Weinreb amides.

General procedure for the synthesis of Ynones: To a solution of terminal alkyne (2.5 equiv.) in THF at -78 °C under argon was added *n*-BuLi (3.0 equiv.). The resulting solution was stirred at -78 °C for 30 min, then transferred via cannula to a cooled (-78 °C) solution of the corresponding Weinreb amide (1.0 equiv.) in THF. The mixture was stirred at -78 °C for 5 min then warmed to -10 °C and stirred for a further 1 h. The reaction was then re-cooled to

-78 °C and quenched with sat. aq. NH₄Cl, allowed to warm to room temperature, diluted with water, extracted with ethyl acetate, dried over Na₂SO₄ and concentrated in vacuo. Purification by flash column chromatography afforded the desired ynones as well as recovered alkyne.

3. General Experimental Procedure:

Procedure for the Synthesis of Spiroindolines from Indole-tethered Ynones (GP1):

To the solution of indole-tethered ynone **1** (1.0 equiv.) and indole (or other hetero- and carbocycles/ Hantzsch ester) (1.0 equiv.) in DCM (0.15 M) was added AgOTf (2.0 mol %). The resulting mixture was stirred at room temperature. Progress of the reaction was monitored periodically by TLC. Upon completion, water was added to the reaction mixture. The organic layer was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Silica gel column purification by using ethyl acetate and petroleum ether mixture as eluent afforded the desired products.

4. Characterization Data of Synthesized Compounds:

2'-(1H-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2a): Reaction of

ynone **1a** (50 mg, 0.192 mmol), indole (23 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2a** as pale brown solid (71 mg, 98% yield); R_f : 0.5 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.06 (s, 1H), 7.77-

7.55 (m, 2H), 7.53-7.38 (m, 3H), 7.37-7.29 (m, 1H), 7.26 (s, 1H), 7.15-6.96 (m, 3H), 6.93-6.86 (m, 1H), 6.85-6.71 (m, 2H), 6.69-6.62 (m, 2H), 6.31 (d, J = 2.01 Hz, 1H), 5.57 (d, J = 2.07 Hz, 1H), 2.80 (d, J = 18.44 Hz, 1H), 2.04 (d, J = 18.44 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.5, 175.1, 150.9, 136.8, 134.0, 133.7, 131.1, 130.8, 129.5, 129.3, 128.9, 126.7, 124.7, 123.0, 121.7, 119.3, 119.1, 118.9, 112.9, 112.2, 109.7, 63.9, 60.6, 49.0 ppm; HRMS (ESI): calcd. for C₂₆H₂₁N₂O [M+H]⁺: 377.1654, found 377.1656.

2'-(4-methyl-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2b):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 4-methylindole (25.3 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2b** as yellow solid (74 mg, 98% yield); R_f : 0.55 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.17 (s, 1H), 7.58-7.52 (m, 2H), 7.44-7.34 (m, 3H), 7.29-

7.25 (m, 1H), 7.22-7.18 (m, 1H), 7.10-7.05 (m, 1H), 6.95-6.90 (m, 1H), 6.85-6.80 (m, 1H), 6.69-6.62 (m, 3H), 6.60-6.54 (m, 1H), 6.40 (s, 1H), 5.77 (s, 1H), 2.71 (d, J = 18.54 Hz, 1H), 2.18 (d, J = 18.52 Hz, 1H), 2.12 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO-d₆) δ 206.0, 176.4, 150.9, 136.9, 133.7, 132.1, 130.5, 129.0, 128.9, 128.8, 128.6, 125.2, 125.1, 123.2, 121.2, 121.0, 117.6, 115.2, 109.9, 108.0, 62.7, 61.0, 49.8, 20.8 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, found 391.1815.

2'-(4-methoxy-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2c):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 4-methoxyindole (28.4 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2c** as yellow solid (69 mg, 88% yield); R_f : 0.45 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.09 (s, 1H), 7.71-7.61 (m, 2H), 7.44-7.33 (m, 3H), 7.26

(s, 1H), 7.06-7.00 (m, 1H), 6.95-6.88 (m, 2H), 6.77-6.64 (m, 2H), 6.60 (s, 1H), 6.57-6.50 (m, 1H), 6.32-6.22 (m, 2H), 5.99 (s, 1H), 3.13 (s, 3H), 2.81 (d, J = 18.26 Hz, 1H), 2.06 (d, J = 18.22 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.0, 175.7, 153.6, 151.0, 137.9, 133.8, 133.1, 130.1, 128.8, 128.5, 128.4, 128.3, 123.1, 122.1, 117.6, 116.4, 114.1, 108.3, 105.0, 98.9, 63.0, 60.3, 54.0, 49.3 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O₂ [M+H]⁺: 407.1760, found 407.1757.

2'-(5-hydroxy-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2e):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 5-hydroxyindole (25.7 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2e** as yellow solid (73.2 mg, 97% yield); R_f : 0.2 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 10.76 (s, 1H), 8.60 (s, 1H), 7.66-7.60 (m, 2H), 7.48-7.38 (m, 3H),

7.15-7.03 (m, 3H), 6.92-6.86 (m, 1H), 6.74-6.67 (m, 2H), 6.66-6.55 (m, 3H), 6.32 (s, 1H), 5.44 (s, 1H), 2.83 (d, J = 18.41 Hz, 1H), 2.05 (d, J = 18.36 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz,

DMSO-d₆) δ 206.0, 174.8, 150.8, 150.3, 133.6, 131.2, 130.5, 130.4, 129.2, 128.9, 128.6, 127.3, 124.6, 122.9, 118.1, 112.0, 111.8, 111.7, 109.1, 103.7, 63.9, 60.5, 49.0 ppm; HRMS (ESI): calcd. for C₂₆H₂₁N₂O₂ [M+H]⁺: 393.1603, found 393.1607.

2'-(5-fluoro-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2f):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 5-fluoroindole (26 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2f** as brown solid (73.5 mg, 97% yield); R_f : 0.34 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.22 (s, 1H), 7.72-7.61 (m, 2H), 7.52-7.41 (m, 3H), 7.38-

7.29 (m, 2H), 7.15-7.08 (m, 1H), 6.97-6.82 (m, 2H), 6.80-6.61 (m, 4H), 6.37 (s, 1H), 5.50 (s, 1H), 2.77 (d, J = 18.38 Hz, 1H), 2.06 (d, J = 18.36 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.6, 174.1, 156.5 (d, J = 231.58 Hz), 150.6, 133.7, 133.2 (d, J = 22.24 Hz), 130.7, 130.6, 129.0 (d, J = 30.54 Hz), 128.5, 126.6, 126.5, 122.7, 118.5, 112.8 (d, J = 9.89 Hz), 112.6 (d, J = 4.58 Hz), 109.6, 109.3, 103.5 (d, J = 23.59 Hz), 63.5, 60.2, 48.5 ppm; ¹⁹F NMR (376 MHz, DMSO-d₆) δ -124.8 ppm; HRMS (ESI): calcd. for C₂₆H₂₀N₂OF [M+H]⁺: 395.1560, found 395.1553.

2'-(5-chloro-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2g):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 5-chloroindole (29.2 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2g** as pale brown solid (74.3 mg, 94% yield); R_f : 0.32 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.32 (s, 1H), 7.69-7.62 (m, 2H), 7.50-7.42 (m, 3H),

7.38-7.34 (m, 2H), 7.15-7.10 (m, 1H), 7.06-7.00 (m, 2H), 6.96-6.92 (m, 1H), 6.79-6.75 (m, 1H), 6.73 (s, 1H), 6.68 (t, J = 7.37 Hz, 1H), 6.39 (d, J = 2.44 Hz, 1H), 5.51 (d, J = 2.40 Hz, 1H), 2.77 (d, J = 18.44 Hz, 1H), 2.05 (d, J = 18.42 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.6, 174.0, 150.6, 134.9, 133.8, 133.4, 130.9, 130.8, 129.3, 129.0, 128.6, 127.6, 126.2, 123.4, 122.8, 121.3, 118.7, 118.3, 113.4, 112.1, 109.5, 63.6, 60.3, 48.5 ppm; HRMS (ESI): calcd. for C₂₆H₂₀N₂OC1 [M+H]⁺: 411.1264, found 411.1265.

2'-(5-bromo-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2h):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 5-bromoindole (37.8 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2h** as yellow solid (84 mg, 96% yield); R_f : 0.29 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.32 (s, 1H), 7.69-7.62 (m, 2H), 7.52-7.43 (m, 3H), 7.35-

7.29 (m, 2H), 7.18-7.10 (m, 3H), 6.97-6.91 (m, 1H), 6.78-6.74 (m, 1H), 6.72 (s, 1H), 6.69 (t, J = 7.37 Hz, 1H), 6.38 (d, J = 2.71 Hz, 1H), 5.50 (d, J = 2.82 Hz, 1H), 2.76 (d, J = 18.47 Hz, 1H), 2.04 (d, J = 18.42 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.6, 174.0, 150.5, 135.1, 133.8, 133.4, 131.0, 130.8, 129.3, 129.0, 128.6, 128.2, 126.1, 123.8, 122.8, 121.3, 118.7, 113.9, 112.0, 111.3, 109.6, 63.5, 60.3, 48.4 ppm; HRMS (ESI): calcd. for C₂₆H₂₀N₂OBr [M+H]⁺: 455.0759, found 455.0751.

3-(4-oxo-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-2'-yl)-1H-indole-5-carbaldehyde

(2i): Reaction of ynone 1a (50 mg, 0.192 mmol), indole-5carboxaldehyde (28 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound 2i as yellow solid (61.5 mg, 79% yield); R_f : 0.20 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.64 (d, J = 1.72 Hz, 1H), 9.73 (s, 1H),

7.73-7.65 (m, 2H), 7.63 (s, 1H), 7.61-7.51 (m, 1H), 7.51-7.45 (m, 4H),7.44 (d, J = 2.14 Hz, 1H), 7.14 (ddd, J = 15.23, 7.70, 1.22 Hz, 1H), 6.98-6.94 (m, 1H), 6.80-6.76 (m, 1H), 6.73-6.67 (m, 2H), 6.44 (d, J = 3.22 Hz, 1H), 5.61 (d, J = 2.97 Hz, 1H), 2.76 (d, J = 18.44 Hz, 1H), 2.06 (d, J = 18.45 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.5, 192.1, 173.9, 150.5, 139.9, 133.8, 133.4, 131.1, 130.8, 129.4, 129.0, 128.6, 128.5, 126.6, 126.3, 124.6, 122.8, 121.4, 118.8, 114.5, 112.6, 109.6, 63.5, 60.3, 48.5 ppm; HRMS (ESI): calcd. for C₂₇H₂₁N₂O₂ [M+H]⁺: 405.1603, found 405.1597.

2'-(5-nitro-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2j):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 5-nitroindole (31.3 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2j** as yellow solid (60 mg, 74% yield); R_f : 0.21 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.87 (s, 1H), 8.08-8.04 (m, 1H), 7.95 (dd, J = 9.01, 2.18

Hz, 1H), 7.72-7.66 (m, 2H), 7.57 (d, J = 1.97 Hz, 1H), 7.54-7.44 (m, 4H), 7.15 (t, J = 7.58 Hz,

1H), 6.97 (d, J = 7.34 Hz, 1H), 6.79 (d, J = 7.81 Hz, 1H), 6.74 (s, 1H), 6.71 (t, J = 7.34 Hz, 1H), 6.47 (d, J = 3.26 Hz, 1H), 5.58 (d, J = 3.11 Hz, 1H), 2.71 (d, J = 18.43 Hz, 1H), 2.07 (d, J = 18.446 Hz, 1H) ppm; ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO-d₆) δ 205.2, 173.7, 150.4, 140.4, 139.6, 133.7, 133.2, 131.0, 130.7, 129.3, 129.0, 128.6, 128.3, 125.5, 122.8, 118.9, 116.7, 116.2, 115.2, 112.3, 109.7, 63.3, 60.2, 48.4 ppm; HRMS (ESI): calcd. for C₂₆H₂₀N₃O₃ [M+H]⁺: 422.1505, found 422.1503.

2'-(6-(benzyloxy)-1H-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one

(2k): Reaction of ynone 1a (50 mg, 0.192 mmol), 6-benzyloxyindole (43 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound 2k as brown solid (86.5 mg, 93% yield); R_f : 0.42 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 10.89 (s, 1H), 7.68-7.61 (m, 2H), 7.48-7.28

(m, 8H), 7.14-7.07 (m, 2H), 6.96-6.88 (m, 3H), 6.75-6.71 (m, 1H), 6.70-6.62 (m, 2H), 6.60-6.55 (m, 1H), 6.34 (s, 1H), 5.51 (s, 1H), 5.05 (s, 2H), 2.81 (d, J = 18.48 Hz, 1H), 2.04 (d, J = 18.42 Hz, 1H) ppm; ${}^{13}C{}^{1}H{}$ NMR (100 MHz, DMSO-d₆) δ 205.9, 174.5, 154.6, 150.7, 137.6, 137.2, 133.7, 133.5, 130.6, 130.6, 129.2, 128.9, 128.5, 127.8, 127.7, 123.1, 122.8, 121.0, 119.8, 118.4, 112.7, 109.5, 109.2, 96.1, 69.6, 63.7, 60.3, 48.8 ppm; HRMS (ESI): calcd. for $C_{33}H_{27}N_2O_2$ [M+H]⁺: 483.2073, found 483.2071.

2'-(5,6-dimethoxy-1H-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one

(21): Reaction of ynone 1a (50 mg, 0.192 mmol), 5,6dimethoxyindole (34.2 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound 2l as brown solid (79 mg, 94% yield); R_f : 0.18 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 10.77 (s, 1H), 7.75-7.68 (m, 2H), 7.48-7.40 (m, 3H), 7.18-7.07 (m, 2H), 6.92-6.85 (m, 2H),

6.76-6.72 (m, 2H), 6.68-6.62 (m, 1H), 6.31-6.29 (m, 2H), 5.57 (d, J = 2.67 Hz, 1H), 3.71 (s, 3H), 3.43 (s, 3H), 2.88 (d, J = 18.48 Hz, 1H), 2.03 (d, J = 18.46 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.8, 174.1, 150.7, 146.3, 144.0, 134.0, 133.3, 130.8, 130.6, 129.3, 128.8, 128.4, 122.6, 119, 118.4, 112.6, 109.2, 101.0, 95.2, 63.6, 60.0, 55.6, 55.6, 48.5 ppm; HRMS (ESI): calcd. for C₂₈H₂₅N₂O₃ [M+H]⁺: 437.1865, found 437.1870.

2'-(7-methyl-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2m):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 7-methylindole (25.3 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2m** as brown solid (73 mg, 97% yield); R_f : 0.51 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ ¹H NMR (400 MHz, DMSO-d₆) δ 11.07 (s,

1H), 7.68-7.64 (m, 2H), 7.49-7.41 (m, 3H), 7.26 (d, J = 2.28 Hz, 1H), 7.14-7.08 (m, 1H), 6.90 (d, J = 7.08 Hz, 1H), 6.85-6.81 (m, 2H), 6.75-6.70 (m, 2H), 6.68 (s, 1H), 6.66-6.63 (m, 1H), 6.35 (d, J = 2.68 Hz, 1H), 5.57 (d, J = 2.59 Hz, 1H), 2.82 (d, J = 18.46 Hz, 1H), 2.41 (s, 3H), 2.04 (d, J = 18.48 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.3, 175.0, 151.0, 136.4, 134.2, 133.9, 131.0, 130.9, 129.6, 129.3, 128.9, 126.4, 124.4, 123.1, 122.2, 121.2, 119.3, 118.7, 117.1, 113.6, 109.6, 64.0, 60.6, 49.1, 17.2 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, found 391.1814.

2-phenyl-2'-(2-phenyl-1*H*-indol-3-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2n):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 2-phenylindole (37.3 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2n** as yellow solid (84 mg, 96% yield); R_f : 0.63 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz,

DMSO-d₆) δ 11.38 (s, 1H), 7.42-7.32 (m, 5H), 7.31-7.21 (m, 8H), 7.14-7.09 (m, 2H), 6.96-6.88 (m, 2H), 6.65-6.58 (m, 3H), 6.39 (s, 1H), 5.27 (s, 1H), 2.85 (d, *J* = 18.52 Hz, 1H), 2.37 (d, *J* = 18.54, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.1, 176.6, 151.0, 137.1, 136.4, 133.5, 132.3, 131.8, 130.2, 129.1, 129.0, 128.8, 128.6, 128.5, 128.4, 127.9, 127.4, 122.7, 121.7, 121.0, 119.2, 117.3, 111.6, 110.7, 107.8, 61.8, 60.6, 50.6 ppm; HRMS (ESI): calcd. for C₃₂H₂₅N₂O [M+H]⁺: 453.1967, found 453.1965.

2'-(1-methyl-1*H*-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (20):

Reaction of ynone **1a** (50 mg, 0.192 mmol), 1-methylindole (25.3 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2o** as yellow solid (68.5 mg, 91% yield); $R_f: 0.54$ (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 7.69-7.62 (m, 2H), 7.50-7.42 (m, 3H), 7.39-7.35 (m,

1H), 7.30 (s, 1H), 7.14-7.06 (m, 2H), 7.03-6.98 (m, 1H), 6.93-6.81 (m, 2H), 6.76-6.63 (m, 3H),

6.35 (d, J = 2.46 Hz, 1H), 5.57 (d, J = 2.47 Hz, 1H), 3.74 (s, 3H), 2.82 (d, J = 18.48 Hz, 1H), 2.05 (d, J = 18.43 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.9, 174.5, 150.6, 137.0, 133.8, 133.5, 130.64, 130.60, 129.2, 128.9, 128.8, 128.6, 126.7, 122.7, 121.4, 119.2, 118.8, 118.4, 111.9, 110.1, 109.2, 63.4, 60.2, 48.8, 32.6 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, found 391.1812.

2'-(1H-indol-3-yl)-2-(p-tolyl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2p): Reaction of

ynone **1b** (65 mg, 0.237 mmol), indole (43 mg, 0.237 mmol) and AgOTf (1.2 mg, 0.004 mmol) following the GP1 afforded the title compound **2p** as brown solid (91 mg, 98% yield); R_f : 0.45 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.09 (d, *J* = 1.96 Hz, 1H), 7.61-7.56 (m, 2H), 7.36-

7.31 (m, 1H), 7.29-7.23 (m, 3H), 7.10 (ddd, J = 15.26, 7.65, 1.25 Hz, 1H), 7.06-7.00 (m, 2H), 6.88 (d, J = 6.90 Hz, 1H), 6.81 (ddd, J = 15.05, 7.52, 0.90 Hz, 1H), 6.73 (d, J = 7.61 Hz, 1H), 6.65 (s, 1H), 6.64 (ddd, J = 14.81, 7.38, 0.95 Hz, 1H), 6.36 (d, J = 2.92 Hz, 1H), 5.60 (d, J = 2.73 Hz, 1H), 2.81 (d, J = 18.39 Hz, 1H), 2.33 (s, 3H), 2.02 (d, J = 18.34 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.6, 174.4, 150.6, 140.6, 136.5, 133.9, 130.6, 129.7, 129.4, 129.2, 128.4, 126.4, 124.3, 122.6, 121.2, 119.1, 118.6, 118.2, 112.7, 111.7, 109.1, 63.7, 60.1, 48.7, 21.0 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, found 391.1812.

2-(4-butylphenyl)-2'-(1*H*-indol-3-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2q):

Reaction of ynone **1c** (89 mg, 0.282 mmol), indole (33 mg, 0.282 mmol) and AgOTf (1.4 mg, 0.005 mmol) following the GP1 afforded the title compound **2q** as pale brown solid (110 mg, 90% yield); R_f : 0.50 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.08 (d, J = 2.05 Hz, 1H), 7.61-

7.56 (m, 2H), 7.36-7.32 (m, 1H), 7.29-7.23 (m, 3H), 7.10 (ddd, J = 15.24, 7.65, 1.22 Hz, 1H), 7.05-7.00 (m, 2H), 6.91-6.87 (m, 1H), 6.81 (ddd, J = 14.98, 6.92, 0.96 Hz, 1H), 6.73 (d, J = 7.65 Hz, 1H), 6.65 (s, 1H), 6.64 (ddd, J = 14.64, 7.23, 0.98 Hz, 1H), 6.36 (d, J = 2.91 Hz, 1H), 5.59 (d, J = 2.72 Hz, 1H), 2.81 (d, J = 18.41 Hz, 1H), 2.60 (t, J = 7.61 Hz, 2H), 2.03 (d, J = 18.41 Hz, 1H), 1.60-1.51 (m, 2H), 1.34-1.23 (m, 2H), 0.87 (t, J = 7.39 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.7, 174.5, 150.6, 145.4, 136.5, 134.0, 130.8, 129.7, 129.2, 128.8, 128.4, 126.4, 124.3, 122.6, 121.2, 119.1, 118.6, 118.3, 112.7, 111.7, 109.1, 63.7, 60.1,

48.7, 34.6, 32.7, 21.8, 13.8 ppm; HRMS (ESI): calcd. for C₃₀H₂₉N₂O [M+H]⁺: 433.2280, found 433.2271.

2'-(1*H*-indol-3-yl)-2-(4-methoxyphenyl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2r):

Reaction of ynone **1d** (55 mg, 0.190 mmol), indole (22.3 mg, 0.190 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2r** as brown solid (74 mg, 96% yield); R_f : 0.2 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.08 (d, J = 2.03 Hz, 1H), 7.70-7.65

(m, 2H), 7.35-7.31 (m, 1H), 7.30-7.27 (m, 1H), 7.10 (ddd, J = 15.36, 7.66, 1.24 Hz, 1H), 7.05-6.99 (m, 4H), 6.87 (d, J = 6.92 Hz, 1H), 6.81 (ddd, J = 15.02, 7.55, 0.89 Hz, 1H), 6.73 (d, J =7.64 Hz, 1H), 6.64 (ddd, J = 14.80, 7.44, 0.92 Hz, 1H), 6.61 (s, 1H), 6.37 (d, J = 2.90 Hz, 1H), 5.61 (d, J = 2.73 Hz, 1H), 3.79 (s, 3H), 2.81 (d, J = 18.38 Hz, 1H), 2.00 (d, J = 18.33 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.3, 174.0, 161.0, 150.5, 136.5, 134.1, 131.0, 128.5, 128.3, 126.4, 125.5, 124.3, 122.6, 121.2, 119.0, 118.6, 118.2, 114.3, 112.7, 111.7, 109.1, 63.8, 60.0, 55.4, 48.6 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O₂ [M+H]⁺: 407.1760, found 407.1762.

2'-(1H-indol-3-yl)-2-(m-tolyl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2s): Reaction of

ynone **1e** (50 mg, 0.182 mmol), indole (21.4 mg, 0.182 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2s** as pale brown solid (68 mg, 95% yield); R_f : 0.43 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.08 (d, *J* = 1.58 Hz, 1H), 7.51 (s, 1H), 7.42-7.25 (m, 5H), 7.15-7.01 m, 3H), 6.94-6.88 (m, 1H), 6.82 (ddd, *J* = 14.95, 7.40, 0.76 Hz, 1H),

6.73 (d, J = 7.71 Hz, 1H), 6.68-6.63 (m, 2H), 6.35 (d, J = 2.85 Hz, 1H), 5.56 (d, J = 2.74 Hz, 1H), 2.80 (d, J = 18.42 Hz, 1H), 2.28 (s, 3H), 2.06 (d, J = 18.41 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.8, 174.8, 150.7, 138.1, 136.5, 133.8, 133.5, 131.2, 130.3, 129.9, 128.6, 128.5, 126.4, 126.2, 124.3, 122.7, 121.3, 119.2, 118.6, 118.3, 112.7, 111.8, 109.1, 63.6, 60.3, 48.7, 21.2 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, found 391.1811.

2-(3-fluorophenyl)-2'-(1*H*-indol-3-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2t):

Reaction of ynone **1f** (50 mg, 0.180 mmol), indole (21.1 mg, 0.180 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2t** as pale brown solid (66 mg, 93% yield); R_f : 0.46 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.10 (d, *J* = 1.92 Hz, 1H), 7.54-7.48 (m, 2H), 7.47-7.42 (m, 1H), 7.36-7.30 (m, 2H), 7.28 (d, *J* = 2.38 Hz, 1H), 7.12 (ddd, *J* = 15.33,

7.62, 1.25 Hz, 1H), 7.08-7.01 (m, 2H), 6.94 (d, J = 6.83 Hz, 1H), 6.84 (ddd, J = 15.12, 7.53, 0.90 Hz, 1H), 6.77 (s, 1H), 6.73 (d, J = 7.60 Hz, 1H), 6.66 (ddd, J = 14.86, 7.39, 0.94 Hz, 1H), 6.39 (d, J = 2.76 Hz, 1H), 5.52 (d, J = 2.57 Hz, 1H), 2.80 (d, J = 18.49 Hz, 1H), 2.10 (d, J = 18.49 Hz, 1H) ppm; $^{13}C{^{1}H}$ NMR (100 MHz, DMSO-d₆) δ 205.7, 172.7 (d, J = 2.30 Hz), 161.9 (d, J = 243.91 Hz), 150.8, 136.6, 135.7 (d, J = 7.76 Hz), 133.1, 131.5, 130.9 (d, J = 8.37 Hz), 128.7, 126.3, 125.3 (d, J = 2.29 Hz), 122.9, 121.3, 119.1, 118.7, 118.3, 117.3 (d, J = 21.23 Hz), 115.6 (d, J = 22.92 Hz), 112.6, 111.8, 109.2, 63.6, 60.2, 48.7 ppm; ^{19}F NMR (376 MHz, DMSO-d₆) δ -107.02 ppm; HRMS (ESI): calcd. for C₂₆H₂₀N₂OF [M+H]⁺: 395.1560, found 395.1562.

2-(2-fluorophenyl)-2'-(1*H*-indol-3-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2u):

Reaction of ynone **1g** (75 mg, 0.270 mmol), indole (31.7 mg, 0.270 mmol) and AgOTf (1.4 mg, 0.005 mmol) following the GP1 afforded the title compound **2u** as pale brown solid (102 mg, 95% yield); R_f : 0.41 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.11 (d, J = 1.71 Hz, 1H), 7.54-7.41 (m, 2H), 7.38-7.34 (m, 1H), 7.30-7.24 (m, 2H), 7.19-7.09 (m, 3H), 7.05 (ddd, J = 15.16,

7.10, 0.96 Hz, 1H), 7.01-6.96 (m, 1H), 6.85 (ddd, J = 15.01, 7.10, 0.87 Hz, 1H), 6.72-6.66 (m, 2H), 6.51 (d, J = 3.20 Hz, 1H), 5.42 (s, 1H), 2.72 (d, J = 18.48 Hz, 1H), 2.12 (d, J = 18.46 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.1, 167.6 (d, J = 2.27 Hz), 161.6, 159.1, 150.8, 136.6, 134.1 (d, J = 9.18 Hz), 132.6, 132.1 (d, J = 9.09 Hz), 130.1, 127.4 (d, J = 250.0 Hz), 124.4, 124.3 (d, J = 3.37 Hz), 122.7, 121.8 (d, J = 11.77 Hz), 121.3, 119.1, 118.7, 118.2, 116.8 (d, J = 23.51 Hz), 112.6, 111.8, 109.1, 63.3, 61.5, 47.7 ppm; HRMS (ESI): calcd. for C₂₆H₂₀N₂OF [M+H]⁺: 395.1560, found 395.1558.

2'-(1*H*-indol-3-yl)-2-(thiophen-2-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2v):

Reaction of ynone **1h** (70 mg, 0.263 mmol), indole (30.9 mg, 0.263 mmol) and AgOTf (1.4 mg, 0.005 mmol) following the GP1 afforded the title compound **2v** as yellow solid (93 mg, 92% yield); R_f : 0.43 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.09 (s, 1H), 7.88 (dd, J = 5.08, 0.91 Hz, 1H), 7.54 (d, J = 2.92 Hz,

1H), 7.36-7.30 (m, 2H), 7.20 (dd, J = 8.80, 3.81, 1H), 7.15-7.09 (m, 2H), 7.05-7.01 (m, 1H), 6.92 (d, J = 7.22 Hz, 1H), 6.83 (ddd, J = 14.68, 7.57, 1.04 Hz, 1H), 6.72 (d, J = 7.74 Hz, 1H), 6.63 (ddd, J = 14.73, 7.38, 0.82 Hz, 1H), 6.52 (s, 1H), 6.39 (d, J = 2.78 Hz, 1H), 5.65 (d, J = 2.74 Hz, 1H), 2.82 (d, J = 18.27 Hz, 1H), 2.03 (d, J = 18.32 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 204.7, 168.1, 151.3, 136.5, 136.2, 132.7, 132.1, 131.4, 128.7, 128.4, 127.8, 126.5, 124.4, 123.6, 121.2, 118.9, 118.6, 118.1, 112.3, 111.7, 109.0, 64.6, 60.2, 47.7 ppm; HRMS (ESI): calcd. for C₂₄H₁₉N₂OS [M+H]⁺: 383.1218, found 383.1217.

2'-(1H-indol-3-yl)-2-pentylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2w): Reaction of

ynone **1i** (50 mg, 0.197 mmol), indole (23.1 mg, 0.197 mmol) and AgOTf (1 mg, 0.004 mmol) following the GP1 afforded the title compound **2w** as brown solid (66 mg, 90% yield); R_f : 0.55 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.06 (d, *J* = 1.67 Hz, 1H), 7.35 (d, *J* = 8.12 Hz, 1H), 7.30-7.27 (m,

1H), 7.21 (d, J = 7.95 Hz, 1H), 7.09-7.02 (m, 2H), 6.90-6.82 (m, 2H), 6.66-6.62 (m, 2H), 6.19 (d, J = 1.85 Hz, 1H), 5.95 (s, 1H), 5.26 (d, J = 1.91 Hz, 1H), 2.72-2.61 (m, 1H), 2.51 (d, J = 18.43 Hz, 1H), 2.30-2.21 (m, 1H), 1.97 (d, J = 18.35 Hz, 1H), 1.70-1.51 (m, 2H), 1.37-1.24 (m, 4H), 0.86 (t, J = 7.20 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.4, 184.0, 151.6, 136.7, 132.0, 128.4, 128.3, 126.1, 124.5, 122.7, 121.2, 119.5, 118.7, 117.7, 113.6, 111.7, 108.7, 63.5, 61.0, 46.6, 31.0, 28.9, 26.4, 21.9, 13.9 ppm; HRMS (ESI): calcd. for C₂₅H₂₇N₂O [M+H]⁺: 371.2123, found 371.2125.

2-cyclopropyl-2'-(1*H*-indol-3-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2x):

Reaction of ynone **1j** (65 mg, 0.291 mmol), indole (34.1 mg, 0.291 mmol) and AgOTf (1.5 mg, 0.006 mmol) following the GP1 afforded the title compound **2x** as pale brown solid (97 mg, 98% yield); R_f : 0.37 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆)

 δ) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 11.07 (d, *J* = 1.82 Hz, 1H), 7.42-7.33 (m, 2H), 7.31 (d, *J* = 2.41 Hz, 1H), 7.09-7.03 (m, 2H), 6.93-6.86 (m, 2H), 6.70-6.65 (m, 2H), 6.21 (bs, 1H), 5.60 (s, 1H), 5.52 (s, 1H), 2.56 (d, *J* = 18.30 Hz, 1H), 1.91 (d, *J* = 18.23 Hz, 1H), 1.75-1.69 (m, 1H), 1.36-1.29 (m, 1H), 1.15-1.08 (m, 1H), 1.01-0.95 (m, 1H), 0.94-0.86 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.9, 188.3, 151.6, 136.6, 132.7, 128.3, 126.3, 124.4, 122.9, 122.4, 121.2, 119.6, 118.7, 118.1, 113.0, 111.7, 109.0, 63.9, 61.5, 46.7, 13.7, 13.6, 11.5 ppm; HRMS (ESI): calcd. for C₂₃H₂₁N₂O [M+H]⁺: 341.1654, found 341.1653.

5'-(benzyloxy)-2'-(1H-indol-3-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one

(2z): Reaction of ynone 1l (80 mg, 0.219 mmol), indole (25.7 mg, 0.219 mmol) and AgOTf (1.1 mg, 0.004 mmol) following the GP1 afforded the title compound 2z in an inseparable diastereomeric mixture (dr = 4:1) as brown solid (94 mg, 89% yield); R_f : 0.37

(40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.09 (d, J = 1.75 Hz, 1H), 7.72-7.66 (m, 2H), 7.55-7.45 (m, 3H), 7.40-7.27 (m, 7H), 7.25-7.20 (m, 2H), 7.07-7.00 (m, 2H), 6.85-6.80 (m, 1H), 6.706.67 (m, 2H), 6.02 (d, J = 3.62 Hz, 1H), 5.57 (d, J = 3.17 Hz, 1H), 4.95 (dd, J = 33.02 Hz, 11.96 Hz, 2H), 2.85 (d, J = 18.42 Hz, 1H), 2.08 (d, J = 18.41 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.6, 174.0, 151.9, 144.8, 137.5, 136.4, 135.0, 133.4, 130.8, 130.5, 129.2, 128.8, 128.3, 127.7, 126.4, 124.4, 119.0, 118.5, 115.2, 112.6, 111.7, 110.3, 110.0, 70.0, 64.1, 60.6, 48.2 ppm; HRMS (ESI): calcd. for C₃₃H₂₇N₂O₂ [M+H]⁺: 483.2073, found 483.2067.

2'-(1*H*-indol-3-yl)-1'-methyl-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2aa):

Reaction of ynone **1m** (100 mg, 0.365 mmol), indole (42.9 mg, 0.365 mmol) and AgOTf (1.9 mg, 0.007 mmol) following the GP1 afforded the title compound **2aa** as yellow solid (132.5 mg, 93% yield); R_f : 0.6 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.18 (bs, 1H), 7.60-7.29 (m, 7H), 7.23 (ddd, J = 15.40, 7.73, 1.26 Hz,

1H), 7.10-6.91 (m, 3H), 6.85-6.74 (m, 3H), 6.69 (s, 1H), 5.04 (bs, 1H), 2.83 (bs, 1H), 2.66 (s, 3H), 2.08 (d, J = 18.40 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.6, 173.7, 151.9, 136.6, 133.5, 131.2, 130.6, 129.2, 129.0, 128.6, 128.4, 128.2, 128.1, 128.0, 127.9, 126.9, 125.2, 122.6, 121.5, 119.3, 112.0, 109.2, 108.8, 71.7, 55.0, 48.6, 34.5 ppm; HRMS (ESI): calcd. for C₂₇H₂₁N₂O [M-H]⁻: 389.1654, found 389.1651.

2'-(1H-indol-3-yl)-2-phenylspiro[cyclohexane-1,3'-indolin]-2-en-4-one (2ab): Reaction of

ynone **1n** (70 mg, 0.256 mmol), indole (30 mg, 0.256 mmol) and AgOTf (1.3 mg, 0.005 mmol) following the GP1 afforded the title compound **2ab** as pale brown solid (86 mg, 86% yield); R_f : 0.62 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 11.04 (d, J = 1.76 Hz, 1H), 7.42-7.38 (m, 3H), 7.33 (d, J = 8.13 Hz, 1H), 7.28-7.24

(m, 2H), 7.17-7.11 (m, 2H), 7.10-7.06 (m, 2H), 7.02 (ddd, J = 15.21, 7.66, 0.92 Hz, 1H), 6.83 (ddd, J = 15.03, 7.66, 0.85 Hz, 1H), 6.75-6.66 (m, 2H), 6.29 (d, J = 2.95 Hz, 1H), 6.19 (s, 1H), 5.58 (d, J = 2.85 Hz, 1H), 2.47-2.36 (m, 1H), 2.08-1.95 (m, 2H), 1.84-1.75 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 197.9, 162.8, 150.6, 139.3, 136.4, 131.2, 130.6, 129.0, 128.7, 128.4, 128.3, 126.5, 124.3, 123.9, 121.1, 119.6, 118.5, 117.6, 112.1, 111.6, 109.3, 64.6, 53.3, 32.7, 30.5 ppm; HRMS (ESI): calcd. for C₂₇H₂₃N₂O [M+H]⁺: 391.1810, found 391.1809.

2-phenyl-2'-(1H-pyrrol-2-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2ae): Reaction

of ynone **1a** (100 mg, 0.385 mmol), pyrrole (25.9 mg, 0.385 mmol) and AgOTf (2 mg, 0.007 mmol) following the GP1 afforded the title compound **2ae** as brown solid (115 mg, 91% yield); R_f : 0.55 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 10.8 (s, 1H), 7.56-

7.52 (m, 2H), 7.45-7.35 (m, 3H), 7.12-7.08 (m, 1H), 6.91 (d, J = 7.30 Hz, 1H), 6.75-6.70 (m, 2H), 6.69-6.65 (m, 2H), 6.42 (bs, 1H), 5.94 (dd, J = 5.50, 2.50 Hz, 1H), 5.64 (s, 1H), 5.17 (s, 1H), 2.47 (d, J = 18.45 Hz, 1H), 2.00 (d, J = 18.42 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.5, 173.7, 150.4, 133.5, 133.1, 130.9, 130.4, 129.0, 128.8, 128.53, 128.50, 123.0, 118.8, 117.7, 109.6, 107.8, 105.9, 64.0, 61.0, 48.5 ppm; HRMS (ESI): calcd. for C₂₂H₁₇N₂O [M-H]⁻: 325.1341, found 325.1342.

2-phenyl-2'-(1-phenyl-1*H*-pyrrol-2-yl)spiro[cyclopentane-1,3'-indolin]-2-en-4-one (2af):

Reaction of ynone **1a** (50 mg, 0.192 mmol), pyrrole (27.6 mg, 0.192 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2af** as brown solid (60 mg, 77% yield); R_f : 0.66 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 7.28-7.23 (m,

1H), 7.15-7.05 (m, 5H), 7.04 (ddd, J = 15.21, 7.52, 1.17 Hz, 1H), 7.00-6.92 (m, 4H), 6.77 (dd, J = 4.52, 1.91 Hz, 1H), 6.71-6.66 (m, 2H), 6.54 (ddd, J = 14.80, 7.42, 0.75 Hz, 1H), 6.42 (dd, J = 3.41, 1.80 Hz, 1H), 6.36 (d, J = 2.81 Hz, 1H), 6.32 (s, 1H), 6.21 (dd, J = 6.33, 2.70 Hz,

1H), 5.50 (d, J = 2.68 Hz, 1H), 2.63 (d, J = 18.52 Hz, 1H), 2.04 (d, J = 18.50 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.3, 173.6, 150.1, 139.0, 133.0, 132.3, 131.8, 130.1, 129.4, 129.0, 128.6, 128.5, 128.2, 127.5, 126.0, 123.9, 122.7, 118.3, 110.2, 108.8, 108.6, 61.5, 60.1, 49.3 ppm; HRMS (ESI): calcd. for C₂₈H₂₃N₂O [M+H]⁺: 403.1810, found 403.1816.

2'-(5-methoxythiophen-2-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2ag):

Reaction of ynone **1a** (100 mg, 0.385 mmol), 2-methoxythiophene (44 mg, 0.385 mmol) and AgOTf (2 mg, 0.007 mmol) following the GP1 afforded the title compound **2ag** as yellow solid (129 mg, 89% yield); R_f : 0.69 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR

(400 MHz, CDCl₃) δ 7.37-7.21 (m, 5H), 7.16-7.05 (m, 2H), 6.98-6.93 (m, 1H), 6.79-6.70 (m, 2H), 6.51 (s, 1H), 6.31 (d, *J* = 3.50 Hz, 1H), 5.92 (d, *J* = 3.68 Hz, 1H), 5.25 (s, 1H), 3.74 (s, 3H), 2.91 (d, *J* = 18.82 Hz, 1H), 2.16 (d, *J* = 18.81 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 206.7, 174.4, 165.8, 148.9, 133.9, 133.4, 132.3, 130.4, 129.0, 128.99, 128.95, 127.4, 123.3, 122.4, 120.8, 110.4, 103.5, 65.8, 61.6, 60.2, 48.0 ppm; HRMS (ESI): calcd. for C₂₃H₂₀NO₂S [M+H]⁺: 374.1215, found 374.1219.

2'-(azulen-1-yl)-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (2ah): Reaction of

ynone **1a** (50 mg, 0.193 mmol), azulene (24.7 mg, 0.193 mmol) and AgOTf (1 mg, 0.003 mmol) following the GP1 afforded the title compound **2ah** as dark blue solid (64 mg, 86% yield); R_f : 0.71 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 8.38 (d, J = 9.29 Hz, 1H), 8.01-7.96 (m, 1H), 7.75-7.60 (m, 4H), 7.56-7.47

(m, 3H), 7.45-7.40 (m, 1H), 7.25-7.13 (m, 2H), 6.98-6.86 (m, 2H), 6.82-6.69 (m, 2H), 6.63 (s, 1H), 6.52 (d, J = 3.02 Hz, 1H), 5.97 (d, J = 3.02 Hz, 1H), 2.54 (d, J = 18.53 Hz, 1H), 2.08 (d, J = 18.39 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 205.3, 174.0, 150.7, 141.3, 138.5, 137.4, 137.3, 135.9, 133.7, 133.6, 133.4, 131.0, 130.8, 129.3, 129.0, 128.6, 126.6, 123.5, 122.8, 122.1, 118.8, 117.4, 109.5, 64.1, 61.0, 48.9 ppm; HRMS (ESI): calcd. for C₂₈H₂₂NO [M+H]⁺: 388.1701, found 388.1701.

2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (3a): Reaction of ynone 1a (100 mg,

0.385 mmol), Hantzsch ester (97.7 mg, 0.385 mmol) and AgOTf (2 mg, 0.007 mmol) following the GP1 afforded the title compound **3a** as pale yellow oil (92 mg, 91% yield); R_f : 0.5 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 3H), 7.24-7.20 (m, 2H), 7.18 (s, 1H), 7.06

(ddd, J = 15.23, 7.65, 1.20 Hz, 1H), 6.90-6.87 (m, 1H), 6.72-6.66 (m, 2H), 6.51 (s, 1H), 3.92 (d, J = 9.92 Hz, 1H), 3.51 (d, J = 9.95 Hz, 1H), 2.88 (d, J = 18.72 Hz, 1H), 2.75 (d, J = 18.72 Hz, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CD₃OD) δ 206.4, 175.2, 151.4, 133.3, 133.0, 130.5, 129.4, 128.7, 128.6, 128.5, 122.2, 117.9, 109.2, 57.4, 55.5, 55.3 ppm; HRMS (ESI): calcd. for C₁₈H₁₆NO [M+H]⁺: 262.1232, found 262.1229.

2'-methyl-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (3b): Reaction of ynone 1o

(100 mg, 0.365 mmol), Hantzsch ester (92.7 mg, 0.365 mmol) and AgOTf (2 mg, 0.007 mmol) following the GP1 afforded the title compound **3b** as pale yellow oil (95 mg, 94% yield); R_f : 0.6 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, DMSO-d₆) δ 7.35-7.27 (m, 3H), 7.24-7.18 (m,

2H), 7.04 (dt, J = 7.60, 1.24 Hz, 1H), 6.98 (d, J = 7.29 Hz, 1H), 6.64-6.59 (m, 2H), 6.49 (s, 1H), 5.97 (d, J = 3.29 Hz, 1H), 4.08-4.02 (m, 1H), 3.06 (d, J = 18.65 Hz, 1H), 2.65 (d, J = 18.70 Hz, 1H), 1.03 (d, J = 6.66 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 206.2, 176.8, 151.9, 135.6, 132.2, 130.9, 130.0, 128.7, 128.3, 128.2, 123.5, 118.3, 109.3, 65.0, 58.3, 53.2, 15.3 ppm; HRMS (ESI): calcd. for C₁₉H₁₈NO [M+H]⁺: 276.1388, found 276.1392.

5'-methoxy-2'-methyl-2-phenylspiro[cyclopentane-1,3'-indolin]-2-en-4-one (3c): Reaction

of ynone **1p** (100 mg, 0.329 mmol), Hantzsch ester (83.5 mg, 0.329 mmol) and AgOTf (1.7 mg, 0.006 mmol) following the GP1 afforded the title compound **3c** as yellow oil (53 mg, 54% yield); R_f : 0.45 (40% Ethyl Acetate-Petroleum Ether); ¹H NMR (400 MHz, CD₃OD) δ 7.34-

7.28 (m, 1H), 7.27-7.19 (m, 4H), 6.78-6.74 (m, 1H), 6.67 (s, 1H), 6.65 (d, J = 6.28 Hz, 1H), 6.40 (s, 1H), 4.08 (q, J = 6.71 Hz, 1H), 3.69 (s, 3H), 3.16 (d, J = 18.92 Hz, 1H), 2.67 (d, J = 18.98 Hz, 1H), 1.12 (d, J = 6.71 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CD₃OD) δ 209.5, 180.4, 155.7, 146.9, 137.1, 135.0, 131.9, 131.1, 129.4, 129.3, 115.7, 112.5, 110.5, 67.2, 60.9, 56.3, 53.9, 15.6 ppm; HRMS (ESI): calcd. for C₂₀H₂₀NO₂ [M+H]⁺: 306.1494, found 306.1495.

5. Special Note:

During the ¹³C{¹H} NMR data acquisition of compound 2x, we used sample concentration of ~0.8(M), relaxation time was 4 sec., and 3820 scans. In lower concentrations and with less relaxation time, many peaks were absent. The reason for this abnormality is currently unclear.

6. X-ray Structures:

Crystal data and structure refinement for **2c**: CCDC: 2296145

Figure S3: ORTEP representation of compound 2c.

The ellipsoid contour % probability levels in the caption for the image of **2c** was 50%.

Table S1 Crystal data and structure refinement for 2c.

Identification code	2c
Empirical formula	$C_{27}H_{22}N_2O_2$
Formula weight	406.46

Temperature/K	200.0	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
a/Å	15.1135(6)	
b/Å	10.4102(4)	
c/Å	15.4220(5)	
α/°	90	
β/°	119.0150(10)	
$\gamma/^{\circ}$	90	
Volume/Å ³	2121.88(14)	
Z	4	
$\rho_{calc}g/cm^3$	1.272	
μ/mm^{-1}	0.081	
F(000)	856.0	
Crystal size/mm ³	0.2 imes 0.11 imes 0.07	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	² 4.944 to 56.628	
Index ranges	$\text{-}20 \leq h \leq 20, \text{-}13 \leq k \leq 13, \text{-}20 \leq l \leq 20$	
Reflections collected	51553	
Independent reflections	5280 [$R_{int} = 0.0384$, $R_{sigma} = 0.0178$]	
Data/restraints/parameters	5280/0/278	
Goodness-of-fit on F ²	1.077	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0499, wR_2 = 0.1208$	
Final R indexes [all data]	$R_1 = 0.0615, wR_2 = 0.1278$	
Largest diff. peak/hole / e Å ⁻³ 0.19/-0.17		

Crystal data and structure refinement for **2m**: CCDC: 2296148

Figure S4: ORTEP representation of compound 2m.

The ellipsoid contour % probability levels in the caption for the image of 2m was 50%.

Table S2 Crystal data and structure refinement for 2m.

Identification code	2m
Empirical formula	$C_{27}H_{22}N_2O$
Formula weight	390.46
Temperature/K	200(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	37.641(3)
b/Å	7.1425(6)
c/Å	15.2538(12)
α/°	90
β/°	99.978(3)
$\gamma/^{\circ}$	90
Volume/Å ³	4039.0(6)
Z	8
$\rho_{calc}g/cm^3$	1.284
μ/mm^{-1}	0.078
F(000)	1648.0
Crystal size/mm ³	$0.22 \times 0.12 \times 0.09$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/° 5.424 to 56.516	
Index ranges	$-47 \le h \le 45, -9 \le k \le 9, -16 \le l \le 20$
Reflections collected	12385

7. References:

 (a) James, M. J.; Cuthbertson, J. D.; O'Brien, P.; Taylor, R. J. K.; Unsworth. *Angew. Chem.*, *Int. Ed.* 2015, *54*, 7640. (b) Liddon, J. T. R.; Clarke, A. K.; Taylor, R. J. K.; Unsworth, W. P. *Org. Lett.* 2016, *18*, 6328. (c) James, M. J.; Clubley, R. E.; Palate, K. Y.; Procter, T. J.; Wyton, A. C.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. *Org. Lett.* 2015, *17*, 4372.

2. Ru, G.-X.; Zhang, M.; Zhang, T.-T.; Jiang, X.-L.; Gao, G.-Q.; Zhu, X.-H.; Wang, S.; Fan, C.-L.; Li, X.; Shen, W.-B. *Org. Chem. Front.* **2022**, *9*, 2621.

Copies of ¹H and ¹³C NMR Spectra

S-51

 19 F NMR, 376 MHz, DMSO-d₆

· · · · ·		'	· · · ·	· · · ·	· · · · ·	- ' I I I	· · · · ·		· · · ·	'
0	-20	-40	-60	- <mark>80</mark>	-100	-120	-140	-160	-180	ppm

¹H NMR, 100 MHz, DMSO-d₆

