Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Synthesis of Benzo[*f*][1,2]thiazepine 1,1-Dioxides Based on the Visible-Light Mediated Aza Paternò-Büchi Reaction of Benzo[*d*]isothiazole 1,1-dioxides with Alkenes

Yi-Lin Wang, Peng-Xiang Liu, Huan-Huan Zhang, Peng-Fei Xu,* Yong-

Chun Luo*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

Contents

1. General Information	3
2. Preparation of Substrates	4
3. General Procedure for the [2 + 2]-Photocycloaddition Reactions	7
4. Procedure for Gram-Scale Preparation of 1,8b-diphenyl-1,8b-dihydro-21	H-
azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide	7
5. General Procedure for the screening of Lewis acid of the ring-expansion Reaction	ns
	8
6. General Procedure for the one-pot ring-expansion Reactions	8
7. Procedure of Divergent Transformations	9
8. Stern-Volmer Fluorescence Quenching Experiments	.1
9. X-ray Crystallographic Data	.3
10. The detail data of HRMS	.6
11. Characterization of Products	20
12. Copy of ¹ H NMR and ¹³ C NMR spectra of the compounds	35

1. General Information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200 – 300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on 400 MHz and 600 MHz spectrometer. The spectra were recorded in deuterochloroform (CDCl₃) as solvent at room temperature, and ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references, and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta H = 7.26$ ppm, $\delta C = 77.0$ ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet doublet, br = broad), integration, coupling constant (Hz), and assignment. Data for ¹³C NMR are reported as chemical shift. HRMS analysis was performed on a Bruker Apex II mass instrument (ESI).

2. Preparation of Substrates

2.1 General Procedures for the Preparation of the Cyclic Sulfonyl Ketimines.

The ketimines were prepared according to modified literature procedures, 1a - 1e are known compounds.

Method A

To a Schlenk flask with saccharin (10 mmol) in anhydrous THF (40 mL) under an argon atmosphere at 0 °C, the corresponding Grignard reagent (22 mmol) was slowly added. The resulting mixture was stirred overnight at room temperature and then poured into HCl (30 mL, 1 M) solution. The aqueous layer was extracted twice with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography using petroleum ether and EtOAc to afford the pure product.

Method B

To a solution of tert-butylamine (75 mmol) and triethylamine (100 mmol) in dichloromethane in an ice bath was added arylsulfonyl chloride (50 mmol) dropwise. The mixture was stirred at room temperature overnight. It was washed with saturated sodium carbonate and brine. The organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic extracts were dried over anhydrous Na_2SO_4 . The solvent was evaporated in vacuo to give the aryl sulfonamide **A1** as a white solid without further purification.

Butyllithium (44 mmol) was added dropwise over a 20 minute period to a cold (-78 °C), mechanically stirred solution of A1 (20 mmol) in anhydrous THF (50 mL) under a dry nitrogen

atmosphere. After stirring an additional 30 min at 0 °C a precipitate formed. The suspension was cooled to -78 °C again and diethyl oxalate (60 mmol) was added. After stirring an additional 4 h at -78 °C, the cooling bath was removed and the mixture was stirred at room temperature over night. The reaction was quenched with 5% HCI (40 ml) and added to water (200 mL). The organics were extracted with EtOAc. The organic phase was washed with brine. The solvent was removed and the crude product was obtained used directly in the next step.

To the crude product obtained above, formic acid (60 mL) was added and the suspension was stirred at room temperature under a dry nitrogen atmosphere. After 20 h the solution was concentrated and the resultant solid was dissolved in CH_2Cl_2 and concentrated (three times) to remove traces of formic acid. This afforded **1d** as a solid which was further purified by flash chromatography.

Method C

$$\begin{array}{c} O_{2} \\ S \\ CI \end{array} \xrightarrow{f_{Bu-NH_{2}}} \\ Et_{3}N, DCM \end{array} \xrightarrow{O_{2}} N \xrightarrow{f_{Bu}} DMF \\ M \\ H \\ \hline \end{array} \xrightarrow{TSOH \cdot H_{2}O} \\ Toluene \\ H \\ \hline \end{array} \xrightarrow{O_{2}} N \\ H \\ \hline \end{array} \xrightarrow{Ie}$$

The preparation method for A1 is identical to that in **Method B**. Butyllithium (44 mmol) was added dropwise over a 20 minute period to a cold (-78 °C), mechanically stirred solution of **A1** (20 mmol) in anhydrous THF (50 mL) under a dry nitrogen atmosphere. After stirring an additional 30 min at 0 °C a precipitate formed. The suspension was cooled to -78 °C again and DMF (30 mmol) was added. After stirring an additional 4 h at -78 °C, the cooling bath was removed and the mixture was stirred at room temperature over night. The reaction was quenched with saturated aqueous solution of ammonium chloride. The organics were extracted with EtOAc. The organic phase was washed with brine. The solvent was removed and the crude product was obtained used directly in the next step.

Subsequently, to a solution of the above crude product in toluene, *p*-toluenesulfonic acid (20 mg) was added. The mixture was stirred at 120 °C for 5 h. The yellow oil was purified by a silica gel column to give pure product **1e**.

2.2 Sources of olefin substrates

Commercially available alkenes were used as received, if not quoted differently. **2aa** was literature known and was synthesized according to literature procedures¹.

3. General Procedure for the [2 + 2]-Photocycloaddition Reactions

An oven-dried Schlenk tube equipped with a magnetic stir bar was added the substrate **1a** (0.24 mmol) and $[Ir(dF-CF_3-ppy)_2(dtbbpy)] \cdot PF_6$ (0.004 mmol). Dry EtOAc (4 mL, 0.05 M) was added, after which styrene (0.2 mmol) were added at room temperature. The heterogeneous mixture was degassed by three cycles of freeze – pump – thaw under argon and then placed in the irradiation apparatus equipped with 40 W kessil light ($\lambda = 427$ nm). The resulting mixture was stirred at room temperature until the starting material was completely consumed as monitored by TLC. Subsequently, the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4:1), which furnished the title compounds **3aa** (65.2 mg, 94%) as described.

4. Procedure for Gram-Scale Preparation of 1,8b-diphenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide

To a 100 mL round-bottom flask equipped with a magnetic stir bar was added the substrate **1a** (1.1664 g, 4.8 mmol) and $[Ir(dF-CF_3-ppy)_2(dtbbpy)] \cdot PF_6$ (22.4 mg, 0.02 mmol). Dry EtOAc (40 mL, 0.1 M) was added, after which the styrene (460 µL, 4.0 mmol) were added at room temperature. The heterogeneous mixture was degassed by three cycles of freeze – pump – thaw under argon and then placed in the irradiation apparatus equipped with two 40 W kessil lights (λ = 427 nm). The mixture was stirred at room temperature for 48 h. Subsequently, the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4:1), which furnished the title compounds **3aa** (1.2638 g, 91%) as described.

5. General Procedure for the screening of Lewis acid of the ring-expansion Reactions

An oven-dried Schlenk tube equipped with a magnetic stir bar was added the purified **3aa** (0.2 mmol) and Lewis acid (0.04 mmol) under N₂ atmosphere. After that 4 mL of MeCN was injected using a syringe. The mixture was stirred at refluxing for 12 hours. After completion, the reaction mixture was cooled to room temperature, the solvent was removed in vacuo, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford the product **5a**.

6. General Procedure for the one-pot ring-expansion Reactions

After the photochemical reaction using general procedure for the [2 + 2]-photocycloaddition reactions (0.2 mmol scale, in MeCN), Cu(OTf)₂ (14.5 mg, 0.04 mmol) was added under N₂ atmosphere to the untreated reaction mixture. The mixture was stirred at refluxing for 12 hours. After completion, the reaction mixture was cooled to room temperature, the solvent was removed in vacuo, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford the product **5**.

7. Procedure of Divergent Transformations

To a 10 mL oven-dried sealed tube charging with **3da** (34.3 mg, 0.1 mmol, 1.0 equiv.) and *n*-Bu₄NBr (32.3 mg, 0.1 mmol, 1.0 equiv.), DCM (2 mL) was added under N₂ atmosphere. BF₃·OEt₂ was partly added every 30 minutes for more transformation of **3da**. Then the mixture was stirred for another 6 hours at room temperature. After completion, the reaction was quenched with water. The aqueous layers were extracted with DCM and the combine organic phase was washed with brine. The solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to afford the product **6** (18.3 mg, 43% yield).

To a 10 mL oven-dried sealed tube charging with **3da** (171.5 mg, 0.5 mmol, 1.0 equiv.) and NaIO₄ (1.62 g, 7.5 mmol, 15.0 equiv.), CCl₄ (2 mL), MeCN (2 mL) and water (3 mL) was added. The mixture was stirred at room temperature until fully dissolved, then RuCl₃ (37 ww%, 20.8 mg, 0.05 equiv.) was added and stirring continued for 24 hours. The mixture was diluted with DCM, filtered through a pad of Celite, and the residue was washed three times with DCM. The organic phase was then treated with a saturated sodium carbonate solution and extracted with water three times. The aqueous phase is acidified (pH = 1) with hydrochloric acid, followed by extraction with DCM three times. The organic phases were combined, dried with MgSO₄, and the solvent is removed under vacuum to obtain the product **7** (98.3 mg, 63% yield).

To a 10 mL oven-dried sealed tube charging with **3aa** (34.7 mg, 0.1 mmol, 1.0 equiv.) and N-Bromosuccinimide (22.0 mg, 0.12 mmol, 1.2 equiv.), CCl_4 (2 mL) was added under N₂ atmosphere. The mixture was stirred at room temperature and then benzoyl peroxide (2.4 mg, 0.01

mmol, 0.1 equiv.) was added. After that the mixture was heated to 80 °C and continued to stirring for 12 h. After completion, the reaction mixture was cooled to room temperature, the solvent was removed in vacuo, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford the product **8** (12.6 mg, 30% yield) and **8'** (14.4 mg, 34% yield).

8. Stern-Volmer Fluorescence Quenching Experiments

Stern-Volmer fluorescence quenching experiments were run with freshly prepared solutions of 1×10^{-4} M [Ir(dF-CF₃-ppy)₂(dtbbpy)]·PF₆ and varying concentrations of quencher in acetonitrile at room temperature. The solutions were irradiated at 420 nm and fluorescence was measured from 440 nm to 600 nm. The Stern–Volmer equation, $I_0/I = 1 + k_q \tau_0[Q]$, where I_0 and I are the emission intensity in the absence and presence of quencher, respectively, k_{sv} is the quenching rate constant, and [Q] is the concentration of quencher.

Rates of quenching (k_q) were determined using Stern-Volmer kinetics²

$$I_0/I = 1 + k_q \tau_0[Q]$$

Where I_0 is the luminescence intensity without the quencher, I is the intensity with the quencher, and τ_0 is the lifetime of the photocatalyst (2300 ns for [Ir(dF-CF₃-ppy)₂(dtbbpy)(PF₆)] in acetonitrile)³, and [Q] is the concentration of quencher.

Figure S1. 1a as a quencher

Figure S2. 2a as a quencher

	1 a	2a
ksv (L·mol ⁻¹)	186.2	303.7
k_q (L·mol ⁻¹ ·s ⁻¹)	8.096×10 ⁷	1.320×10 ⁸

Table S1. Quencher 1a/2a Stern-Volmer constant (k_{sv}) and quenching rate constant (k_q)

Reference

- (a) Gonzalez-de-Castro, A., Xiao, J. J. Am. Chem. Soc. 2015, 137, 8206-8218. (b) Jiang, Y. S., Liu, F., Huang, M. S., Luo, X. L., Xia, P. J. Org. Lett. 2022, 24, 8019-8024. (c) Zhu, Y., Colomer, I., Thompson, A. L., Donohoe, T. J. J. Am. Chem. Soc. 2019, 141, 6489-6493. (d) Aratikatla, E. K., Valkute, T. R., Puri, S. K., Srivastava, K., Bhattacharya, A. K. Eur. J. med. Chem. 2017, 138, 1089-1105.
- Mukherjee, S., Maji, B., Tlahuext-Aca A., and Glorius, F., J. Am. Chem. Soc., 2016, 138, 16200–16203.
- Lowry, M. S., Goldsmith, J. I., Slinker, J. D., Rohl, R., Pascal, R. A., Malliaras, G. G., and Bernhard, S. *Chem. Mater.*, 2005, 17, 5712–5719.

9. X-ray Crystallographic Data

9.1. Preparation of crystal

The pure compound (about 60 mg) was dissolved in a centrifuge tube containing solvent and covered with a lid. Then put the centrifuge tube in the room temperature for about a week, during which the crystal was formed. The X-ray was detected after the crystal was formed. The X-ray data was detected by Smart APEX II which was purchased from Bruker.

Table S2. Information about the X-ray single crystal diffractometer

Name	X-Ray crystal	diffractometer	Model Smart	A 19
			APEX II	
Serial number	010301990904001	Manufacturer	Bruker	
Main	X-ray generating			
Specifications	Overall 1			
	Light source yield: >170 e/Mo Photon			
	Temperature range: 100 K- 298K			
Main	accessories	Мо		

9.2 Crystallographic data of compound 3aa

The crystals of compound **3aa** were obtained in a mixed solvent of toluene and ethyl acetate.

Figure S3. The crystal structure of compound 3aa (CCDC = 2269490)

Table S3. Cry	stal parameters	of compound 3a	aa (CCDC = 2269490)
---------------	-----------------	----------------	---------------------

Bond precision:	C-C = 0.0086 A	Wavelength=1.54184	
Cell:	a=15.7591(3)	b=7.2376(1)	c=17.3492(3)
	alpha=90	beta=116.140(2)	gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	1776.42(6)	1776.42(6)	
Space group	Рc	P1c1	
Hall group	P -2yc	P -2yc	

Moiety formula	C21 H17 N O2 S	2(C21 H17 N O2 S)
Sum formula	C21 H17 N O2 S	C42 H34 N2 O4 S2
Mr	347.42	694.83
Dx,g cm-3	1.299	1.299
Z	4	2
Mu (mm-1)	1.723	1.723
F000	728	728
F000'	731.28	
h,k,lmax	19,9,21	19,8,21
Nref	7419[3714]	5123
Tmin,Tmax	0.783,0.813	0.457,1.000
Tmin'	0.711	
Correction method= # Reported T	Limits: Tmin=0.457 Tm	hax=1.000 AbsCorr = MULTI-SCAN
Data completeness= 1.38/0.69	Theta(max)= 76.265	
R(reflections)= 0.0412(4779)		wR2(reflections)= 0.1181(5123)
S = 1.066	Npar= 451	
Displacement ellipsoids are drawn	at 50% probability leve	1

9.3 Crystallographic data of compound 5a

The crystals of compound **5a** were obtained in MeCN.

Figure S4. The crystal structure of compound **5a** (**CCDC** = 2269492)

Table S4. (Crystal	parameters of	of com	pound 5a	(CCDC =	= 2269492)
-------------	---------	---------------	--------	----------	---------	------------

Bond precision:	C-C = 0.0024 A	Wavelength=0.71073	
Cell:	a=6.9772(3)	b=19.6390(11)	c=25.1001(11)
	alpha=90	beta=90	gamma=90
Temperature:	247 K		
	Calculated	Reported	
Volume	3439.4(3)	3439.3(3)	
Space group	Pbca	P b c a	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C21 H17 N O2 S	C21 H17 N O2 S	
Sum formula	C21 H17 N O2 S	C21 H17 N O2 S	
Mr	347.42	347.42	
Dx,g cm-3	1.342	1.342	
Z	8	8	
Mu (mm-1)	0.202	0.202	
F000	1456	1456	

F000'	1457.57	
h,k,lmax	10,28,36	9,27,35
Nref	5459	4525
Tmin,Tmax	0.964,0.972	0.269,1.000
Tmin'	0.958	
Correction method= # Reported	d T Limits: Tmin=0.269	Tmax=1.000 AbsCorr = MULTI-SCAN
Data completeness= 0.829	Theta(max)= 30.950	
R(reflections)= 0.0474(3581)		wR2(reflections)= 0.1324(4525)
S = 1.054	Npar= 230	
Displacement ellipsoids are dra	wn at 50% probability l	evel

9.4 Crystallographic data of compound 3av

.

The crystals of compound **3av** were obtained in a mixed solvent of toluene and ethyl acetate.

Figure S5. The crystal structure of compound **3av** (CCDC = 2278125)

Table S5. Crystal	parameters of	f compound	3av ($(\mathbf{CCDC} = 2)$	278125)
-------------------	---------------	------------	-------	-----------------------	---------

Bond precision:	C-C = 0.0019 A	Wavelength=0.71073		
Cell:	a=8.6492(2)	b=17.3276(5)	c=12.0342(3)	
	alpha=90	beta=95.352(2)	gamma=90	
Temperature:	150 K		6	
I man and	Calculated	Reported		
Volume	1795.70(8)	1795.71(9)		
Space group	P 21/n	P 1 21/n 1		
Hall group	-P 2yn	-P 2yn		
Moiety formula	C22 H19 N O2 S	C22 H19 N O2 S		
Sum formula	C22 H19 N O2 S	C22 H19 N O2 P S0.25		
Mr	361.44	368.37		
Dx,g cm-3	1.337	1.363		
Z	4	4		
Mu (mm-1)	0.196	0.199		
F000	760	772		
F000'	760.8			
h,k,lmax	12,24,17	11,22,16		
Nref	5616	4511		
Tmin,Tmax	0.983,0.990	0.753,1.000		
Tmin'	0.978			
Correction method= # Reported T Limits: Tmin=0.753 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completeness= 0.803	Theta(max)= 30.766			

9.5 Crystallographic data of compound 3av'

The crystals of compound **3av'** were obtained in a mixed solvent of toluene and ethyl acetate.

Figure S6. The crystal structure of compound 3av' (CCDC = 2278127)

Bond precision:	C-C = 0.0156 A	Wavelength=0.71073	
Cell:	a=15.2972(15)	b=7.4805(5)	c=17.3374(16)
	alpha=90	beta=107.376(10)	gamma=90
Temperature:	303 K		-
-	Calculated	Reported	
Volume	1893.4(3)	1893.4(3)	
Space group	Рc	P 1 c 1	
Hall group	P -2yc	P-2yc	
Moiety formula	C22 H19 N O2 S	2(C22 H19 N O2 S)	
Sum formula	C22 H19 N O2 S	C44 H38 N2 O4 S2	
Mr	361.44	722.88	
Dx,g cm-3	1.268	1.268	
Z	4	2	
Mu (mm-1)	0.186	0.186	
F000	760	760	
F000'	760.8		
h,k,lmax	22,10,24	22,10,23	
Nref	11830[5920]	7899	
Tmin,Tmax	0.971,0.978	0.292,1.000	
Tmin'	0.971		
Correction method= # Reported T	Limits: Tmin=0.292 Tn	nax=1.000 AbsCorr = MU	JLTI-SCAN
Data completeness= 1.33/0.67	Theta(max)= 30.778		
R(reflections)= 0.0949(4330)		wR2(reflections)= 0.278	6(7899)
S = 1.000	Npar= 471		
Displacement ellipsoids are drawn	at 50% probability leve	el	

Table S6. Crystal parameters of compound 3av' (CCDC = 2278127)

9.6 Crystallographic data of compound 3ea

The crystals of compound **3ea** were obtained in a mixed solvent of toluene and ethyl acetate.

Figure S7. The crystal structure of compound **3ea** (CCDC = 2294249)

Table S'	Crystal	parameters o	f compound 3ea	(CCDC = 2294249)
----------	---------------------------	--------------	----------------	------------------

Bond precision:	C-C = 0.0036 A	Wavelength=0.71073		
Cell:	a=11.6930(16)	b=12.6184(17)	c=8.9005(12)	
	alpha=90	beta=90	gamma=90	
Temperature:	296 K			
	Calculated	Reported		
Volume	1313.2(3)	1313.2(3)		
Space group	P n a 21	P n a 21		
Hall group	P 2c -2n	P 2c -2n		
Moiety formula	C15 H13 N O2 S	?		
Sum formula	C15 H13 N O2 S	C15 H13 N O2 S		
Mr	271.32	271.32		
Dx,g cm-3	1.372	1.372		
Z	4	4		
Mu (mm-1)	0.243	0.243		
F000	568	568		
F000'	568.73			
h,k,lmax	17,18,12	16,17,12		
Nref	4252[2249]	3333		
Tmin,Tmax	0.943,0.953	0.662,0.746		
Tmin'	0.93			
Correction method= # Reported T Limits: Tmin=0.662 Tmax=0.746 AbsCorr = MULTI-SCAN				
Data completeness= 1.48/0.78				
R(reflections)= 0.0353(2797)		wR2(reflections)= 0.095	55(3333)	
S = 1.003	Npar= 172			
Displacement ellipsoids are drawn at 50% probability level				

9.7 Crystallographic data of compound 7

The crystals of compound **7** were obtained in a mixed solvent of toluene and ethyl acetate.

Figure S8. The crystal structure of compound **7** (**CCDC** = 2294248)

Table S8. Cryst	al parameters	of compound	7 (CCDC =	2294248)
-----------------	---------------	-------------	-----------	----------

Dond manision.	C = 0.0022 Å	Wavelength_071072	
Bond precision:	C - C = 0.0032 A	wavelength=0./10/3	
Cell:	a=29.787(5)	b=7.0172(12)	c=13.601(2)
	alpha=90	beta=103.886(3)	gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	2759.8(8)	2759.9(8)	
Space group	C 2/c	C 2/c	
Hall group	-C 2yc	-C 2yc	
Moiety formula	C13 H13 N O6 S	?	
Sum formula	C13 H13 N O6 S	C13 H13 N O6 S	
Mr	311.3	311.3	
Dx,g cm-3	1.498	1.498	
Z	8	8	
Mu (mm-1)	0.262	0.262	
F000	1296	1296	
F000'	1297.74		
h,k,lmax	43,10,19	42,10,19	
Nref	4501	3981	
Tmin,Tmax	0.939,0.949	0.595,0.746	
Tmin'	0.924		
Correction method= # Reported T Limits: Tmin=0.595 Tmax=0.746 AbsCorr = MULTI-SCAN			
Data completeness= 0.884	Theta(max)= 31.255		
R(reflections) = 0.0510(2258)		wR2(reflections)= 0.1631	l(3981)
S = 1.003	Npar= 192		
Displacement ellipsoids are drawn at 50% probability level			

10. The detail data of HRMS.

The HRMS datas were detected by LTQ(Velos Pro)/Orbitrap Elite/ETD which wad purchased from Thermo Scientific.The detail datas are listed as follows.

Table S9. Information about the high resolution quadrupole time-of-flight mass spectrometer

Name	High resolution quadrupole time-of-flight mass spectrometer	Model	Bruker micrOTOF Q II
Serial number	0102019911815	Manufacturer	Bruker Daltonics
Main Specifications	Ion funnel type ESI source, high molecula Time-of-flight mass analyzer and peristalti comp ESI applicable flow rat TOF mass rang Focus resolution>17500FWHM (positiv 900 Quality accuracy: internal standard metho (detection at	r weight quadrupo ic injection pump ensation the range 1 μ l/min~ ge: 50~20000 m/z e and negative ion ~1000) od \leq 2ppm, externa 622.02896m/z)	ble mass filter, collision cell with temperature intelligent 1 ml/min as, within the range of m/z al standard method ≤5ppm

11. Characterization of Products

1,8b-diphenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3aa)

White solid; 65.2 mg, 94% yield, reaction time 6 h; m.p. : 228 - 231 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.77 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 4.0 Hz, 2H), 7.53 (dt, J = 8.0, 4.1 Hz, 1H), 7.31 – 7.30 (m, 2H), 7.25 – 7.24 (m, 3H), 7.20 – 7.14 (m, 3H), 7.12 – 7.02 (m, 3H), 4.49 (t, J = 8.8 Hz, 1H), 4.08 – 4.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.6, 138.5, 138.1, 134.3, 134.1, 129.9, 129.1, 128.5, 128.0, 127.6, 127.2, 125.6, 124.4, 122.6, 81.8, 56.1, 42.3; HRMS (ESI) calcd for C₂₁H₁₇NO₂SNa [M+Na]⁺: 370.0872, found: 370.0880.

1-(4-fluorophenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ab)

White solid; 64.7 mg, 89% yield, reaction time 6 h; m.p. : 256 - 258 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.79 (d, *J* = 7.8 Hz, 1H), 7.68 - 7.63 (m, 2H), 7.57 - 7.53 (m, 1H), 7.30 - 7.28 (m, 2H), 7.24 - 7.19 (m, 2H), 7.15 - 7.05 (m, 3H),

6.91 – 6.85 (m, 2H), 4.49 (t, J = 7.76 Hz, 1H), 4.04 – 4.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 162.0 (d, J = 246.9 Hz), 145.3, 138.2, 134.3, 134.1, 134.0 (d, J = 3.4 Hz), 130.6 (d, J = 8.1 Hz), 129.9, 128.1, 127.2, 125.5, 124.3, 122.6, 115.4 (d, J = 21.4 Hz), 81.7, 56.2, 47.5; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -114.30; HRMS (ESI) calcd for C₂₁H₁₆FNO₂SNa [M+Na]⁺: 388.0778, found: 388.0775.

1-(4-chlorophenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ac)

White solid; 62.5 mg, 82% yield, reaction time 6 h; m.p. : 270 – 272 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.79 (d, *J* = 7.7 Hz, 1H), 7.68 – 7.63 (m, 2H), 7.55 (ddd, *J* = 8.1, 6.1, 2.1 Hz, 1H), 7.31 – 7.29 (m, 2H), 7.20 – 7.06 (m,

7H), 4.48 (t, *J* = 10.7 Hz, 1H), 4.02 – 3.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.23, 138.10, 136.77, 134.26, 134.10, 133.39, 130.31, 129.97, 128.60, 128.17, 127.34, 125.44,

124.34, 122.64, 81.52, 56.04, 47.55.; HRMS (ESI) calcd for C₂₁H₁₆ClNO₂SNa [M+Na]⁺:

404.0482, found: 404.0480.

1-(4-bromophenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ad)

White solid; 67.2 mg, 82% yield, reaction time 6 h; m.p. : 263 - 265 °C; ¹H **NMR** (400 MHz, CDCl₃) δ (ppm) = 7.79 (d, J = 7.8 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.57 - 7.53 (m, 1H), 7.33 - 7.28 (m, 4H), 7.16 - 7.06 (m, 5H), 4.48 (t, J = 10.5 Hz, 1H), 4.01 – 3.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.2, 138.1, 137.3, 134.2, 134.1, 131.6, 130.7, 130.0, 128.2, 127.4, 125.4, 124.3, 122.7, 121.5, 81.4, 56.0, 47.6; HRMS (ESI) calcd for C₂₁H₁₆BrNO₂SNa [M+Na]⁺: 447.9977, found: 447.9975.

8b-phenyl-1-(4-(trifluoromethyl)phenyl)-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (3ae)

White solid; 77.8 mg, 94% yield, reaction time 6 h; m.p. : 255 - 257 °C; ¹H **NMR (400 MHz, CDCl**₃) δ (ppm) = 7.81 (d, J = 7.8 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.60 - 7.56 (m, 1H), 7.45 (d, J = 7.5 Hz, 2H), 7.38 (d, J = 7.5 Hz, 2H), 7.30 - 7.27

(m, 2H), 7.15 - 7.05 (m, 3H), 4.51 (t, J = 9.2 Hz, 1H), 4.09 (dd, J = 9.0, 4.0 Hz, 1H), 4.03 (dd, J = 9.7, 1H), 4.04 (dd, J = 9.7, 1H), 4.05 (dd, J4.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 145.0, 142.4, 137.9, 134.3, 134.2, 130.1, 129.7 (q, J = 32.4 Hz), 129.4, 128.2, 127.5, 125.4, 125.3 (q, J = 3.4 Hz), 124.4, 123.9 (q, J = 270.7 Hz), 122.7, 121.2, 81.4, 55.9, 47.8; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -62.61; HRMS (ESI) calcd for C₂₂H₁₆F₃NO₂SNa [M+Na]⁺: 438.0746, found: 438.0742.

1-(perfluorophenyl)-8b-phenyl-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (3af)

White solid; 88.2 mg, 98% yield, reaction time 6 h; m.p. : 245 - 247 °C; ¹H **NMR** (400 MHz, CDCl₃) δ (ppm) = 7.78 (d, J = 7.7 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.60 - 7.56 (m, 1H), 7.43 - 7.41 (m, 2H), 7.26 - 7.15 (m, 3H), 4.52 - 4.40 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.2, 137.5, 134.5, 134.3, 130.4, 128.4, 128.1, 124.5, 124.2, 122.5, 80.4, 51.0, 38.0; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -152.86 (t, J = 21,1 Hz), -161-35 (td, J = 21.4, 7.0 Hz); HRMS (ESI) calcd for C₂₁H₁₂F₅NO₂SNa [M+Na]⁺: 460.0401, found: 460.0397.

8b-phenyl-1-(p-tolyl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ag)

White solid; 39.4 mg, 79% yield, reaction time 6 h; m.p. : 259 - 262 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.78 (d, *J* = 7.8 Hz, 1H), 7.66 - 7.61 (m, 2H), 7.54 - 7.50 (m, 1H), 7.32 - 7.30 (m, 2H), 7.13 - 7.09 (m, 4H), 7.07 - 7.03 (m, 1H),

6.99 (d, J = 7.9 Hz, 2H), 4.48 (t, J = 9.1 Hz, 1H), 4.05 – 3.98 (m, 2H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.7, 138.5, 137.2, 135.0, 134.3, 134.0, 129.8, 129.1, 128.9, 127.9, 127.0, 125.5, 124.3, 122.5, 81.8. 56.2, 47.9, 21.0; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1025.

1-(4-methoxyphenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ah)

Yellow solid; 47.2 mg, 66% yield, reaction time 6 h; m.p. : 249 – 251 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.79 (d, *J* = 7.8 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.56 – 7.52 (m, 1H), 7.32 – 7.29 (m, 2H), 7.16 – 7.04 (m, 5H), 6.74 –

6.70 (m, 2H), 4.49 (t, J = 8.9 Hz, 1H), 4.05 – 3.98 (m, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 158.9, 145.7, 138.5, 134.3, 134.0, 130.1, 129.8, 128.0, 127.1, 125.6, 124.3, 122.6, 113.8, 81.9, 56.3, 55.2, 47.7; HRMS (ESI) calcd for C₂₂H₁₉NO₃SNa [M+Na]⁺: 400.0978, found: 400.0974.

1-(4-(tert-butyl)phenyl)-8b-phenyl-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole4,4-dioxide (3ai)(3ai)

White solid; 62.4 mg, 77% yield, reaction time 6 h; m.p. : 229 – 231 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.76 (d, *J* = 7.7 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.53 – 7.49 (m, 1H), 7.30 – 7.28 (m, 2H), 7.21 – 7.18 (m, 2H), 7.15 –

7.13 (m, 2H), 7.10 – 7.06 (m, 2H), 7.05 – 7.01 (m, 1H), 4.48 (t, J = 9.2 Hz, 1H), 4.08 – 4.01 (m, 2H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 150.6, 145.7, 138.4, 134.9, 134.3, 134.0, 129.7, 128.7, 127.8, 127.0, 125.5, 125.2, 124.3, 122.5, 81.8, 55.9, 47.9, 34.4, 31.2; HRMS (ESI) calcd for C₂₅H₂₆NO₂S [M+H]⁺: 404.1679, found: 404.1677.

4-(4,4-dioxido-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazol-1-yl)phenyl acetate (3aj)

White solid; 63.1mg, 78% yield, reaction time 6 h; m.p. : 228 - 230 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.78 (d, *J* = 7.8 Hz, 1H), 7.67 - 7.62 (m, 2H), 7.54 (ddd, J = 8.1, 5.8, 2.4 Hz, 1H), 7.31 – 7.29 (m, 2H), 7.27 – 7.23 (m, 2H), 7.14 – 7.11 (m, 2H), 7.08 – 7.04 (m, 1H), 6.94 – 6.91 (m, 2H), 4.49 (t, J = 10.6 Hz, 1H), 4.04 (tt, J = 7.3, 3.3 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 169.2, 149.9, 145.3, 138.2, 135.7, 134.2, 134.1, 130.0, 129.9, 128.1, 127.2, 125.5, 124.3, 122.6, 121.5, 81.6, 56.0, 47.6, 21.0; HRMS (ESI) calcd for C₂₃H₁₉NO₄SNa [M+Na]⁺: 428.0927, found: 428.0925.

1-(4-(chloromethyl)phenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4dioxide (3ak)

White solid; 59.3 mg, 75% yield, reaction time 6 h; m.p. : $248 - 251 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.77 (d, J = 7.7 Hz, 1H), 7.67 - 7.62 (m, 2H), 7.56 - 7.50 (m, 1H), 7.31 - 7.29 (m, 2H), 7.22 (q, J = 8.2 Hz, 4H), 7.12 -

7.09 (m, 2H), 7.06 – 7.03 (m, 1H), 4.50 – 4.45 (m, 3H), 4.06 – 4.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.4, 138.5, 138.3, 136.8, 134.3, 134.2, 123.0, 129.5, 128.7, 128.1, 127.3, 125.5, 124.4, 122.6, 81.7, 56.1, 47.9, 45.8; HRMS (ESI) calcd for C₂₂H₁₈ClNO₂SNa [M+Na]⁺: 418.0639, found: 418.0636.

1-(2-chlorophenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3al)

White solid; 68.1 mg, 89% yield, reaction time 6 h; m.p. : 222 – 224 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.82 – 7.77 (m, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.43 (dd, *J* = 5.9, 3.6 Hz, 1H), 7.40 – 7.38 (m, 2H),

7.33 – 7.29 (m, 1H), 7.12 – 7.00 (m, 5H), 4.71 (dd, J = 9.4, 4.1 Hz, 1H), 4.47 (t, J = 9.7 Hz, 1H), 4.12 (dd, J = 9.9, 4.1 Hz, 1H); ¹³**C NMR (100 MHz, CDCl₃)** δ (ppm) = 145.1, 138.0, 135.4, 134.7, 134.4, 134.1, 130.0, 129.4, 129.0, 128.7, 128.0, 127.3, 127.2, 125.2, 124.8, 122.5, 81.7, 54.4, 43.3; HRMS (ESI) calcd for C₂₁H₁₆ClNO₂SNa [M+Na]⁺: 404.0482, found: 404.0480.

8b-phenyl-1-(*o*-tolyl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3am)

Yellow solid; 28.1 mg, 39% yield, reaction time 6 h; m.p. : 245 - 247 °C; ¹**H NMR (400 MHz, CDCl₃)** δ (ppm) = 7.80 (d, *J* = 7.8 Hz, 1H), 7.69 - 7.63 (m, 2H), 7.55 (ddd, *J* = 8.1, 6.5, 1.7 Hz, 1H), 7.31 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.27 - 7.24 (m, 2H), 7.11 – 7.08 (m, 3H), 7.06 – 7.01 (m, 2H), 7.00 – 6.97 (m, 1H), 4.49 (t, J = 9.5 Hz, 1H), 4.37 (dd, J = 9.5, 4.3 Hz, 1H), 4.12 (dd, J = 9.6, 4.3 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.6, 138.3, 135.9, 136.0, 134.5, 134.1, 130.0, 129.8, 128.4, 128.0, 127.3, 127.2, 126.5, 125.3, 124.2, 122.7, 81.9, 55.4, 43.0, 20.3; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1026.

1-(3-chlorophenyl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3an)

Yellow solid; 64.1 mg, 84% yield, reaction time 6 h; m.p. : 260 – 262 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.80 (d, *J* = 7.7 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.56 (ddd, *J* = 8.0, 5.4, 2.7 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.25 (m, 1H),

7.16 – 7.06 (m, 6H), 4.48 (t, J = 9.0 Hz, 1H), 4.04 – 3.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.1, 140.3, 138.0, 134.3, 134.2, 134.1, 130.0, 129.7, 129.3, 128.1, 127.7, 127.4, 127.0, 125.4, 124.4, 122.7, 81.5, 55.8, 47.8.; HRMS (ESI) calcd for C₂₁H₁₆ClNO₂SNa [M+Na]⁺: 404.0482, found: 404.0484.

8b-phenyl-1-(*m*-tolyl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ao)

Yellow solid; 36.1 mg, 50% yield, reaction time 6 h; m.p. : 219 - 221 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.77 (d, J = 7.7, 1H), 7.65 – 7.61 (m, 2H), 7.52 (ddd, J = 8.0, 4.8, 3.4 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.13 – 7.09 (m, 2H), 7.07 – 7.02 (m, 4H), 6.96 – 6.94 (m, 1H), 4.47 (t, J = 9.5 Hz, 1H), 4.06 (dd, J = 9.7, 4.3 Hz, 1H), 3.99 (dd, J = 9.3, 4.3Hz, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.6, 138.4, 138.0, 137.9, 134.3, 134.0, 129.8, 129.8, 128.2, 128.2, 127.9, 127.0, 126.0, 125.4, 124.3, 122.5, 81.7, 56.0, 48.1, 21.2; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1025.

1-([1,1'-biphenyl]-4-yl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4dioxide (3ap)

Yellow solid; 40.4 mg, 48% yield, reaction time 6 h; m.p. : 232 – 234 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.80 (d, *J* = 7.7 Hz, 1H), 7.66 – 7.65 (m, 2H), 7.57 – 7.50 (m, 3H), 7.44 – 7.38 (m, 4H), 7.35 – 7.29 (m, 5H), 7.13 –

7.09 (m, 2H), 7.06 – 7.02 (m, 1H), 4.55 – 4.49 (m, 1H), 4.11 – 4.06 (m, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ (ppm) = 145.6, 140.3, 140.2, 138.4, 137.2, 134.3, 134.1, 129.9, 129.5, 128.7, 128.0, 127.4, 127.2, 127.0, 126.9, 125.5, 124.4, 122.6, 81.7, 56.0, 48.0; HRMS (ESI) calcd for C₂₇H₂₁NO₂SNa [M+Na]⁺: 446.1185, found: 446.1187.

8b-phenyl-1-(pyridin-2-yl)-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (3aq)

White solid; 42.3 mg, 61% yield, reaction time 6 h; m.p. : 230 – 233 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.48 – 8.47 (m, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.66 (td, *J* = 7.6, 1.1 Hz, 1H), 7.57 – 7.53 (m, 1H),

7.49 (td, J = 7.7, 1.8 Hz, 1H), 7.36 – 7.33 (m, 3H), 7.11 – 7.01 (m, 4H), 4.50 – 4.45 (m, 1H), 4.30 – 4.24 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ (ppm) = 157.9, 149.0, 145.0, 138.4, 136.4, 134.3, 134.0, 123.0, 128.0, 127.1, 125.3, 124.7, 123.5, 122.5, 122.3, 81.3, 54.3, 49.8; HRMS (ESI) calcd for C₂₀H₁₇N₂O₂S [M+H]⁺: 349.1005, found: 349.1002.

1-(naphthalen-2-yl)-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ar)

White solid; 23.9 mg, 28% yield, reaction time 6 h; m.p. : 278 – 280 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.82 (d, *J* = 7.8 Hz, 1H), 7.76 – 7.71 (m, 3H), 7.68 – 7.67 (m, 2H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.48 –

7.41 (m, 2H), 7.38 – 7.34 (m, 3H), 7.07 – 7.03 (m, 2H), 7.01 – 6.96 (m, 1H), 4.57 (t, J = 9.4 Hz, 1H), 4.21 (dd, J = 9.1, 4.2 Hz, 1H), 4.15 (dd, J = 9.6, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.6, 138.4, 135.7, 134.3, 134.1, 133.0, 132.6, 129.9, 128.5, 128.4, 128.1, 127.7, 127.6, 127.2, 126.2, 126.1, 126.1, 125.4, 124.4, 122.7, 81.7, 56.1, 48.5; HRMS (ESI) calcd for C₂₅H₁₉NO₂SNa [M+Na]⁺: 420.1029, found: 420.1025.

8b-phenyl-1-(thiophen-2-yl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3as)

White solid; 67.7 mg, 96% yield, reaction time 6 h; m.p. : 230 – 232 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7 .76 (d, *J* = 7.7 Hz, 1H), 7.70 – 7.68 (m, 1H), 7.65 (td, *J* = 6.9, 0.9 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.44 – 7.41 (m, 2H), 7.19

-7.15 (m, 2H), 7.14 - 7.11 (m, 2H), 6.90 (dd, *J* = 3.5, 1.1 Hz, 1H), 6.83 (dd, *J* = 5.1, 3.5 Hz, 1H),

4.52 (t, J = 9.6 Hz, 1H), 4.35 (dd, J = 9.4, 4.4 Hz, 1H), 4.11 (dd, J = 9.8, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.8, 140.8, 138.1, 134.5, 134.0, 123.0, 128.0, 127.4, 127.2, 126.9, 125.7, 125.3, 124.3, 122.6, 82.0, 56.9, 43.5; HRMS (ESI) calcd for C₁₉H₁₆NO₂S₂ [M+H]⁺: 354.0617, found: 354.0613.

11c-phenyl-6a,7,11b,11c-tetrahydrobenzo[d]indeno[1',2':3,4]azeto[1,2-b]isothiazole5,5-dioxide (3at)

Hz, 1H), 7.76 (td, J = 7.6, 1.1 Hz, 1H), 7.60 (td, J = 7.5, 0.9 Hz, 1H), 7.47 – 7.44 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.22 – 7.11 (m, 4H), 6.95 (t, J = 7.4, 1H), 6.86 (d, J = 7.6 Hz, 1H), 4.88 (t, J = 6.3 Hz, 1H), 4.26 (d, J = 6.3 Hz, 1H), 3.45 (d, J = 17.3 Hz, 1H), 3.26 (dd, J = 17.4, 6.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.0, 143.4, 138.2, 137.4, 136.0, 133.6, 129.9, 128.2, 128.1, 127.7, 127.3, 126.4, 125.6, 125.5, 125.5, 122.8, 81.7, 65.6, 53.8, 40.0; HRMS (ESI) calcd for C₂₂H₁₈NO₂S [M+H]⁺: 360.1053, found: 360.1051.

12b-phenyl-6,6a,12b,12c-tetrahydro-5*H*-benzo[*d*]naphtho[1',2':3,4]azeto[1,2-*b*]isothiazole 8,8-dioxide (3au)

Yellow solid; 30.4 mg, 41% yield, reaction time 6 h; m.p. : 288 – 290 °C; ¹H NMR (400 MHz, CDCl) δ (ppm) = 7.79 (d, *J* = 8.7 Hz, 2H), 7.71 – 7.67 (m, 1H), 7.58 – 7.54 (m, 1H), 7.42 – 7.39 (m, 2H), 7.18 – 7.12 (m, 2H), 7.10 – 7.07 (m,

3H), 7.05 - 7.01 (m, 1H), 7.00 - 6.98 (m, 1H), 4.84 (d, J = 8.7 Hz, 1H), 4.13 (d, J = 8.7 Hz, 1H), 3.05 (ddd, J = 16.5, 13.3, 4.3 Hz, 1H), 2.64 (d, J = 15.6 Hz, 1H), 2.30 (ddt, J = 14.2, 4.5, 2.5 Hz, 1H), 1.56 - 1.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.9, 139.1, 137.4, 135.2, 133.9, 131.7, 131.2, 129.7, 128.8, 127.8, 127.4, 127.2, 126.0, 125.6, 124.5, 122.4, 79.8, 60.0, 46.5, 28.0, 25.7; HRMS (ESI) calcd for C₂₃H₁₉NO₂SNa [M+Na]⁺: 396.1029, found: 396.1030.

2-methyl-1,8b-diphenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3av)

White solid; 7.0 mg, 10% yield, reaction time 6 h; m.p. : 211 – 214 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.83 (d, *J* = 7.8 Hz, 1H), 7.64 – 7.61 (m, 2H), 7.50 - 7.46 (m, 1H), 7.40 - 7.36 (m, 2H), 7.31 - 7.22 (m, 5H), 6.89 - 6.87 (m, 2H), 6.51 (d, *J* = 8.0 Hz, 1H), 4.41 (dq, *J* = 8.9, 6.2 Hz, 1H), 4.02 (d, *J* = 8.9 Hz, 1H), 1.56 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 143.3, 140.1, 136.4, 134.8, 132.3, 129.8, 129.3, 128.8, 128.5, 128.2, 127.8, 127.5, 124.6, 122.4, 79.2, 63.0, 55.0, 22.1; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1025.

2-methyl-1,8b-diphenyl-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (3av')

White solid; 27.9 mg, 39% yield, reaction time 6 h; m.p. : 206 – 209 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.71 (dd, *J* = 16.5, 7.8 Hz, 2H), 7.64 – 7.60 (m, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.1 Hz, 2H), 7.19 – 7.07 (m, 7H),

7.05 – 7.01 (m, 1H), 4.65 (qd, J = 6.8, 5.1 Hz, 1H), 3.73 (d, J = 5.2 Hz, 1H), 1.49 (d, J = 6.9 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ (ppm) = 147.6, 138.1, 137.3, 137.1, 133.6, 129.4, 129.3, 128.3, 127.8, 127.5, 127.0, 125.9, 123.6, 121.2, 78.7, 67.6, 57.3, 19.9; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1028.

1,1,8b-triphenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3aw)

White thick oil; 52.9 mg, 59% yield, reaction time 6 h; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.66 – 7.61 (m, 3H), 7.38 – 7.36 (m, 4H), 7.30 – 7.26 (m, 4H), 7.22 – 7.16 (m, 4H), 7.13 – 7.09 (m, 1H), 7.08 – 7.04 (m, 3H), 4.96 (d, *J* = 9.1 Hz, 1H), 4.31 (d, *J* = 9.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 142.7, 141.8, 139.6, 138.7, 134.3, 132.5, 129.4, 129.2, 129.1, 128.5, 128.4, 128.3, 127.6, 127.4, 127.2, 126.8, 125.8, 122.3, 87.5, 61.1, 56.8; HRMS (ESI) calcd for C₂₇H₂₂NO₂S [M+H]⁺: 424.1366, found: 424.1362.

8b-phenyl-1-(phenylthio)-1, 8b-dihydro-2H-azeto[1,2-b] benzo[d] isothiazole~4, 4-dioxide~(3ax) and a benzo[d] is

Yellow thick oil; 18.0 mg, 24% yield, reaction time 6 h; ¹H NMR (400 MHz, $P_{Ph}^{N} = Ph^{N}$ CDCl₃) δ (ppm) = 7.83 (d, J = 7.5 Hz, 1H), 7.66 (td, J = 7.5, 1.3 Hz, 1H), 7.60 (td, J = 7.5, 1.2 Hz, 1H), 7.55 – 7.52 (m, 3H), 7.36 – 7.26 (m, 8H), 4.65 (t, J = 8.3 Hz, 1H), 4.42 (dd, J = 9.5, 8.1 Hz, 1H), 3.96 (dd, J = 9.5, 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 141.7, 139.1, 135.4, 133.5, 132.9, 131.0, 130.5, 129.5, 128.9, 128.2, 127.8, 127.5, 124.3, 122.7, 82.6, 57.3, 47.7; HRMS (ESI) calcd for C₂₁H₁₇NO₂S₂Na [M+Na]⁺: 402.0593, found: 402.0589.

8b-phenyl-1-(phenylthio)-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (3ax')

Yellow thick oil; 39.7 mg, 45% yield, reaction time 6 h; ¹H NMR (400 MHz, i_{Ph} , i_{S} -Ph CDCl₃) δ (ppm) = 7.75 (d, J = 7.8 Hz, 1H), 7.70 – 7.66 (m, 4H), 7.55 (ddd, J = 8.1, 4.7, 3.6 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.27 – 7.20 (m, 3H), 7.13 – 7.11 (m, 2H), 4.43 – 4.37 (m, 2H), 3.98 – 3.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 143.8, 136.9, 134.8, 134.0, 133.3, 130.8, 130.3, 129.2, 128.4, 128.2, 127.4, 126.1, 124.6, 122.7, 80.6, 55.6, 48.3; HRMS (ESI) calcd for C₂₁H₁₇NO₂S₂Na [M+Na]⁺: 402.0593, found: 402.0588.

4,4-dioxido-8b-phenyl-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazol-1-yl acetate (3ay)

White solid; 27.0 mg, 41% yield, reaction time 6 h; m.p. : $177 - 179 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.84 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.72 (td, *J* = 7.7, 1.2 Hz, 1H), 7.66 – 7.63 (m, 2H), 7.61 (td, *J* = 7.6, 1.0 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.34 – 7.30 (m, 1H), 5.57 (dd, *J* = 7.4, 3.3 Hz, 1H), 4.37 (dd, *J* = 11.4, 7.4 Hz, 1H), 4.09 (dd, *J* = 11.4, 3.4 Hz, 1H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 170.4, 141.3, 135.4, 135.4, 134.0, 130.6, 128.4, 126.3, 125.5, 122.7, 82.6, 71.4, 54.4, 20.5; HRMS (ESI) calcd for C₁₇H₁₅NO₄SNa [M+Na]⁺: 352.0614, found: 352.0611.

1-methyl-8b-phenyl-1-(prop-1-en-2-yl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4dioxide (3az)

White solid; 11.3 mg, 17% yield, reaction time 6 h; m.p. : 208 – 210 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.78 (d, *J* = 7.7 Hz, 1H), 7.60 – 7.53 (m, 3H), 7.52 – 7.46 (m, 2H), 7.30 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 5.14 (s, 1H),

5.00 (s, 1H), 4.10 (d, *J* = 9.3 Hz, 1H), 3.74 (d, *J* = 9.3 Hz, 1H), 1.60 (d, *J* = 1.2 Hz, 3H), 1.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 145.8, 142.8, 140.4, 135.0, 133.1, 129.7, 128.1, 127.4, 126.8, 124.7, 122.9, 115.6, 83.8, 59.2, 47.6, 24.4, 20.4; HRMS (ESI) calcd for C₁₉H₂₀NO₂S [M+H]⁺: 326.1209, found: 326.1207.

1-methyl-8b-phenyl-1-(prop-1-en-2-yl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4dioxide (3az') White solid; 20.2 mg, 31% yield, reaction time 6 h; m.p. : $214 - 216 \,^{\circ}\text{C}$; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.89 - 7.84 (m, 1H), 7.49 (dd, J = 5.8, 3.1Hz, 2H), 7.37 - 7.27 (m, 5H), 7.09 - 7.05 (m, 1H), 4.04 (d, $J = 17.6 \,\text{Hz}, 1H$), 3.27 (d, $J = 17.7 \,\text{Hz}, 1H$), 3.01 (d, $J = 16.8 \,\text{Hz}, 1H$), 2.56 (d, $J = 16.8 \,\text{Hz}, 1H$), 1.78 (s, 3H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.1, 139.1, 133.0, 132.9, 129.0, 128.9, 128.1, 126.7, 123.9, 122.8, 122.3, 121.5, 64.6, 60.4, 40.5, 38.4, 21.1, 19.3, 15.7, 14.2; HRMS (ESI) calcd for C₁₉H₂₀NO₂S [M+H]⁺: 326.1209, found: 326.1208.

8b-(4-methoxyphenyl)-1-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ba)

White solid; 49.7 mg, 66% yield, reaction time 6 h; m.p. : 260 - 261 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.76 (d, J = 7.8 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.52 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.26 – 7.13 (m, 7H), 6.64 – 6.60 (m, 2H), 4.47 (t, J = 9.4 Hz, 1H), 4.06 (dd, J = 9.7, 4.3 Hz, 1H), 4.01 (dd, J = 9.2, 4.3 Hz, 1H), 3.64 (s,

3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 158.6, 146.1, 138.2, 134.2, 134.1, 130.6, 129.8, 129.1, 128.5, 127.6, 126.8, 124.3, 122.6, 113.5, 81.6, 56.0, 55.1, 48.1; HRMS (ESI) calcd for C₂₂H₂₀NO₃S [M+H]⁺: 378.1158, found: 378.1156.

1-phenyl-8b-(thiophen-2-yl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ca)

= 5.0, 1.3 Hz, 1H), 6.97 (dd, J = 3.7, 1.3 Hz, 1H), 6.72 (dd, J = 5.1, 3.6 Hz, 1H), 4.40 (t, J = 9.7 Hz, 1H), 4.21 (dd, J = 10.0, 4.5 Hz, 1H), 4.01 (dd, J = 9.3, 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.7, 140.7, 136.9, 134.7, 134.1, 130.1, 128.8, 128.4, 127.9, 126.5, 126.0, 126.0, 124.5, 122.6, 79.4, 54.6, 48.8; HRMS (ESI) calcd for C₁₉H₁₆NO₂S₂ [M+H]⁺: 354.0617, found: 354.0622.

(3da)

2H), 7.43 - 7.39 (m, 2H), 7.37 - 7.33 (m, 1H), 4.33 (t, J = 9.4 Hz, 1H), 4.10 (dd, J = 9.7, 4.1 Hz, 1H), 3.87 - 3.80 (m, 3H), 0.86 (t, J = 7.1 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ (ppm) = 166.2, 138.5, 137.1, 135.5, 134.0, 130.9, 128.8, 128.3, 128.0, 125.6, 122.3, 79.2, 62.0, 55.0, 47.1, 13.4; HRMS (ESI) calcd for C₁₈H₁₈NO₄S [M+H]⁺: 344.0951, found: 344.0949.

1-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole 4,4-dioxide (3ea)

4-(4,4-dioxido-8b-phenyl-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazol-1-yl)benzyl 2-(4isobutylphenyl)propanoate (4)

Yellow solid; 76.5 mg, 68% yield, reaction time 6 h; m.p. : 170 - 172 °C; ¹**H NMR (400 MHz, CDCl₃)** δ (ppm) = 7.75 (d, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 3.9 Hz, 2H), 7.51 (dq, *J* = 8.0, 4.3 Hz, 1H), 7.30 - 7.28 (m, 2H), 7.18 - 7.14 (m, 4H), 7.11 - 7.02 (m, 7H), 4.99 (s, 2H), 4.46 (t, *J* = 10.5 Hz, 1H), 4.03 -

3.99 (m, 2H), 3.71 (q, J = 7.1 Hz, 1H), 2.45 (d, J = 7.1 Hz, 2H), 1.84 (dh, J = 13.5, 6.7 Hz, 1H), 1.47 (dd, J = 7.2, 2.1 Hz, 3H), 0.91 (s, 3H), 0.90 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ (ppm) = 174.2, 174.2, 145.4, 140.5, 138.2, 138.2, 137.8, 137.4, 137.4, 135.4, 135.4, 134.2, 134.0, 129.8, 129.2, 129.0, 127.9, 127.7, 127.1, 127.1, 125.4, 124.3, 122.5, 81.5, 65.6, 55.9, 47.8, 45.0, 44.9, 44.9, 30.1, 22.3, 18.3, 18.2; HRMS (ESI) calcd for C₃₅H₃₅NO₄SNa [M+Na]⁺: 588.2179, found: 588.2180.

4,5-diphenyl-2,3-dihydrobenzo[*f*][1,2]thiazepine 1,1-dioxide (5a)

CDCl₃) δ (ppm) = 143.6, 141.1, 140.6, 140.1, 137.1, 134.3, 132.5, 131.1, 130.8, 129.5, 128.5, 128.1, 127.8, 127.3, 127.2, 125.9, 49.4; HRMS (ESI) calcd for C₂₁H₁₇NO₂SNa [M+Na]⁺: 370.0872, found: 370.0874.

4-(4-fluorophenyl)-5-phenyl-2,3-dihydrobenzo[*f*][1,2]thiazepine 1,1-dioxide (5b)

247.4 Hz), 144.1, 131.0, 139.9, 137.1, 136.6 (d, J = 3.4 Hz), 133.3, 132.6, 131.3 (d, J = 8.4 Hz), 131.1, 130.7, 128.6, 128.0, 127.5, 126.0, 115.2 (d, J = 21.6 Hz), 49.4; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -114.30; HRMS (ESI) calcd for C₂₁H₁₇FNO₂S [M+H]⁺: 366.0959, found: 366.0940.

4-(4-bromophenyl)-5-phenyl-2,3-dihydrobenzo[f][1,2]thiazepine 1,1-dioxide (5c)

White solid; 45.2 mg, 53% yield; m.p. : 265 – 267 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.09 – 8.07 (m, 1H), 7.54 – 7.52 (m, 2H), 7.33 – 7.31 (m, 2H), 7.16 – 7.09 (m, 6H), 6.99 – 6.97 (m, 2H), 5.03 (s, 1H), 3.85 (d, *J* = 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 144.4, 140.8, 139.7, 139.6, 137.1,

133.0, 132.6, 131.4, 131.3, 131.1, 128.7, 128.1, 127.7, 121.5, 49.2; HRMS (ESI) calcd for C₂₁H₁₆BrNO₂SNa [M+Na]⁺: 447.9977, found: 447.9977.

5-phenyl-4-(p-tolyl)-2,3-dihydrobenzo[f][1,2]thiazepine 1,1-dioxide (5d)

White solid; 54.2 mg, 75% yield; m.p. : 277 - 279 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.08 - 8.06 (m, 1H), 7.51 - 7.50 (m, 2H), 7.14 - 7.09 (m,

6H), 7.00 – 6.99 (m, 4H), 5.02 (s, 1H), 3.87 (s, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 143.1, 141.3, 140.3, 137.6, 137.1, 137.0, 134.4, 132.5, 131.1, 130.8, 129.4, 128.9, 128.4, 127.9, 127.3, 125.9, 49.5, 21.2; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1031.

4-(4-(tert-butyl)phenyl)-5-phenyl-2,3-dihydrobenzo[f][1,2]thiazepine 1,1-dioxide (5e)

White solid; 51.2 mg, 64% yield; m.p. : 245 – 247 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.07 – 8.06 (m, 1H), 7.52 – 7.48 (m, 2H), 7.20 – 7.19 (m, 2H), 7.14 – 7.10 (m, 6H), 7.00 – 6.99 (m, 2H), 5.05 (s, 1H), 3.88 (d, *J* = 2.5 Hz, 2H), 1.25 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 150.2, 143.1, 141.4, 140.3,

137.5, 137.2, 134.3, 132.5, 131.1, 130.8, 129.2, 128.3, 127.8, 127.3, 125.9, 125.1, 49.5, 34.5, 31.2; HRMS (ESI) calcd for C₂₅H₂₅NO₂SNa [M+Na]⁺: 426.1498, found: 426.1474.

4-(1,1-dioxido-5-phenyl-2,3-dihydrobenzo[f][1,2]thiazepin-4-yl)phenyl acetate (5f)

CDCl₃) δ (ppm) = 8.08 – 8.06 (m, 1H), 7.52 – 7.51 (m, 2H), 7.23 – 7.21 (m, 2H), 7.16 – 7.11 (m, 4H), 7.00 – 6.98 (m, 2H), 6.94 – 6.92 (m, 2H), 5.10 (s, 1H),

White solid; 55.6 mg, 67% yield; m.p. : 253 – 256 °C; ¹H NMR (400 MHz,

3.87 (s, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 169.2, 149.7, 144.1, 141.0, 139.9, 138.2, 137.1, 133.4, 132.5, 131.1, 130.74, 130.67, 128.6, 128.0, 127.5, 126.0, 121.3, 49.3, 21.2; HRMS (ESI) calcd for C₂₃H₁₉NO₄SNa [M+Na]⁺: 428.0927, found: 428.0930.

5-phenyl-4-(*o*-tolyl)-2,3-dihydrobenzo[*f*][1,2]thiazepine 1,1-dioxide (5g)

3.78 (ddd, *J* = 70.2, 11.5, 2.4 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 144.0, 140.7, 140.5, 140.0, 137.2, 135.2, 134.5, 132.5, 131.2, 130.2, 129.9, 129.8, 128.4, 127.7, 127.44, 127.36, 125.9, 125.8, 48.4, 19.9; HRMS (ESI) calcd for C₂₂H₁₉NO₂SNa [M+Na]⁺: 384.1029, found: 384.1003.

5-phenyl-4-(*m*-tolyl)-2,3-dihydrobenzo[*f*][1,2]thiazepine 1,1-dioxide (5h)

White solid; 41.5 mg, 57% yield; m.p. : 255 – 256 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.08 – 8.06 (m, 1H), 7.51 (td, *J* = 7.6, 6.6, 3.8 Hz, 2H), 7.15 – 7.10 (m, 4H), 7.07 (t, *J* = 7.6 Hz, 1H), 7.02 (s, 1H), 7.00 – 6.98 (m, 3H), 6.96

(d, J = 7.6 Hz, 1H), 5.06 (s, 1H), 3.88 (d, J = 2.4 Hz, 2H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 143.3, 141.2, 140.5, 140.2, 137.7, 137.1, 134.5, 132.5, 131.1, 130.8, 130.0, 128.4, 128.04, 128.00, 127.8, 127.3, 126.7, 125.9, 49.4, 21.4; HRMS (ESI) calcd for $C_{22}H_{19}NO_2SNa$ [M+Na]⁺: 384.1029, found: 384.1006.

5-(4-methoxyphenyl)-4-phenyl-2,3-dihydrobenzo[f][1,2]thiazepine 1,1-dioxide (5i)

White solid; 53.2 mg, 71% yield; m.p. : 267 - 270 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.08 - 8.04 (m, 1H), 7.54 - 7.48 (m, 2H), 7.24 - 7.19 (m,

4H), 7.18 – 7.15 (m, 2H), 6.90 – 6.87 (m, 2H), 6.66 – 6.62 (m, 2H), 5.05 (s, 1H), 3.86 (d, J = 2.4 Hz, 2H), 3.72 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ (ppm) = 158.8, 143.2, 141.5, 141.0, 137.1, 133.4, 132.5, 132.4, 132.1, 131.2, 129.6, 128.4, 128.2, 127.1, 125.9, 113.3, 55.1, 49.5; HRMS (ESI) calcd for C₂₂H₁₉NO₃SNa [M+Na]⁺: 400.0980, found: 400.0978.

5-phenyl-2,3-dihydrobenzo[*f*][1,2]thiazepine 1,1-dioxide (5j)

White solid; 29.8 mg, 55% yield; m.p. : $237 - 240 \,^{\circ}$ C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.04 (dd, J = 7.7, 1.5 Hz, 1H), 7.48 (dtd, J = 22.4, 7.5, 1.5 Hz, 2H), 7.33 -7.32 (m, 3H), 7.26 - 7.23 (m, 2H), 7.16 (dd, J = 7.6, 1.4 Hz, 1H), 6.25 (t, J = 6.8Hz, 1H), 5.23 (s, 1H), 3.70 (dd, J = 6.8, 2.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 147.3, 141.4, 139.5, 137.5, 132.4, 131.3, 128.5, 128.4, 128.2, 126.2, 124.5, 42.0; HRMS (ESI) calcd for C₁₅H₁₃NO₂SNa [M+Na]⁺: 294.0559, found: 294.0552.

ethyl 5-bromo-4-phenyl-2,3,4,5-tetrahydrobenzo[*f*][1,2]thiazepine-5-carboxylate 1,1-dioxide (6)

J = 10.9 Hz, 1H), 3.17 (dd, *J* = 10.6, 3.7 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ (ppm) = 168.3, 136.1, 135.6, 135.3, 134.2, 131.3, 129.0, 128.7, 125.3, 131.9, 72.2, 63.9, 55.9, 31.4, 13.9; HRMS (ESI) calcd for C₁₈H₁₈BrNO₄SNa [M+Na]⁺: 446.0032, found: 446.0036.

8b-(ethoxycarbonyl)-1,8b-dihydro-2*H*-azeto[1,2-*b*]benzo[*d*]isothiazole-1-carboxylic acid 4,4dioxide (7)

White solid; 98.3 mg, 63% yield; m.p. : 220 – 222 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.86 (d, *J* = 7.6 Hz, 1H), 7.79 – 7.73 (m, 2H), 7.70 (ddd, *J* = 7.6, 5.9, 2.6 Hz, 1H), 6.51 (s,1H), 4.36 – 4.22 (m, 2H), 4.20 (dd, *J* = 9.8, 4.7 Hz,

1H), 4.12 (t, J = 9.5 Hz, 1H), 3.55 (dd, J = 9.1, 4.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR
(100 MHz, CDCl₃) δ (ppm) = 175.0, 167.1, 136.9, 135.8, 134.4, 131.6, 125.3, 122.7, 74.8, 63.2,
50.2, 44.6, 13.8; HRMS (ESI) calcd for C₁₃H₁₃NO₆SNa [M+Na]⁺: 344.0356, found: 344.0356.

1-bromo-1,8b-diphenyl-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (8)

White solid; 12.6 mg, 30% yield; m.p. : 243 - 247 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.82 (t, J = 8.7 Hz, 2H), 7.72 - 7.66 (m, 3H), 7.59 (td, J = 7.5, 1.0 Hz, 1H), 7.33 - 7.30 (m, 2H), 7.18 - 7.14 (m, 2H), 7.13 - 7.09 (m,

1H), 7.07 – 7.03 (m, 2H), 7.01 – 6.97 (m, 1H), 4.78 (d, J = 10.3 Hz, 1H), 4.72 (d, J = 10.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) =142.3, 138.2, 138.1, 134.1, 132.9, 130.4, 128.6, 128.4, 128.3, 127.9, 127.9, 127.5, 125.1, 122.5, 88.1, 66.3, 63.1; HRMS (ESI) calcd for C₂₁H₁₇BrNO₂S [M+H]⁺: 426.0158, found: 426.0154.

1-bromo-1,8b-diphenyl-1,8b-dihydro-2H-azeto[1,2-b]benzo[d]isothiazole 4,4-dioxide (8')

White solid; 14.4 mg, 34% yield; m.p. : 248 – 251 °C; ¹**H NMR (400 MHz, CDCl**₃) δ (ppm) = 7.83 – 7.81 (m, 2H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.41 – 7.32 (m, 7H), 7.18 (ddd, *J* = 8.3, 7.3, 1.2 Hz, 1H), 6.73 (d, *J* = 8.2 Hz,

1H), 4.99 (d, J = 10.9 Hz, 1H), 4.51 (d, J = 10.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 140.0, 139.5, 138.1, 135.0, 132.7, 130.2, 129.1, 128.7, 128.5, 128.4, 127.7, 127.0, 125.8, 111.7, 87.4, 66.2, 62.4; HRMS (ESI) calcd for C₂₁H₁₇BrNO₂S [M+H]⁺: 426.0158, found: 426.0165.

12. Copy of ¹H NMR and ¹³C NMR spectra of the compounds

¹H NMR (400 MHz, CDCl₃) spectra of **3aa**

¹³C NMR (100 MHz, CDCl₃) spectra of **3aa**

¹H NMR (400 MHz, CDCl₃) spectra of **3ab**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ab**

¹⁹F NMR (376 MHz, CDCl₃) spectra of **3ab**

¹H NMR (400 MHz, CDCl₃) spectra of **3ac**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ac**

¹H NMR (400 MHz, CDCl₃) spectra of **3ad**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ad**

¹H NMR (400 MHz, CDCl₃) spectra of **3ae**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ae**

¹H NMR (400 MHz, CDCl₃) spectra of **3af**

¹³C NMR (100 MHz, CDCl₃) spectra of **3af**

¹⁹F NMR (376 MHz, CDCl₃) spectra of **3af**

ò

-20

-40

-60

-80

-100

-120

-140

-160

-180

-200

ppm

¹H NMR (400 MHz, CDCl₃) spectra of **3ag**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ag**

¹H NMR (400 MHz, CDCl₃) spectra of **3ah**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ah**

¹H NMR (400 MHz, CDCl₃) spectra of **3ai**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ai**

¹³C NMR (100 MHz, CDCl₃) spectra of **3aj**

¹H NMR (400 MHz, CDCl₃) spectra of **3ak**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ak**

¹³C NMR (100 MHz, CDCl₃) spectra of **3al**

¹H NMR (400 MHz, CDCl₃) spectra of **3am**

¹³C NMR (100 MHz, CDCl₃) spectra of **3am**

¹H NMR (400 MHz, CDCl₃) spectra of **3an**

¹³C NMR (100 MHz, CDCl₃) spectra of **3an**

¹H NMR (400 MHz, CDCl₃) spectra of **3ao**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ao**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ap**

¹H NMR (400 MHz, CDCl₃) spectra of **3aq**

¹³C NMR (100 MHz, CDCl₃) spectra of **3aq**

¹H NMR (400 MHz, CDCl₃) spectra of **3ar**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ar**

¹H NMR (400 MHz, CDCl₃) spectra of **3as**

¹³C NMR (100 MHz, CDCl₃) spectra of **3as**

¹H NMR (400 MHz, CDCl₃) spectra of **3at**

¹³C NMR (100 MHz, CDCl₃) spectra of **3at**

¹H NMR (400 MHz, CDCl₃) spectra of **3au**

¹³C NMR (100 MHz, CDCl₃) spectra of **3au**

¹H NMR (400 MHz, CDCl₃) spectra of 3av

¹³C NMR (100 MHz, CDCl₃) spectra of **3av**

¹H NMR (400 MHz, CDCl₃) spectra of **3av'**

¹³C NMR (100 MHz, CDCl₃) spectra of **3av'**

¹H NMR (400 MHz, CDCl₃) spectra of **3aw**

¹³C NMR (100 MHz, CDCl₃) spectra of **3aw**

¹H NMR (400 MHz, CDCl₃) spectra of **3ax**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ax**

¹H NMR (400 MHz, CDCl₃) spectra of **3ax'**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ax'**

¹H NMR (400 MHz, CDCl₃) spectra of **3ay**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ay**

¹H NMR (400 MHz, CDCl₃) spectra of **3az**

¹³C NMR (100 MHz, CDCl₃) spectra of **3az**

¹H NMR (400 MHz, CDCl₃) spectra of **3az'**

¹³C NMR (100 MHz, CDCl₃) spectra of **3az'**

¹H NMR (400 MHz, CDCl₃) spectra of **3ba**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ba**

¹H NMR (400 MHz, CDCl₃) spectra of **3ca**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ca**

¹³C NMR (100 MHz, CDCl₃) spectra of **3da**

¹H NMR (400 MHz, CDCl₃) spectra of **3ea**

¹³C NMR (100 MHz, CDCl₃) spectra of **3ea**

¹H NMR (400 MHz, CDCl₃) spectra of **4**

¹³C NMR (100 MHz, CDCl₃) spectra of 4

¹H NMR (400 MHz, CDCl₃) spectra of **5a**

¹³C NMR (100 MHz, CDCl₃) spectra of **5a**

¹H NMR (600 MHz, CDCl₃) spectra of **5b**

 ^{13}C NMR (150 MHz, CDCl₃) spectra of 5b

^{19}F NMR (376 MHz, CDCl₃) spectra of 5b

¹H NMR (400 MHz, CDCl₃) spectra of **5c**

 ^{13}C NMR (100 MHz, CDCl₃) spectra of 5c

¹H NMR (400 MHz, CDCl₃) spectra of **5d**

¹³C NMR (100 MHz, CDCl₃) spectra of **5d**

¹H NMR (600 MHz, CDCl₃) spectra of **5e**

¹³C NMR (150 MHz, CDCl₃) spectra of **5e**

¹H NMR (400 MHz, CDCl₃) spectra of **5f**

^{13}C NMR (100 MHz, CDCl₃) spectra of $\mathbf{5f}$

¹H NMR (600 MHz, CDCl₃) spectra of **5g**

 ^{13}C NMR (150 MHz, CDCl₃) spectra of 5g

¹H NMR (600 MHz, CDCl₃) spectra of **5h**

^{13}C NMR (150 MHz, CDCl₃) spectra of **5h**

¹H NMR (400 MHz, CDCl₃) spectra of 5i

¹³C NMR (100 MHz, CDCl₃) spectra of **5**i

¹H NMR (600 MHz, CDCl₃) spectra of 5j

¹³C NMR (150 MHz, CDCl₃) spectra of **5**j

¹H NMR (400 MHz, CDCl₃) spectra of **6**

¹³C NMR (100 MHz, CDCl₃) spectra of **6**

¹³C NMR (100 MHz, CDCl₃) spectra of **7**

¹H NMR (400 MHz, CDCl₃) spectra of 8

¹³C NMR (100 MHz, CDCl₃) spectra of 8

¹H NMR (400 MHz, CDCl₃) spectra of 8'

¹³C NMR (100 MHz, CDCl₃) spectra of 8'

