(96 pages)

Supporting Information For

CuBr-Mediated Synthesis of 1,4-Naphthoquinones via Ring Expansion of

 2-Aryl-1,3-indandiones

 2-Aryl-1,3-indandiones}
Xu Zhang,* Di Wang, Mengfan Chang, Wanya Wang, Zhi Shen, and Xuefeng XuCollege of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061,Chinae-mail: zhangxuedu@126.com
Table of Contents
General methods and materials 2
General Catalytic Procedure for CuBr-Mediated Synthesis of 1,4-Naphthoquinones via Ring Expansion of 2-Aryl-1,3-indandiones 3
Procedure Gram-scale for the Synthesis of 3a 4
Procedure Gram-scale for the Synthesis of $\mathbf{4 a}$ 5
Control experiments 6-13
X-Ray Crystallographic Date. 14
Characterization data for the products 15-36
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products 37-96

General Methods and Materials

$\mathrm{CuBr}, \mathrm{CuBr}_{2}, \mathrm{CuI}, \mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{CuOTf}, \mathrm{CuCl}_{2}, \mathrm{CuBr} \cdot \mathrm{SMe}_{2}$, and $\mathrm{Cu}(\mathrm{OAc})_{2}$ were purchased from Energy Chemical and used without further purification. Other chemicals were purchased from commercial suppliers, further dried and purified if necessary. The water used was re-distillated and ion-free. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were achieved on a Bruker AVANCE 400 MHz spectrometer $\left({ }^{1} \mathrm{H} 400 \mathrm{MHz} ;{ }^{13} \mathrm{C} 100\right.$ MHz) in CDCl_{3}. Abbreviations for data quoted are s-singlet; brs-broad singlet; d-doublet; t-triplet; $d d$-doublet of doublets; m-multiplet. High-resolution mass spectra were measured on a Waters Micromass GCT facility. Thin-layer chromatographies were done on pre-coated silica gel 60F254 plates (Merck). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

General Catalytic Procedure for $\mathbf{C u B r}$-Mediated Synthesis of

1,4-Naphthoquinones via Ring Expansion of 2-Aryl-1,3-indandiones

A reaction flask (25 mL) was charged with 2-aryl-1,3-indandione $1(0.2 \mathrm{mmol}$, 1.0 equiv), alkenes 2 ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{CuBr}\left(14.3 \mathrm{mg}, 50 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.4 $\mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), then the toluene $(2 \mathrm{~mL})$ was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=10$: $1 \sim 5: 1$) to yield product.

Procedure Gram-scale for the Synthesis of 3a.

A reaction flask (250 mL) was charged with 2-phenyl-1,3-indandione 1a (5.0 mmol, 1.0 equiv), styrene $\mathbf{2 a}$ ($7.5 \mathrm{mmol}, 1.5$ equiv), $\mathrm{CuBr}(357.5 \mathrm{mg}, 50 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($10.0 \mathrm{mmol}, 3258.2 \mathrm{mg}, 2.0$ equiv), then the toluene (50 mL) was added. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane $(10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane $/ \mathrm{AcOEt}=7: 1$) to yield product 1318.2 mg .

Procedure Gram-scale for the Synthesis of 4a.

A reaction flask (250 mL) was charged with 2-phenyl-1,3-indandione 1a (5.0 mmol, 1.0 equiv), 4 -vinyltoluene $\mathbf{2 b}$ ($7.5 \mathrm{mmol}, 1.5$ equiv), $\mathrm{CuBr}(357.5 \mathrm{mg}, 50$ $\mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(10.0 \mathrm{mmol}, 3258.2 \mathrm{mg}, 2.0$ equiv), then the toluene $(50 \mathrm{~mL})$ was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=7: 1$) to yield product 1531.2 mg .

Control Experiments

A reaction flask (25 mL) was charged with 2-phenyl-1,3-indandione 1a (0.2 mmol, 1.0 equiv), CuBr ($14.3 \mathrm{mg}, 50 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), then the toluene (2 mL) was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 4 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=3: 1$) to yield product.

2,2'-diphenyl-1H,1'H-[2,2'-biindene]-1, $1^{\prime}, 3,3^{\prime}\left(2 \mathrm{H}, 2^{\prime} \mathrm{H}\right)$-tetraone (A-I): Obtained as a pale yellow solid ($84.0 \mathrm{mg}, 76 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 7.86-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.73(\mathrm{~m}$, 4H), $7.32-7.35(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-7.20(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 197.4,140.90,135.6,130.4,129.8$, 128.7, 127.5, 123.7, 64.3; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 443.1278, found 443.1275 .

21-302

8
$\stackrel{y}{4}$

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

(b)

A reaction flask (25 mL) was charged with 2-phenyl-1,3-indandione 1a (0.2 mmol, 1.0 equiv), $\mathrm{CuBr}(14.3 \mathrm{mg}, 50 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), TEMPO ($0.4 \mathrm{mmol}, 2.0$ equiv) or BHT ($0.4 \mathrm{mmol}, 2.0$ equiv), then the toluene $(2 \mathrm{~mL})$ was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane $(10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt $=3: 1$) to yield product A-I.

(c)

A reaction flask (25 mL) was charged with $\mathbf{A} \mathbf{- I}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), styrene $\mathbf{2 a}$ ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{CuBr}\left(14.3 \mathrm{mg}, 50 \mathrm{~mol} \%\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), then the toluene (2 mL) was added. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane $(10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane $/ \mathrm{AcOEt}=7: 1$) to yield product $\mathbf{3 a}$.

(d)

A reaction flask (25 mL) was charged with A-I ($0.2 \mathrm{mmol}, 1.0$ equiv), styrene 2a ($0.3 \mathrm{mmol}, 1.5$ equiv), CuBr ($14.3 \mathrm{mg}, 50 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), TEMPO ($0.4 \mathrm{mmol}, 2.0$ equiv) or BHT ($0.4 \mathrm{mmol}, 2.0$ equiv), then the toluene $(2 \mathrm{~mL})$ was added. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. No desired product of 3 a was detected.

(e)

A reaction flask (25 mL) was charged with 2-aryl-1,3-indandione $1(0.2 \mathrm{mmol}$, 1.0 equiv), alkenes 2 ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{CuBr}(14.3 \mathrm{mg}, 50 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4$ mmol, $130.3 \mathrm{mg}, 2.0$ equiv), then the toluene $(2 \mathrm{~mL})$ was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 1 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane $(10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=10$: $1 \sim 5: 1$) to yield products $\mathbf{A}-1$ in $48 \%, \mathbf{3 a}$ in 13%, and \mathbf{F} in 37% yields, respectively.

F $\xrightarrow[12 \mathrm{~h}]{\text { stanard conditions }} \mathbf{3 a , 9 1 \%}$

A reaction flask (25 mL) was charged with $\mathbf{F}(0.2 \mathrm{mmol}, 1.0$ equiv $), \mathrm{CuBr}(14.3$ $\mathrm{mg}, 50 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), then the toluene (2 mL) was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane $(10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=7: 1$) to yield products $\mathbf{3 a}$ in 91% yield.

(g)

A reaction flask (25 mL) was charged with $\mathbf{F}(0.2 \mathrm{mmol}, 1.0$ equiv $), \mathrm{CuBr}(14.3$ $\mathrm{mg}, 50 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv), TEMPO ($0.4 \mathrm{mmol}, 2.0$ equiv) or BHT ($0.4 \mathrm{mmol}, 2.0$ equiv), then the toluene (2 mL) was added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted twice with dichloromethane $(10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=7: 1$) to yield product $\mathbf{3 a}$ in 77%, and 81% yields, respectively.

X-Ray Crystallographic Data

Crystal structure details for Product 3e (CCDC:2285891)

Identification code	A
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{3}$
Formula weight	394.45
Temperature/K	296(2) K
Crystal system	triclinic
Space group	P-1
a/Å	9.6983(19)
b/Å	10.099(2)
c/Å	12.581(3)
$\alpha /{ }^{\circ}$	69.766(4)
$\beta /{ }^{\circ}$	70.291(3)
$\gamma{ }^{\circ}$	65.925(3)
Volume/ \AA^{3}	1027.5(4)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.275
μ / mm^{-1}	0.082
F(000)	416
Crystal size $/ \mathrm{mm}^{3}$	$0.26 \times 0.23 \times 0.21$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/1.77 to 25.00	
Index ranges	$-11<=\mathrm{h}<=9,-12<=\mathrm{k}<=10,-14<=\mathrm{l}<=9$
Reflections collected	5077
Independent reflections	$3570[\mathrm{R}(\mathrm{int})=0.0216]$
Data/restraints/parameters	3570/0/271
Goodness-of-fit on F^{2}	1.006
Final R indexes $[\mathrm{l}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0504, \mathrm{wR}_{2}=0.1408$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0917, \mathrm{wR}_{2}=0.1812$
Largest diff. peak/hole/e \AA^{-3}	0.227 and -0.201

Characterization data for the products

2-Benzoyl-3-phenylnaphthalene-1,4-dione (3a): Obtained as a yellow solid ($58.1 \mathrm{mg}, 86 \%$ yield), eluting with $10 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1}{ }^{1} \mathrm{~N}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.85(\mathrm{~m}$, 4H), $7.47-7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.9,184.2,183.8,144.6,143.9,135.7,134.4,134.3$, 134.0, 131.8, 131.6, 130.9, 129.7, 129.6, 129.0, 128.7, 128.0, 127.0, 126.4; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 339.1016$, found 339.1015 .

2-Benzoyl-3-(p-tolyl)naphthalene-1,4-dione (3b): Obtained as a yellow solid ($62.4 \mathrm{mg}, 91 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.83(\mathrm{~m}$, $4 \mathrm{H}), 7.45-7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.19(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$)$ $\delta 193.1,184.3,183.8,144.8,143.5,139.9,135.9,134.3,134.2,134.0,131.9,131.7$, $129.8,129.1,128.8,128.7,128.0,127.0,126.4,21.3 ;$ HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 353.1172$, found 353.1173 .

2-Benzoyl-3-(4-isopropylphenyl)naphthalene-1,4-dione (3c): Obtained as a yellow solid ($122.2 \mathrm{mg}, 88 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14$ (m, $1 \mathrm{H}), 7.78-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}$,

2H), $7.18-7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.86(\mathrm{~m}$, $1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.3, 184.4, 183.8, $150.6,144.8,143.4,135.9,134.3,134.2,133.9,131.9,131.6,129.9,129.2,128.6$, 128.3, 127.0, 126.4, 126.2, 33.8, 23.6; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}$ $+\mathrm{H}]^{+}$381.1485, found 381.1483.

2-Benzoyl-3-(4-isobutylphenyl)naphthalene-1,4-dione (3d):
Obtained as a yellow solid ($68.6 \mathrm{mg}, 87 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-7.03(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}$, 3 H) ${ }^{13}{ }^{13} \mathrm{CNR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.3,184.4,183.7,144.7,143.6,143.4,135.8$, $134.3,134.2,133.8,131.9,131.7,129.7,129.0,128.8,128.5,128.3,127.0,126.4$, 45.1, 30.0, 22.2; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+395.1642$, found 395.1644.

2-Benzoyl-3-(4-(tert-butyl)phenyl)naphthalene-1,4-dione (3e):
Obtained as a yellow solid ($72.5 \mathrm{mg}, 92 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.14(\mathrm{~m}$, $1 \mathrm{H}), 7.77-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26-7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.2,184.4,183.8,152.8,144.8,143.5,136.1,134.3$,
$134.2,133.8,131.9,131.7,129.6,129.0,128.6,128.0,127.0,126.3,125.0,34.7,31.0 ;$ HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+395.1642$, found 395.1640.

2-Benzoyl-3-(4-methoxyphenyl)naphthalene-1,4-dione (3f): Obtained as a yellow solid ($64.0 \mathrm{mg}, 87 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.14(\mathrm{~m}$, $1 \mathrm{H}), 7.79-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24-7.26(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 193.4,184.5,183.7,161.0,144.2,142.9,135.7,134.3$, $134.2,134.0,131.9,131.7,129.0,128.7,128.3,127.0,126.3,123.2,113.6,55.2$; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+} 369.1121$, found 369.1120.

2-([1,1'-Biphenyl]-4-yl)-3-benzoylnaphthalene-1,4-dione (3g): Obtained as a yellow solid ($77.8 \mathrm{mg}, 94 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.1, 184.2, 183.8, 144.4, 143.7, 142.3, 140.0, 135.8, 134.4, 134.3, 134.1, 131.9, 131.6, 130.3, 129.8, 129.1, 128.8, 128.8, 127.7, 127.1, 127.1, 126.7, 126.4; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+415.1329$, found 415.1327.

Obtained as a yellow solid ($57.7 \mathrm{mg}, 81 \%$ yield), eluting with 15% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}$, $1 \mathrm{H}), 7.82-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.98(\mathrm{t}, J=8.4 \mathrm{~Hz}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9,184.0,183.6,163.3$ (d, $\left.J=249.2 \mathrm{~Hz}, 1 \mathrm{C}\right)$, $143.9,143.5,135.5,134.5,134.4,134.2,131.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{C})$, 131.7, 131.5, $129.0,128.8,127.0,126.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}), 126.4,115.3(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR (400 MHz, CDCl_{3}) $\delta-110.3$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+$ $H]+357.0922$, found 357.0920 .

2-Benzoyl-3-(4-(trifluoromethyl)phenyl)naphthalene-1,4-dio ne ($\mathbf{3 i}$): Obtained as a yellow solid ($64.3 \mathrm{mg}, 79 \%$ yield), eluting with $15 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.15$ (m, 1H), 7.77-7.87 (m, 4H), 7.51-7.55 (m, 3H), 7.37-7.41 (m, 4H); ${ }^{13}$ C NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,183.6,183.5,144.6,143.3,135.5,134.6,134.4$ (q, $J=3.3,4.5$ $\mathrm{Hz}, 1 \mathrm{C}), 131.8,131.6,131.45,131.3$ (q, $J=32.4,64.9 \mathrm{~Hz}, 1 \mathrm{C}), 130.1,129.0,128.9$, 127.1, 126.5, 125.0 (q, $J=3.6,7.3 \mathrm{~Hz}, 1 \mathrm{C}), 124.3$ (q, $J=167.6,270.9 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.0$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+$ $H]+407.0890$, found 407.0878 .

4-(3-Benzoyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzonitr ile ($\mathbf{3 j}$): Obtained as a yellow solid ($55.2 \mathrm{mg}, 76 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16$ (m, 1H), 7.85-7.87(m, 2H), 7.75-7.77 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.37$

- 7.41 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 192.2, 183.4, 183.3, 144.8, 142.8, $135.6,135.4,134.8,134.7,134.6,131.7,131.5,131.5,130.5,129.0,128.9,127.2$, 126.6, 118.1, 113.3; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+} 364.0968$, found 364.0967 .

Methyl
4-(3-benzoyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzoate (3k): Obtained as a yellow solid ($59.4 \mathrm{mg}, 75 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.74(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.53(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5$, 183.7, 183.6, 166.3, 144.4, 143.8, 135.6, 135.5, 134.6, 134.5, 134.3, 131.7, 131.6, 130.9, 129.8, 129.2, 129.0, 128.8, 127.1, 126.6, 52.2; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]{ }^{+}$397.1071, found 397.1072.

2-Benzoyl-3-(3-fluorophenyl)naphthalene-1,4-dione (3I): Obtained as a yellow solid ($52.7 \mathrm{mg}, 74 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H})$, $7.83-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,183.7,183.6,162.0(\mathrm{~d}, J=246.0 \mathrm{~Hz}, 1 \mathrm{C}), 144.3$, 143.3, 135.6, 134.6, 134.4, 134.3, 132.8 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{C}$), 131.7, 131.5, 129.8 (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{C}), 129.0,128.8,127.1,126.5,125.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{C}), 117.0(\mathrm{~d}, J=22.9$
$\mathrm{Hz}, 1 \mathrm{C}), 116.7(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.4$; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]+357.0922$, found 357.0923.

2-Benzoyl-3-(o-tolyl)naphthalene-1,4-dione (3m): Obtained as a yellow solid ($54.2 \mathrm{mg}, 77 \%$ yield), eluting with $10 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.25(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-$ 7.19 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.4,183.9,183.6,146.5,145.1,136.3,136.0$, $134.5,134.3,134.0,131.9,131.6,130.8,130.0,129.4,128.8,128.6,127.1,126.5$, 125.4, 20.3; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+} 353.1172$, found 353.1170 .

2-Benzoyl-3-(2-fluorophenyl)naphthalene-1,4-dione
Obtained as a yellow solid ($51.3 \mathrm{mg}, 72 \%$ yield), eluting with 15% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.17(\mathrm{~m}$, 1H), $7.79-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), $7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.1, 183.3, 182.4, $159.4(\mathrm{~d}$, $J=247.1 \mathrm{~Hz}, 1 \mathrm{C}), 145.3,141.4,135.3,134.6,134.3$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{C}), 131.8$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{C}), 131.7,131.5,131.0,130.9,128.9,128.7,127.1,126.6,124.0(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{C}), 119.3$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{C}), 115.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-110.3$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]{ }^{+} 357.0922$, found 357.0925 .

2-Benzoyl-3-(2,6-dichlorophenyl)naphthalene-1,4-dione (30): Obtained as a yellow solid ($52.0 \mathrm{mg}, 64 \%$ yield), eluting with 15% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.19(\mathrm{~m}$, $1 \mathrm{H}), 7.86-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.2, 183.5, 182.0, 145.8, 142.6, 135.2, 134.6, 134.5, 134.4, 134.2, 131.7, 131.6, 130.9, 130.1, 129.3, 128.4, 127.7, 127.2, 126.7; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+}$407.0236, found 407.0237.

2-Benzoyl-3-(3,5-difluorophenyl)naphthalene-1,4-dione (3p): Obtained as a yellow solid ($47.9 \mathrm{mg}, 65 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39-7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.76(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.2,183.4,183.3,162.4(\mathrm{~d}, J=248.6$ $\mathrm{Hz}, 1 \mathrm{C}), 162.3$ (d, $J=248.8 \mathrm{~Hz}, 1 \mathrm{C}), 144.7,142.3,135.5,134.7,134.6,134.5,133.7$ (t, $J=10.1 \mathrm{~Hz}, 1 \mathrm{C}), 131.6,131.5,129.0,128.9,127.2,126.6,113.2$ (d, $J=19.1 \mathrm{~Hz}$, 1C), 113.1 (d, $J=19.2 \mathrm{~Hz}, 1 \mathrm{C}), 105.1(\mathrm{t}, J=24.9 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-108.8$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]+375.0827$, found 375.0824 .

3'-Benzoyl-[1,2'-binaphthalene]-1',4'-dione (3q): Obtained as a yellow solid ($39.6 \mathrm{mg}, 51 \%$ yield), eluting with 20\% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.20-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.76$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.43(\mathrm{~m}$, 7 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,183.9,183.7,146.0,145.7,134.5,134.4$, $133.9,133.1,132.0,131.8,131.2,130.0,129.1,128.9,128.4,127.2,126.6,126.4$, 126.1, 125.7, 124.7; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+389.1172$, found 389.1175.

3-Benzoyl-[2,2'-binaphthalene]-1,4-dione (3r): Obtained as a yellow solid ($60.5 \mathrm{mg}, 78 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.87(\mathrm{~m}$, 8H), $7.41-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.0$, 184.4, 183.8, 144.6, 144.1, 135.7, 134.5, 134.3, 134.1, 133.4, 132.5, 131.7, 131.6, 130.2, 129.0, 128.7, 128.6, 128.5, 127.7, 127.6, 127.2, 127.1, 126.6, 126.5, 126.4; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$389.1172, found 389.1171.

2-(4-Methylbenzoyl)-3-phenylnaphthalene-1,4-dione (4a): Obtained as a yellow solid ($65.5 \mathrm{mg}, 93 \%$ yield), eluting with $15 \% \mathrm{EtOAc}$ in PE (elution
gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 1 \mathrm{H})$, 7.79-7.85 (m, 2H), 7.67-7.69 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.16(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,184.2,183.8$, $145.2,144.4,144.0,134.4,134.2,133.4,131.9,131.6,131.0,129.7,129.5,129.4$, 129.2, 128.0, 127.0, 126.4, 21.8; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 353.1172 , found 353.1174 .

2-(4-(Tert-butyl)benzoyl)-3-phenylnaphthalene-1,4-dione
(4b): Obtained as a yellow solid ($70.1 \mathrm{mg}, 89 \%$ yield), eluting with 15% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}$, 1H), $7.79-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.26-7.28 (m, 5H), 1.28 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.5, 184.3, $183.9,157.9,144.5,144.1,134.4,134.2,133.3,131.9,131.6,131.0,129.8,129.5$, 129.0, 128.0, 127.0, 126.4, 125.7, 35.2, 30.9; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+}$395.1642, found 395.1643.

2-(4-Methoxybenzoyl)-3-phenylnaphthalene-1,4-dione
Obtained as a yellow solid ($64.0 \mathrm{mg}, 87 \%$ yield), eluting with 12% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.13(\mathrm{~m}$, 1H), $7.79-7.83$ (m, 2H), $7.74-7.76$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (s, 5H), 6.80-6.82 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.2,184.2,183.8,164.2$, $144.2,144.0,134.3,134.2,131.8,131.6,131.5,131.1,129.7,129.5,128.9,127.9$,
126.9, 126.3, 113.9, 55.4; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$ 369.1121, found 369.1122 .

2-([1,1'-Biphenyl]-4-carbonyl)-3-phenylnaphthalene-1,4-dione (4d):
Obtained as a yellow solid ($77.0 \mathrm{mg}, 93 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.80-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.60(\mathrm{t}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.27-$ $7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5,184.2,183.9,146.7,144.7,143.9$, $139.5,134.5,134.4,134.3,131.9,131.6,131.0,129.8,129.6,129.0,128.9,128.4$, 128.1, 127.4, 127.2, 127.1, 126.4; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ ${ }^{+} 415.1329$, found 415.1328 .

2-Phenyl-3-(4-vinylbenzoyl)naphthalene-1,4-dione (4e): Obtained as a yellow solid ($64.1 \mathrm{mg}, 88 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.86(\mathrm{~m}$, $2 \mathrm{H}), 7.73-7.75$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.28(\mathrm{~m}$, $5 \mathrm{H}), 6.64-6.71(\mathrm{q}, J=10.8,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.84(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-$ $5.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,184.2,183.8,144.6$, $143.9,143.0,135.8,135.0,134.4,134.3,131.9,131.7,131.0,129.8,129.6,129.5$, 128.1, 127.1, 126.5, 117.4; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 365.1172, found 365.1170 .

2-(4-Fluorobenzoyl)-3-phenylnaphthalene-1,4-dione (4f): Obtained as a yellow solid ($59.1 \mathrm{mg}, 83 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H})$, $7.78-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.00-7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.3,184.1,183.7,166.1(\mathrm{~d}, J=255.4 \mathrm{~Hz}, 1 \mathrm{C}), 144.7,143.5$, $134.5,134.3,132.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 131.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{C}), 131.7,131.6,130.9$, $129.72,129.71,128.1,127.1,126.4,116.0(\mathrm{~d}, J=22.2 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-102.8$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]{ }^{+} 357.0922$, found 357.0920 .

2-(4-Chlorobenzoyl)-3-phenylnaphthalene-1,4-dione (4g): Obtained as a yellow solid ($62.5 \mathrm{mg}, 84 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient) $;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H})$, $7.81-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.8,184.0,183.7,144.8,143.3,140.6,134.5,134.4,134.1$, 131.8, 131.5, 130.8, 130.3, 129.8, 129.7, 129.1, 128.1, 127.1, 126.4; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 373.0626$, found 373.0625 .

2-(4-Bromobenzoyl)-3-phenylnaphthalene-1,4-dione (4h): Obtained as a yellow solid ($69.9 \mathrm{mg}, 84 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 1 \mathrm{H})$, $7.80-7.86$ (m, 2H), $7.62-7.64$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48-7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.24-7.30 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.0, 184.0, 183.7, 144.8, 143.3, $134.5,134.5,134.4,132.1,131.8,131.5,130.8,130.4,129.8,129.7,129.5,128.1$, 127.1, 126.4; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]+417.0121$, found 417.0125.

2-(4-Iodobenzoyl)-3-phenylnaphthalene-1,4-dione (4i): Obtained as a yellow solid ($75.9 \mathrm{mg}, 82 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.85(\mathrm{~m}$, $2 \mathrm{H}), 7.71-7.73$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}$, 5 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,184.0,183.7,144.8,143.2,138.1,135.0$, $134.5,134.3,131.8,131.5,130.7,130.2,129.8,129.7,128.1,127.1,126.4,102.6 ;$ HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{IO}_{3}[\mathrm{M}+\mathrm{H}]+464.9982$, found 464.9987 .

2-Phenyl-3-(4-(trifluoromethyl)benzoyl)naphthalene-1,4-dione (4j): Obtained as a yellow solid ($63.3 \mathrm{mg}, 78 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, $1 \mathrm{H}), 7.82-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.1,183.9,183.7,145.1,143.1,138.3,134.9(\mathrm{q}, J=$ $32.4,65.1 \mathrm{~Hz}, 1 \mathrm{C}), 134.6,134.4,131.8,131.5,130.6,129.9,129.7,129.2,128.2$, $127.2,126.5,125.8(\mathrm{q}, J=3.7,7.4 \mathrm{~Hz}, 1 \mathrm{C}), 123.3(\mathrm{q}, J=271.3 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.3 ;$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 407.0890, found 407.0893.

4-(1,4-Dioxo-3-phenyl-1,4-dihydronaphthalene-2-carbonyl)benzonit rile (4k): Obtained as a yellow solid $(53.0 \mathrm{mg}, 73 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.13$ $-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.21-7.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,183.7,183.6$, $145.3,142.7,138.5,134.7,134.5,132.5,131.8,131.5,130.5,130.0,129.7,129.2$, $128.2,127.2,126.5,117.6,117.0$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ +364.0968 , found 364.0971 .

Methyl
4-(1,4-dioxo-3-phenyl-1,4-dihydronaphthalene-2-carbonyl)benzoate (41): Obtained as a yellow solid ($60.2 \mathrm{mg}, 76 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.94(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.52(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5$, 183.7, 183.5, 166.3, 144.4, 143.7, 135.5, 135.4, 134.6, 134.4, 134.3, 131.7, 131.5, 130.9, 129.8, 129.1, 129.0, 128.8, 127.1, 126.5, 52.2; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]{ }^{+}$397.1071, found 397.1074.

Ethyl
4-(1,4-dioxo-3-phenyl-1,4-dihydronaphthalene-2-carbonyl)benzoate (4m): Obtained as a yellow solid ($63.1 \mathrm{mg}, 77 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.09(\mathrm{~m}, 1 \mathrm{H})$, $7.93-7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.27-4.32(\mathrm{q}$, $J=6.8,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.6, 184.0, 183.7, 165.4, 144.9, 143.4, 138.7, 134.9, 134.6, 134.4, 131.9, 131.6, 130.7, 129.8, 129.8, 128.8, 128.1, 127.1, 126.5, 61.5, 14.2; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+411.1227$, found 411.1225 .

2-(4-Nitrobenzoyl)-3-phenylnaphthalene-1,4-dione ($\mathbf{4 n}$): Obtained as a yellow solid ($54.4 \mathrm{mg}, 71 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.19(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.92(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.29 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6, 183.7, 183.5, 150.5, 145.3, $142.6,139.9,134.7,134.5,131.8,131.5,130.5,130.1,129.8,129.8,128.3,127.2$, 126.5, 123.9; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]+384.0867$, found 384.0868.
 yl)boronic acid (4o): Obtained as a yellow solid ($66.5 \mathrm{mg}, 87 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23$ (m, $1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-$ $7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 193.0,184.2,183.8,144.7,143.9,135.8,134.4,134.3,134.0$, 131.9, 131.6, 131.0, 129.8, 129.6, 129.0, 128.7, 128.0, 127.1, 126.4; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{BO}_{5}[\mathrm{M}+\mathrm{H}]{ }^{+} 383.1085$, found 383.1086.

2-(3-Methylbenzoyl)-3-phenylnaphthalene-1,4-dione
Obtained as a yellow solid ($66.2 \mathrm{mg}, 94 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.14(\mathrm{~m}$, $1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.31(\mathrm{~m}$, 7 H), $2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 193.1, 184.2, 183.8, 144.5, 144.0, $138.5,135.7,134.9,134.4,134.2,131.8,131.6,131.0,129.7,129.5,129.3,128.5$, 128.0, 127.0, 126.5, 126.4, 21.2; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 353.1172, found 353.1174.

2-(3-Fluorobenzoyl)-3-phenylnaphthalene-1,4-dione
Obtained as a yellow solid ($56.2 \mathrm{mg}, 79 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, $1 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.47(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.21(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,184.0,183.6,162.7(\mathrm{~d}, J=247.4 \mathrm{~Hz}, 1 \mathrm{C}), 144.9,143.3,137.7$ ($\mathrm{d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{C}), 134.5,134.4,131.8,131.5,130.7,130.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{C}), 129.8,129.7,128.1$, 127.1, 126.4, 125.0 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 121.2$ (d, $J=21.5 \mathrm{~Hz}, 1 \mathrm{C}), 115.3$ (d, $J=22.5$ $\mathrm{Hz}, 1 \mathrm{C}$); ${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.3$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]+357.0922$, found 357.0925 .

2-(3-Chlorobenzoyl)-3-phenylnaphthalene-1,4-dione
(4r):
Obtained as a yellow solid ($60.3 \mathrm{mg}, 81 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, $1 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.46(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,184.0$, 183.6, 144.9, 143.1, 137.2, 135.0, 134.5, 134.4, 133.9, 131.8, 131.5, 130.7, 130.0, 129.8, 129.7, 128.7, 128.1, 127.2, 127.1, 126.5; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 373.0626$, found 373.0628 .

2-Phenyl-3-(3-(trifluoromethyl)benzoyl)naphthalene-1,4-dione (4s): Obtained as a yellow solid ($56.8 \mathrm{mg}, 70 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.73$ (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.7,183.9,183.6,145.1,142.8,136.1,134.6,134.4,132.0,131.5(\mathrm{q}$, $J=26.0,36.0 \mathrm{~Hz}, 1 \mathrm{C}), 130.7,130.3(\mathrm{q}, J=3.8,7.3 \mathrm{~Hz}, 1 \mathrm{C}), 129.9,129.7,129.4$, 128.7 (d, $J=168.4 \mathrm{~Hz}, 1 \mathrm{C}), 128.2,127.2,126.5,125.7$ (q, $J=3.5,7.2 \mathrm{~Hz}, 1 \mathrm{C}), 123.4$ (q, $J=160.2,271.2 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.9$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]+407.0890$, found 407.0893.

2-(2-Methylbenzoyl)-3-phenylnaphthalene-1,4-dione
Obtained as a yellow solid ($59.1 \mathrm{mg}, 84 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.06-8.08(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.02-$ 7.07 (m, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.5, 184.5, 184.0, 145.1, $143.9,140.4,135.1,134.4,134.2,132.7,132.1,131.8,131.6,131.4,131.1,129.5$, 129.4, 127.9, 127.0, 126.4, 125.6, 21.5; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}$ $+\mathrm{H}]{ }^{+} 353.1172$, found 353.1170 .

2-(2,4-Dimethylbenzoyl)-3-phenylnaphthalene-1,4-dione (4u):
Obtained as a yellow solid ($65.9 \mathrm{mg}, 90 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, 1H), $7.79-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~s}$, $1 \mathrm{H}), 6.90-6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.0,184.6,184.1,145.2,143.7,143.7,140.6,134.3,134.2,133.1,132.4$, $132.0,131.9,131.6,131.2,129.6,129.3,127.9,126.9,126.4,126.3,21.6,21.5$; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 367.1329$, found 367.1327.

2-(2,5-Dimethylbenzoyl)-3-phenylnaphthalene-1,4-dione (4v):
Obtained as a yellow solid ($63.7 \mathrm{mg}, 87 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.17$ (m, 1H), $7.82-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.12(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.6, 184.6, 184.1, 145.2, 143.8, 137.3, 135.1, 135.0, 134.3, 134.2, $133.6,132.0,131.9,131.8,131.7,131.2,129.5,129.4,127.9,127.0,126.5,21.0,20.8 . ;$ HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+367.1329$, found 367.1327.

2-(3,5-Dimethylbenzoyl)-3-phenylnaphthalene-1,4-dione (4w):
Obtained as a yellow solid ($70.3 \mathrm{mg}, 96 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, 1H), $7.79-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 193.3, 184.3, 183.9, 144.4, 144.1, 138.4, 135.89, $135.85,134.3,134.2,131.9,131.7,131.1,129.7,129.5,128.0,127.0,126.8,126.4$, 21.1; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 367.1329$, found 367.1328 .

2-(3,5-Difluorobenzoyl)-3-phenylnaphthalene-1,4-dione
Obtained as a yellow solid ($53.1 \mathrm{mg}, 71 \%$ yield), eluting with 20% EtOAc in PE
(elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, $1 \mathrm{H}), 7.82-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 7 \mathrm{H}), 6.91-6.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.6,183.8,183.5,163.0(\mathrm{~d}, J=250.4 \mathrm{~Hz}, 1 \mathrm{C}), 162.8(\mathrm{~d}, J=250.4$ $\mathrm{Hz}, 1 \mathrm{C}), 145.2,142.6,138.5(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{C}), 134.7,134.4,131.8,131.5,130.6$, $130.0,129.7,128.2,127.2,126.5,111.9(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{C}), 111.7(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{C})$, $109.3(\mathrm{t}, J=25.4 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.4$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]+375.0827$, found 375.0828 .

2-(3,4-Difluorobenzoyl)-3-phenylnaphthalene-1,4-dione (4y): Obtained as a yellow solid ($53.1 \mathrm{mg}, 71 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}$, $1 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.64(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.31(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.16(\mathrm{q}, J=8.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $190.5,183.8,183.6,154.1(\mathrm{dd}, J=12.9,257.5 \mathrm{~Hz}, 1 \mathrm{C}), 150.4(\mathrm{dd}, J=13.0,250.6 \mathrm{~Hz}$, 1C), $145.0,142.8,134.6,134.4,132.8(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{C}), 131.8,131.5,130.7,129.9$, $129.7,128.2,127.1,126.5,126.3(\mathrm{dd}, J=3.5,7.7 \mathrm{~Hz}, 1 \mathrm{C}), 117.9(\mathrm{dd}, J=1.6,18.0 \mathrm{~Hz}$, 1C), $117.7(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{C}) ;{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-127.3(\mathrm{~d}, J=22.0 \mathrm{~Hz}$, 1 F), -135.3 (d, $J=22.1 \mathrm{~Hz}, 1 \mathrm{~F}$); HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]$ ${ }^{+} 375.0827$, found 375.0826 .

2-(Bicyclo[4.2.0]octa-1,3,5-triene-3-carbonyl)-3-phenylnaphthalene -1,4-dione ($\mathbf{4 z}$): Obtained as a yellow solid ($64.1 \mathrm{mg}, 88 \%$ yield), eluting with 20%

EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H})$, 8.12-8.14 (m, 1H), 7.79-7.84 (m, 2H), 7.66-7.68 (d, J=7.6 Hz, 1H), $7.49(\mathrm{~s}, 1 \mathrm{H})$, 7.27-7.31 (m, 5H), 7.02-7.04 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (s, 4H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.1,184.3,183.9,153.5,146.3,144.4,135.0,134.3,134.2,131.9,131.6$, 131.1, 129.7, 129.5, 129.0, 128.0, 127.0, 126.4, 122.9, 122.7, 30.0, 29.3; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+365.1172$, found 365.1173 .

2-Phenyl-3-(thiophene-2-carbonyl)naphthalene-1,4-dione (4aa): Obtained as a yellow solid ($59.9 \mathrm{mg}, 87 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.61(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.47(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 1H), $7.29-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.97-6.99(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.5$, $184.2,183.2,144.5,143.2,142.9,135.6,134.5,134.4,134.3,131.8,131.6,130.9$, 129.9, 129.7, 128.2, 128.1, 127.0, 126.5; HRMS (ESI-TOF) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]+345.0580$, found 345.0578 .

2-Phenyl-3-(thiophene-3-carbonyl)naphthalene-1,4-dione (4ab):
Obtained as a yellow solid ($61.2 \mathrm{mg}, 89 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.80-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.41(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.20-$ $7.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.2,184.3,183.5,144.1,143.9,141.2$, 134.8, 134.4, 134.3, 131.8, 131.6, 131.0, 129.8, 129.7, 128.1, 127.0, 126.8, 126.7, 126.4; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+345.0580$, found 345.0581 .

2-(1-Naphthoyl)-3-phenylnaphthalene-1,4-dione
(4ac):
Obtained as a yellow solid ($63.6 \mathrm{mg}, 82 \%$ yield), eluting with 20% EtOAc in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98-9.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ - $8.23(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}$, $4 \mathrm{H}), 7.59-7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.36(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.29$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.19$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.5,184.5,184.1,145.0,144.1,134.9,134.4,134.3,133.8,132.4,131.9$, 131.7, 131.1, 130.4, 129.6, 129.3, 128.8, 128.3, 128.0, 127.0, 126.7, 126.5, 125.9, 124.1; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$ 389.1172, found 389.1173.

2-(2-Naphthoyl)-3-phenylnaphthalene-1,4-dione (4ad): Obtained as a yellow solid ($69.8 \mathrm{mg}, 90 \%$ yield), eluting with $20 \% \mathrm{EtOAc}$ in PE (elution gradient); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.07(\mathrm{~m}, 1 \mathrm{H})$, $7.70-7.81(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-7.43 (m, 2H), 7.13-7.16(m, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9,184.2$, 183.9, 144.7, 143.9, 135.9, 134.4, 134.3, 133.2, 132.3, 131.9, 131.8, 131.6, 131.0, 129.7, 129.6, 129.0, 128.8, 128.0, 127.8, 127.0, 126.9, 126.4, 123.7; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+}$389.1172, found 389.1170.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3a

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3b

F321

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3b

$\stackrel{\bar{m}}{\stackrel{\rightharpoonup}{1}}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3 c

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3d

$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3 e

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 g}$

F302

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3 h

F309

F309

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3 i

[^0]
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3 k

F407

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR of 31

F322

F322

$--112.37$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3 m

$\underbrace{\text { Wh }}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR of $\mathbf{3 n}$

F284

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 10 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

F284

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3 o

$\begin{array}{lllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR of $\mathbf{3 p}$

F416 Nले

[^1]
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 r}$

F287

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 a

F364

$\stackrel{\text { N}}{\sim}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4b

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 c

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 d

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 e

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR of $\mathbf{4 f}$

F419-G

		$\begin{aligned} & \infty \dot{\sim} \\ & \dot{G} \\ & \dot{G} \end{aligned}$	

F419-G

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 h}$

F366

$\stackrel{\sim}{\circ} \stackrel{\sim}{\circ}$	
$\underline{\underline{O}} \dot{\mathscr{O}}$	
$\bigcirc \rightarrow$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 i

F326

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{4 j}$

F363

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 k

F414

스웅

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 41

F406

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 m

F415

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $4 n$
F4030 ひ N

-
-

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 40

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 p

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of $4 q$

F369

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

$10 \begin{array}{lllllllllllllllllll} \\ 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -120 & -140 & -160 & -180 & -200 \\ \mathrm{fl}(\mathrm{ppm}) & -120 & & & & \end{array}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 r

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 4 s

[^2]
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 t

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 u

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 v}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4 w

F410

$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR of 4 x

F409

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR of $4 y$

F474-G-2

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 z}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4aa

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4ab

$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4ac

F411
す。

F411
$\stackrel{\infty}{\infty}$

$\begin{array}{llllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 4ad

[^0]: F289

[^1]: | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -120 | -140 | -160 | -180 | | -200 |
 | :--- |
 | $\mathrm{fl}(\mathrm{ppm})$ | | | | | | | | | | | | | | | | | |

[^2]: | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | $\mathrm{fl}(\mathrm{ppm})$ | -120 | -140 | -160 | -180 | -200 | | | | | | | |

