A Low-Coordinate Iron Organoazide Complex

Andres Gonzalez,^a Serhiy Demeshko,^b Franc Meyer,^b C. Gunnar Werncke^{a,*}

^aPhilipps-University Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany. ^bInstitute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany

Content

General considerations	1
Spectra of Compounds 1-3	3
X-Ray diffraction analysis and molecular structures	13
Quantum chemical calculations	19
References	29

General considerations

All manipulations were carried out under inert atmosphere. Compounds that required constant and precise handling were stored in a SYSTEMTECHNIK GS glovebox-system GS043818 under inert atmosphere. Solvents were dried by continuous distillation over sodium metal for several days, degassed via three freeze-pump cycles, and stored over 4 Å molecular sieves. Spectral analysis for ¹H NMR were conducted using automatic BRUKER AV II 300 MHz Spectrometers. The residual signals for deuterated solvents were used to calibrate the measured spectra. All measurements were carried out between 290 and 300 K. The internal standard values for ¹H NMR correspond to tetramethylsilane (TMS, 0.00 ppm) and the observed shifts are relative to the standard. The fit of the NMR titration curve was performed using bindfit.^[1,2] Elemental analysis measurements were performed by the spectrometry team of the Philipps-University Marburg, Germany, using an ELEMENTAR vario Micro cube in CHN mode. Infrared spectra were recorded with a BRUKER ALPHA FT-IR. Classification of the signals is as follows: w: weak, m: medium, s: strong. The UV/Vis spectra were measured in npentane using an ANALYTIK-JENA SPECORD S 600 spectrometer in the range from 1000 nm up to 250 nm. Solution magnetic susceptibilities were determined by the EVANS method.^[3,4] [Fe(N(SiMe₃)₂)₂]^[5] and *tert*-butylazide^[6] were synthesized following literature procedures. KC₈ was obtained by heating potassium metal with stoichiometric amounts of graphite using a heat gun.

EXPERIMENTAL SECTION

[Fe{N₃^tBu}(N(SiMe₃)₂)₂] (1). [Fe(N(SiMe₃)₂)₂] (100 mg, 0.265 mmol, 1 equiv.) was dissolved in *n*-pentane (1 mL) to give a light green solution. The solution was cooled down to $-30 \,^{\circ}$ C and added to N₃^tBu (26.27 mg, 0.265 mmol, 1 equiv.) resulting in a light-yellow coloration. After 5 minutes at room temperature, the yellowish-green solution was stored at $-30 \,^{\circ}$ C overnight. [Fe{N₃^tBu}(N(SiMe₃)₂)₂], **1**, was obtained as colourless crystalline blocks. Yield: 82 mg (0.172 mmol, 65 %). ¹H-NMR (293 K, 500 MHz, toluene-d₈, ppm) δ : 35.27 (*bs*, 36 H, -Si(CH₃)₃), -10.40 (*bs*, 9H, -NC(CH₃)₃). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2946 (m), 2894 (vw), 2117 (s, azide stretching band), 1465 (vw), 1433 (vw), 1401 (vw), 1374 (w), 1283 (s), 1240 (m), 1197 (m), 960 (vs), 888 (m), 813 (vs), 786 (vs), 749 (s), 706 (m), 665 (s), 633 (m), 611 (m), 586 (m), 555 (w). Elemental analysis gave consistent substantial deviations (approx. 1% too low for N) despite repeated attempts. These values approach that of Fe(N(SiMe₃)₂)₂, yet **1** was substantiated by proton NMR, IR and Mössbauer spectroscopy, and X-Ray diffraction on large crystalline blocks, that were also used for elemental analysis.

[Fe(κ^2 -*N*-N(SiMe₃)SiMe₂CH₂-NH^tBu)(N(SiMe₃)₂)] (2). [Fe(N(SiMe₃)₂)₂] (100 mg, 0.265 mmol, 1 equiv.) was dissolved in *n*-heptane to give a light green solution. The solution was cooled down to -30 °C and added to N₃^tBu (26.27 mg, 0.265 mmol, 1 equiv.) resulting in a light-yellow coloration. The mixture was heated to 60 °C for 20 minutes, which resulted in a colour change to dark brown. The solution was concentrated and stored at -30 °C for several days. [Fe(κ^2 -*N*-N(SiMe₃)SiMe₂CH₂-NH^tBu)(N(SiMe₃)₂)], **2**, was obtained as pale yellow crystalline plates. Yield: 40 mg (0.09 mmol, 34 %). ¹H-NMR (300 K, 300 MHz, C₆D₆, ppm) δ: 72.45 (*bs*, 3 H), 69.81 (*bs*, 3 H), -1.29 (*bs*, 18 H), -7.32 (*bs*, 9 H), -11.53 (*bs*, 9 H). Magnetic susceptibility (500 MHz, 300 K, C₆D₆ + 1% TMS): μ_{eff} = 4.75 μ_B, $\mu_{S.O.}$ (*S* = 2) = 4.89 μ_B. IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2947 (m), 2894 (w), 1477 (vw), 1431 (vw), 1412 (vw), 1392 (vw), 1370 (w), 1242 (s), 1202 (w), 1173 (w), 1037 (vw), 1008 (vs), 885 (m), 875 (m), 814 (vs), 794 (vs), 780 (vs), 749 (s), 696 (m), 667 (s), 633 (m), 626 (m), 610 (m), 503 (w). Elemental analysis: Calcd. (%) for C₁₆H₄₅FeN₃Si₄ (475.76 g mol⁻¹): C: 42.92, H: 10.13, N: 9.39; found: C: 42.52, H: 9.79, N: 9.44.

[({Me₃Si}₂N)Fe{ μ -N^tBu- μ -{N{SiMe₃}₂)Fe(N{SiMe₃}₂)] (3). [Fe(N(SiMe₃)₂)₂] (100 mg, 0.265 mmol, 1 equiv.) was dissolved in *n*-pentane (1 mL) to give a light green solution. The solution was cooled down to -30 °C and added to N₃^tBu (26.3 mg, 0.265 mmol, 1 equiv.) resulting in a light-yellow coloration. KC₈ (42.3 mg, 0.318 mmol, 1.2 equiv.) was added to result in gas evolution and change of colour to dark orange. After 10 minutes at room temperature, the solution was filtered and stored at -30 °C overnight. [({Me₃Si}₂N)Fe{ μ -N^tBu- μ -(N{SiMe₃}₂)Fe(N{SiMe₃}₂)], **3**, was obtained as dark orange blocks. Yield: 33 mg (0.047 mmol, 53 %, based on the formation of one equivalent of K(Fe(NR₂)₃) as the by-product). ¹H-NMR (300 K, 300 MHz, toluene-d₈, ppm) δ : -2.41 (*bs*), -6.71 (*bs*). IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2945 (m), 2890 (w), 1241 (s), 1213 (m), 982 (vs), 888 (s), 833 (vs), 782 (s), 749 (s), 711 (m), 659 (s), 609 (m), 611 (m).

Elemental analysis provided consistently deviating values for carbon and nitrogen, which we attribute to incomplete combustion and silicon carbide formation, as also the side-product $K(Fe(NR_2)_3]$ exhibits similar values as **3**.

Spectra of Compounds 1-3

Compound [Fe{N₃^tBu}(N(SiMe₃)₂)₂], 1

Figure S 1. ¹H NMR spectrum (500 MHz, 293 K, toluene-d₈) of $[Fe{N_3^tBu}(N(SiMe_3)_2)_2]$, **1** (* toluene-d₈, ^ decomposition).

Figure S 2. ¹H NMR spectrum (300 MHz, 300 K, C_6D_6) of the reaction between [Fe(N(SiMe_3)_2)_2] and ^{*t*}BuN₃ after 20 min in neat conditions (* C_6D_6 , + presumed imido species [**A**], ^ decomposition). 3

Figure S 3. ¹H NMR (300 MHz, 300 K, C_6D_6) study of the interaction of [Fe(N(SiMe₃)₂)₂] with various amounts of ^tBuN₃.

Figure S 4. Job plot showing the 1:1 adduct formation of ${}^{t}BuN_{3}$ with $[Fe(N(SiMe_{3})_{2})_{2})]$ to give **1**.

Figure S 5. Dependence of the chemical shift of the N(SiMe₃)₂ signal with ^{*t*}BuN₃ equivalents, red line represents the fit obtained with bindfit ($c_{FeNR2} = 0.075$ M). $K_{eq} = 35$ (±8) M⁻¹ (L-BFGS-B Method).

Figure S 6. ATR IR spectrum of solid [Fe{ N_3 ^tBu}(N(SiMe_3)_2)_2], 1.

Figure S 7. ATR IR spectroscopic study of the reaction between solid $[Fe(N(SiMe_3)_2)_2]$ and tBuN_3 over 10 minutes.

Figure S 8. Close up $(2000 - 2225 \text{ cm}^{-1})$ of the ATR IR spectroscopic study of the reaction between solid [Fe(N(SiMe₃)₂)₂] and ^tBuN₃. The residual signal at t = 10 minutes corresponds to the slight excess of used organic azide.

Figure S 9. Comparison of the temperature-dependent UV/Vis spectroscopic behaviour of **1** (obtained by mixing $Fe(NR_2)_2$ and N_3^tBu) with that of pure $Fe(NR_2)_2$ (shown for 25 °C and 80 °C) in *n*-pentane (* signal caused by lamp change).

Spectra of [Fe($\kappa^2 N$ -N(SiMe₃)SiMe₂CH₂-NH^tBu)(N(SiMe₃)₂)], 2.

Figure S 10. ¹H NMR spectrum (300 MHz, 300 K, benzene-d₆) of [Fe(κ^2 N-N(SiMe₃)SiMe₂CH₂-NH^tBu)(N(SiMe₃)₂)], **2** (* benzene-d₆, ° *n*-heptane, # diethyl ether, ^ decomposition).

Figure S 11. ¹H NMR spectrum (300 MHz, 300 K, benzene-d₆) of crude [Fe(κ^2 N-N(SiMe₃)SiMe₂CH₂-NH^tBu)(N(SiMe₃)₂)], **2**. Comparison with the residual Fe(NR₂)₂ signal indicates 95% conversion.

Figure S 12. ATR IR spectrum of solid [Fe(κ^2 N-N(SiMe₃)SiMe₂CH₂-NH^tBu)(N(SiMe₃)₂)], 2.

Figure S 13. UV-Vis spectrum of $[Fe(\kappa^2N-N(SiMe_3)SiMe_2CH_2-NH'Bu)(N(SiMe_3)_2)]$, **2**, in *n*-pentane.

Figure S 14. Close-up UV-Vis spectrum of $[Fe(\kappa^2N-N(SiMe_3)SiMe_2CH_2-NH^tBu)(N(SiMe_3)_2)]$, **2**, in *n*-pentane in the range of 700–1000 nm.

Spectra of [($\{Me_3Si\}_2N$)Fe $\{\mu$ -N^tBu- μ -(N $\{SiMe_3\}_2$)Fe(N $\{SiMe_3\}_2$)] (3)

Figure S 15. ¹H NMR spectrum (300 MHz, 300 K, toluene-d₈) of $[({Me_3Si}_2N)Fe{\mu-N^tBu-\mu-(N{SiMe_3}_2)Fe(N{SiMe_3}_2)], 3 (* toluene-d_8, residual$ *n*-pentane).

Figure S 16. ATR IR spectrum of solid $[({Me_3Si}_2N)Fe{\mu-N^tBu-\mu-(N{SiMe_3}_2)Fe(N{SiMe_3}_2)], 3.}$

Figure S 17. UV-Vis spectrum of UV-Vis spectrum of $[({Me_3Si}_2N)Fe{\mu-N^tBu-\mu-(N{SiMe_3}_2)Fe(N{SiMe_3}_2)], 3, in tetrahydrofuran.$

Mössbauer spectroscopy

Mössbauer spectra were recorded with a ⁵⁷Co source in a Rh matrix using an alternating constant acceleration Wissel Mössbauer spectrometer operated in transmission mode and equipped with a Janis closed-cycle helium cryostat. Isomer shifts are given relative to iron metal at ambient temperature. Simulation of the experimental data was performed with the Mfit program using Lorentzian line doublets: E. Bill, Max-Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, Germany.

Figure S 18. Mössbauer specrum of solid **2** at 80 K. Parameters for **2**: δ = 0.59 mm s⁻¹, $|\Delta E_Q|$ = 1.13 mm s⁻¹.

Figure S 19. Mössbauer specrum of solid **3** at 80 K. Parameters for **3**: δ = 0.47 mm s⁻¹, $|\Delta E_Q|$ = 1.36 mm s⁻¹.

X-Ray diffraction analysis and molecular structures

Data for **1** (CCDC 2283997), **2** (CCDC 2283999) and **3** (CCDC 2283998) were collected at 100 K on a Bruker Quest D8 diffractometer using a graphite-monochromated Mo-K α radiation and equipped with an *Oxford Instrument Cooler Device*. For the irradiation experiment (CCDC 2284001, pre-irradiation. CCDC 2283996, 1 h. CCDC 2284000, 3 h) a new crystal was irradiated directly on the goniometer with blue light (Kessel PR160, LED, 40 W, 390 nm) with the N₂-flow set at 80 K. Data was obtained at 80 K prior irradiation as well as after 1 h and further 2 h of irradiation (3 h total). Longer irradiation was not possible as even after 3 h, substantial degradation of the diffraction pattern and reflex intensity could be seen.

Figure S 20. Photo of the irradiation setting for 1. Distance between lamp and crystal approximately 15 cm.

The structures were solved using either OLEX SHELXT V2014/1^[7] and refined using least-squares procedures on a F² with the aid of the program SHELXL-2016/6^[8] included in the software package WinGX version 1.63^[9] or by CRYSTALS^[10]. The Atomic Scattering Factors were taken from *International Tables for X-Ray Crystallography*^[11]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using a riding model. The absorption correction was introduced using the MULTISCAN and X-Red programs.^[12] The molecule drawing was performed with the program DIAMOND (Crystal Impact, Bonn, Germany) with 50% probability displacement ellipsoids for non-hydrogen atoms. Depiction of hydrogen atoms is omitted for clarity.

Crystal data and structure refinements for $[Fe{N_3^tBu}(N(SiMe_3)_2)_2]$, 1.

Empirical formula	C ₁₆ H ₄₅ FeN ₅ Si ₄
Formula weight	475.78
Temperature/K	100.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8.7622(2)
b/Å	16.0342(7)
c/Å	20.4887(7)
α/°	90
β/°	101.2450(10)
γ/°	90
Volume/Å ³	2823.29(17)
Z	4
ρ _{calc} g/cm³	1.119
µ/mm ⁻¹	0.714
F(000)	1032.0
Crystal size/mm ³	0.2 × 0.127 × 0.096
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.054 to 59.976
Index ranges	$-10 \le h \le 12, -22 \le k \le 18, -28 \le l \le 23$
Reflections collected	24874
Independent reflections	7466 [R _{int} = 0.0390, R _{sigma} = 0.0494]
Data/restraints/parameters	7466/0/244
Goodness-of-fit on F ²	1.085
Final R indexes [l>=2σ (l)]	R ₁ = 0.0328, wR ₂ = 0.0798
Final R indexes [all data]	R ₁ = 0.0483, wR ₂ = 0.0835
Largest diff. peak/hole / e Å-3	0.47/-0.38

Figure S 21. Molecular structure of $[Fe{N_3^tBu}(N(SiMe_3)_2)_2]$, **1**.

Crystal data and structure refinements for $[Fe(\kappa^2 N-N(SiMe_3)SiMe_2CH_2-$ NH^tBu)(N(SiMe₃)₂)], 2.

Empirical formula	C ₁₆ H ₄₅ FeN ₃ Si ₄
Formula weight	447.76
Temperature/K	100.00
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.3458(4)
b/Å	19.5220(7)
c/Å	15.2414(7)
α/°	90
β/°	106.253(2)
γ/°	90
Volume/Å ³	2669.64(19)
Z	4
ρ _{calc} g/cm ³	1.114
µ/mm ⁻¹	0.749
F(000)	976.0
Crystal size/mm ³	0.253 × 0.247 × 0.183
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.172 to 60.07
Index ranges	$-12 \leq h \leq 12, -27 \leq k \leq 21, -19 \leq l \leq 21$
Reflections collected	18947
Independent reflections	7221 [R _{int} = 0.0441, R _{sigma} = 0.0571]
Data/restraints/parameters	7221/7/250
Goodness-of-fit on F ²	1.131
Final R indexes [I>=2σ (I)]	$R_1 = 0.0424$, $wR_2 = 0.1086$
Final R indexes [all data]	R ₁ = 0.0592, wR ₂ = 0.1139
Largest diff. peak/hole / e Å-3	0.78/-0.78

Figure S 22. Molecular structure of $[Fe(\kappa^2N-N(SiMe_3)SiMe_2CH_2-NH'Bu)(N(SiMe_3)_2)]$, **2**, with the depiction of a disorder of the N3 and C12 Atoms. (ratio 0.76:0.24).

Crystal data and structure refinements for $[({Me_3Si}_2N)Fe(\mu-N^tBu-\mu-(N{SiMe_3}_2))Fe(N{SiMe_3}_2)]$, 3.

Empirical formula	C ₂₂ H ₆₃ Fe ₂ KN ₄ Si ₆
Formula weight	703.10

Temperature/K	100.00
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.2649(4)
b/Å	14.9686(6)
c/Å	27.6440(11)
a/°	90
β/°	93.938(2)
γ/°	90
Volume/Å ³	3824.7(3)
Z	4
ρ _{calc} g/cm ³	1.221
µ/mm ⁻¹	1.073
F(000)	1512.0
Crystal size/mm ³	0.312 × 0.199 × 0.068
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.406 to 53.53
Index ranges	$-11 \le h \le 11, -18 \le k \le 18, -34 \le l \le 35$
Reflections collected	95490
Independent reflections	8137 [R _{int} = 0.0414, R _{sigma} = 0.0185]
Data/restraints/parameters	8137/0/392
Goodness-of-fit on F ²	1.101
Final R indexes [I>=2σ (I)]	$R_1 = 0.0284$, $wR_2 = 0.0632$
Final R indexes [all data]	R ₁ = 0.0329, wR ₂ = 0.0648
Largest diff. peak/hole / e Å-3	0.40/-0.36

Figure S 23. Molecular structure of $[(({Me_3Si}_2N)Fe)(\mu-N^tBu)(\mu-(N{SiMe_3}_2))]$ (**3**, (left) and depiction of the K···H interactions with its surroundings (right).

Crystal data and structure refinements for $[Fe(N_3^tBu)(N(SiMe_3)_2)_2]$, 1, before and after a total of 1h and 3h of irradiation with a blue LED (390 nm).

Identification code	GWX203_pre	GWX203_1h	GWX203_3h
Empirical formula	C ₁₆ H ₄₅ FeN ₅ Si ₄	C ₁₆ H ₄₅ FeN _{4.5} Si ₄	$C_{16}H_{45}FeN_{4.31}Si_4$
Formula weight	475.78	468.77	466.08
Temperature/K	80.00	80.00	80.00

Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2₁/n	P2₁/n	P2₁/n
a/Å	8.7573(5)	8.883(4)	8.8341(17)
b/Å	16.0324(7)	16.016(6)	15.935(3)
c/Å	20.4625(11)	20.510(8)	20.441(4)
α/°	90	90	90
β/°	101.169(2)	100.264(11)	100.299(6)
γ/°	90	90	90
Volume/Å ³	2818.5(3)	2871(2)	2831.2(9)
Z	4	4	4
ρ _{calc} g/cm ³	1.121	1.084	1.093
µ/mm ⁻¹	0.715	0.701	0.710
F(000)	1032.0	1018.0	1013.0
Crystal size/mm ³	0.14 × 0.105 × 0.034	0.14 × 0.105 × 0.034	0.14 × 0.105 × 0.034
Radiation	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)
2O range for data collection/°	4.782 to 51.994	4.738 to 52.098	4.762 to 51.992
Index ranges	-10 ≤ h ≤ 10, -19 ≤ k ≤ 19, -25 ≤ l ≤ 25	-10 ≤ h ≤ 10, -19 ≤ k ≤ 17, -25 ≤ l ≤ 25	-10 ≤ h ≤ 10, -19 ≤ k ≤ 19, -25 ≤ l ≤ 25
Reflections collected	35127 5531 [R _{int} =	21934 5648 [R _{int} =	58649 5558 [R _{int} =
Independent reflections	0.0683, R _{sigma} = 0.0547]	0.1210, $R_{sigma} = 0.1433]$	0.1714, R _{sigma} = 0.0960]
Data/restraints/ parameters	5531/0/244	5648/27/318	5558/33/318
Goodness-of-fit on F ²	1.075	1.029	1.100
Final R indexes [I>=2σ (I)]	$R_1 = 0.0314$, w $R_2 = 0.0673$	R ₁ = 0.0694, wR ₂ = 0.1597	$R_1 = 0.0821,$ w $R_2 = 0.2032$
Final R indexes [all data]	R ₁ = 0.0458, wR ₂ = 0.0698	R ₁ = 0.1289, wR ₂ = 0.1807	R ₁ = 0.1301, wR ₂ = 0.2175
Largest diff. peak/hole / e Å ⁻³	0.33/-0.26	0.80/-0.52	1.07/-0.61

Figure S 24. Molecular structure of Molecular structure of $[Fe{N_3^tBu}(N(SiMe_3)_2)_2]$, **1**, after irradiation (blue LED, 390 nm) of the crystal for a total of 3 h. H atoms are omitted. Depiction of the disorder of one of the $N(SiMe_3)_2$) ligands (ratio 0.8:0.2).

Quantum chemical calculations

The calculations were performed with ORCA v. 5.0.4.^[13–16] The structure optimisation for the neutral, putative imido iron complex [**A**] was performed using the the geometric starting points obtained from **1** and removal of its N₂ unit. Geometry optimisation was performed for the singlet, triplet and quintet state using either the r²scan-c3 method or the PBE, PBE0 and TPSSh functionals with the ZORA-def2-SVP/C basis set (def2-TZVP on Fe). All optimized structures were verified as true minima by the absence ($N^{imag} = 0$) of negative eigenvalues in the harmonic vibrational frequency analysis. Single point calculations were performed for the PBE,^[17] PBE0,^[18]and TPSSh^[19,20] functionals, where scalar relativistic effects were modeled under the Zeroth Order Regular Approximation (ZORA)^[21] and using the ZORA-def2-TZVPP^[22]basis set. The D4^[23] dispersion correction was used. The RI approximation with the related auxiliary basis sets (*SARC/J*)^[24] were used to reduce computation time of calculations using the GGA functionals.

For CASSCF/NEVPT2 calculations on [**A**], the geometry obtained from the quintet and the triplet state of the TPSSh calculations was used. In view of geometries of the few known examples of trigonal alkyl (calculated) and aryl imido iron complexes bearing a (silyl)amide ligand set in the literature, which estimate Fe–N bond lengths between 1.7 and 1.8 Å with near-linear Fe–N–R angle,^[25,26] the quintet geometry is deemed the most probable and thus focused on in the main manuscript.

The CASSCF/NEVPT2 calculations were then carried out at the triple- ζ level of theory (ZORA-def2-TZVPP, SARC/J, *autoaux, RIJCOSX*), with the active space of CAS[8,7].^[27] The active space was chosen as to include d-orbitals and the two imidonitrogen centered π -orbitals. The electronic structure analysis relates to calculations without state averaging, whereas state-averaging was applied to determine the energies of vertically excited states.

Orbitals were depicted with the help of Chemcraft with a contour value of 0.3.

Multiplicity	Energy (hartree)	Fe– N _{imido}	Fe–N _{imido} –C	
	PBE			
singlet	-3240.0803442115	1.58	178.3	
singlet (unrestricted)	-3240.0796608941	1.59	172.4	
triplet	-3240.0881396815	1.63	147.0	
quintet	-3240.0698809797	1.69	170.5	
	PBE0			
singlet	-3240.2503050383	1.56	177.6	
singlet (unrestricted)	-3240.2434702973	1.60	157.4	
triplet	-3240.2792474365	1.67	140.6	
quintet	-3240.2834031718	1.73	171.5	
	TPSSh			
singlet	-3242.1745189116	1.57	178.5	
singlet (unrestricted)	-3242.1718165222	1.59	165.9	
triplet	-3242.1914473651	1.63	145.6	
quintet	-3242.1825143341	1.70	176.3	
r ² SCAN-c3				
singlet	-3222.68952576602	1.59	176.6	
singlet (unrestricted)	-3222.69608953512	1.62	152.1	
triplet	-3222.712129	1.65	144.4	
quintet	-3222.708579	1.72	154.4	

Table S 1. Energy of the obtained from single point calculations using either the PBE, PBE0, TPSSh functional or the r²scan-c3 method. Computed M–N_{imido} bond length (Å) and M–N_{imido}– Mes bond angles (°) are given.

		Mulliken		Löwdin	
Multiplicity	Atom	Atomic charge Spin density		Atomic charge	Spin density
	-		PBE		
	Fe	0.503844	1.929373	-0.206255	1.833271
triplet	N imide	-0.258658	-0.046745	0.134891	0.005477
tiplet	N _{amide}	-0.301222	-0.021578	-0.044363	0.020528
	N _{amide}	-0.392384	0.031886	-0.048228	0.058557
	Fe	0.568701	3.296775	-0.071062	3.120789
quintot	N _{imide}	0.301944	0.234385	0.114177	0.248311
quinter	N _{amide}	-0.374419	0.098226	-0.056847	0.142654
	N _{amide}	-0.333840	0.178566	-0.053936	0.194024
			PBE0		
	Fe	0.709001	2.812369	-0.073695	2.635825
triplot	N _{imide}	-0.265649	-0.838980	0.158879	-0.624407
triplet	N amide	-0.345439	-0.024477	-0.078244	0.015431
	N amide	-0.465358	-0.002275	-0.079903	0.029310
	Fe	0.753911	4.000840	0.099929	3.811436
quintot	N _{imide}	-0.288361	-0.385701	0.137345	-0.245764
quinter	N _{amide}	-0.445947	0.117461	-0.095692	0.140308
	N _{amide}	-0.433055	0.150357	-0.099761	0.164382
			TPSSh		
	Fe	0.683301	2.231559	-0.139495	2.099000
triplet	N _{imide}	-0.359436	-0.298800	0.124715	-0.189414
tiplet	N amide	-0.395371	-0.034668	-0.065044	0.012462
	N _{amide}	0.496728	0.018456	-0.068689	0.048667
	Fe	0.775669	3.587879	0.014760	3.396360
quintot	N _{imide}	-0.370397	0.034324	0.113711	0.093934
quinter	N _{amide}	-0.477486	0.096841	-0.087429	0.139249
	N _{amide}	-0.460483	0.123104	-0.082037	0.156470
			r ² SCAN-c3		
	Fe	0.665722	2.237534	0.818507	2.129435
triplat	N _{imide}	-0.269577	-0.281250	-0.563680	-0.228876
uipiet	N _{amide}	-0.412779	-0.020165	-0.807356	0.019954
	N _{amide}	-0.418883	0.019883	-0.821060	0.059078
	Fe	0.792358	3.636900	0.989999	3.404592
quintot	N imide	-0.294843	0.039638	-0.601647	0.075466
quintet	N _{amide}	-0.488041	0.172965	-0.849279	0.197246
	Namida	-0.334908	0.091821	-0.837959	0.143369

Table S 2. Mulliken/Löwdin charges and spin densities of the triplet and quintet states obtained from single point calculations using either the PBE, PBE0, TPSSh functional or the r²scan-c3 method.

Functional	Spin state	Fe-N _{imide}	Fe-N _{amide}	Fe-N _{amide}
DDE	triplet	2.1001	1.1944	1.1364
FDC	quintet	1.8249	1.0067	1.0391
DREA	triplet	1.7870	1.0962	1.0579
PBEU	quintet	1.5311	0.9507	0.9778
TPSSh	triplet	2.0789	1.1563	1.0952
	quintet	1.7451	0.9778	0.9979
r²scan-3c	triplet	1.9900	1.0372	0.9915
	quintet	1.6356	0.8655	0.8993

Table S 3. Löwdin bond orders of the triplet and quintet states obtained from single point calculations using either the PBE, PBE0, TPSSh functional or the r²scan-c3 method.

Functional	Spin state	Fe-N _{imide}	Fe-N _{amide}	Fe-N _{amide}
DDE	triplet	1.7695	0.8746	0.7427
FDC	quintet	1.6293	0.7398	0.8314
DREA	triplet	1.3805	0.7861	0.6298
PDEV	quintet	1.3269	0.7189	0.7693
TPSSh	triplet	1.6538	0.7780	0.6148
	quintet	1.4757	0.6530	0.6810
r²scan-3c	triplet	1.4916	0.9048	0.8895
	quintet	1.3133	0.8426	0.9545

Table S 4. Mayer bond orders of the triplet and quintet states obtained from single point calculations using either the PBE, PBE0, TPSSh functional or the r²scan-c3 method.

CASSCF calculations

For the CASSCF/NEVPT2 calculations the geometry of the linear quintet and bent triplet state obtained TPSSh functional was chosen (see Table S1). The active space consists of the 5 d-orbitals an the two π -interacting p_N-orbitals. Inclusion of the σ -N_p interaction yields no significant change in spin-state ordering or population of the configurations, but less informative orbital interactions. It was thus excluded.

Quintet Geometry (TPSSh, Fe–N 1.70 Å, Fe–N–⁴Bu 176°)

LOWEST ROOT (ROOT 0, MULT 5) = -3238.177705037 Eh -88115.295 eV

State	Root	Mult.	<i>∆E</i> /a.u.	∆ <i>E</i> /eV	∆ <i>E</i> /cm⁻¹
1:	0	3	0.012932	0.352	2838.3
2:	1	3	0.024263	0.660	5325.1
3:	1	5	0.027924	0.760	6128.7
4:	2	3	0.041749	1.136	9162.8
5:	0	1	0.052986	1.442	11629.1
6:	2	5	0.062974	1.714	13821.1
7:	2	1	0.074096	2.016	16262.1
8:	1	1	0.078962	2.149	17330.2
9:	3	3	0.080129	2.180	17586.3
10:	4	3	0.080708	2.196	17713.4

Figure S 25. NEVPT2 transition energies of **[A]** with regards to the quintet ground state obtained from state-averaged ZORA-def2-TZVPP/CASSCF(8,7) calculations.

Quintet state (root 0, multiplicity 5)

	118	119	120	121	122	123	124
	-0.44974	-0.37147	0.25867	-0.24473	-0.26114	-0.26898	-0.01763
	1.97335	1.54910	1.02530	1.00022	1.00013	0.99971	0.45219
0 Fe s	0.0	0.0	0.0	0.0	0.0	1.9	0.0
0 Fe pz	0.2	1.9	0.0	0.9	0.1	0.2	0.1
0 Fe px	1.4	0.6	0.2	0.6	0.2	0.1	0.1
0 Fe py	1.7	1.1	0.2	0.2	0.1	0.1	0.1
0 Fe dz2	1.4	31.8	6.7	13.3	1.0	10.5	31.9
0 Fe dxz	1.1	4.0	4.9	54.2	5.5	20.2	3.4
0 Fe dyz	5.8	0.3	27.9	15.3	45.2	0.4	0.2
0 Fe dx2y2	8.9	0.0	42.8	2.7	42.4	3.3	0.0
0 Fe dxy	0.9	12.8	4.3	6.2	0.1	59.1	12.6
1 N pz	3.6	18.8	0.4	0.2	0.1	0.4	19.2
1Npx	29.1	5.7	3.8	0.2	0.1	0.5	6.0
1Npy	33.3	13.0	4.6	0.1	0.0	0.2	14.1

Figure S 26. Reduced Löwdin population analysis of active space in CASSCF(8,7) of quintet

Α.

0.67123 [111]: 2211110
0.17975 [96]: 2111111
0.12198 [81]: 2011112
0.01992 [53]: 1121111
0.00321 [21]: 1021112
	<u>, , , , , , , , , , , , , , , , , , , </u>

Figure S 27. Configuration of ground state of of quintet A as obtained by CASSCF(8,7).

Figure S 28. Orbital scheme of the active space from CASSCF(8,7) of quintet A.

Triplet Geometry (TPSSh, Fe–N 1.63, Fe–N–^tBu 145.6°)

LOWEST	ROOT	(ROO	г O,	MULT	3)	=	-323	8.1	7970521	7 Eh	-8811	5.349	eV
STATE	ROOT	MULT	$\Delta E /$	a.u.		ΔE /	/eV	Δ	AE/cm**-	1			
1:	1	3	0.0	13071		0.	.356	2	2868.7				
2:	0	5	0.0	22514		0.	613	4	941.4				
3:	2	3	0.0	26141		0.	.711	5	5737.2				
4:	1	5	0.0	36787		1.	.001	8	3073.8				
5:	0	1	0.0	50521		1.	.375	11	0.88.0				
6:	1	1	0.0	59976		1.	632	13	8163.1				
7:	2	1	0.0	64963		1.	.768	14	257.8				
8:	4	1	0.0	79943		2.	.175	17	545.4				
9:	3	1	0.0	80096		2.	.180	17	579.1				
10:	2	5	0.0	81746		2.	.224	17	941.3				
11:	3	3	0.0	89534		2.	436	19	0650.5				
12:	4	3	0.0	98539		2	.681	21	626.7				

Figure S 29. NEVPT2 transition energies of [**A**] with regards to the triplet ground state obtained from state-averaged ZORA-def2-TZVPP/CASSCF(10,8) calculations.

Triplet state (root 0, multiplicity 3)

	114 -0.39505	115 -0.38122	116 -0.34823	117 -0.59145	118 -0.59506	119 -0.43756
	2.00000	2.00000	2.00000	1.98801	1.98510	1.81294
0 Fe dz2	0.0	0.1	0.1	0.9	8.1	7.6
0 Fe dyz	0.1	0.9	0.1	31.4	14.4	0.9
0 Fe dx2y2	0.0	0.9	0.1	41.1	1.7	14.2
0 Fe dxy	0.4	0.1	0.1	7.1	1.5	19.4
1 N s	0.0	0.2	0.0	0.3	9.4	0.1
1 N px	0.0	1.5	0.0	1.5	12.1	19.0
1 N py	0.2	0.4	0.2	2.5	20.5	27.6
2 N pz	5.9	0.9	0.0	0.4	0.1	0.1
2 N px	1.1	2.0	19.2	1.6	3.5	0.3
2 N py	2.9	8.7	8.9	0.0	0.0	0.0
3 N pz	5.2	5.2	0.5	0.4	0.9	0.0
3 N px	1.6	4.7	14.1	1.9	6.0	0.0
З N ру	1.8	8.3	4.7	0.1	0.4	0.0
	120	121	122	123	124	125
	-0 40197	-0 14827	-0 14444	0 08287	0 13335	0 11450
	1.77537	1.01630	0.99993	0.23155	0.19080	0.00000
0 Fe s	0.0	0.1	0.0	0.0	0.0	
0 Fe dz2	0.2	13.8	53.0	0.4	14.1	0.4
0 Fe dxz	40.4	4.8	0.2	50.4	0.3	0.1
0 Fe dyz	0.0	12.7	29.2	0.0	3.6	0.1
0 Fe dx2y2	0.2	4.3	14.2	0.1	23.7	0.2
0 Fe dxy	1.9	52.4	0.0	2.9	15.1	0.5
1 N pz	44.3	0.3	0.0	32.5	0.2	0.0
1 N px	0.2	0.0	0.0	0.1	15.6	0.0
1 N py	1.1	3.3	0.0	1.3	13.9	0.2
35 H s	0.0	0.0	0.0	0.0	0.0	5.2
Figure S 30. Red	uced Löwdin p	population a	nalysis of a	ctive space i	n CASSCF((10,8) of triplet

Α.

ROOT	0: E=		-3232.6	650269791	Eh
	0.76049	[727]:	22221100	
	0.04733	[700]:	22201120	
	0.04402	[667]:	22111111	
	0.04136	[717]:	22211110	
	0.03360	[634]:	22021102	
	0.02811	[687]:	22121101	
	0.00770	[607]:	22001122	
	0.00410	[589]:	21212110	
	0.00374	[617]:	22011112	
	0.00317	[647]:	22101121	
	0 00310	Г	5531.	21122101	

Figure S 31. Configuration of ground state of of triplet **A** as obtained by CASSCF(10,8).

Figure S 32. Orbital scheme of the active space from CASSCF(8,7) of triplet A.

XYZ-Coordinates of quintet [A] (from TPSSh) used for the CASSCF calculations

Fe	1.168916000	12.033158000	12.538823000
Ν	2.298235000	12.685449000	13.625608000
Ν	-0.047040000	10.682108000	12.985368000
Ν	1.197895000	12.451991000	10.719417000
Si	2.817789000	12.610433000	10.034702000
С	3.542748000	14.312677000	10.423687000
С	3.925831000	11.263374000	10.768352000

С	2.793078000	12.344074000	8.159650000
Si	-0.263115000	12.998224000	9.898109000
С	-0.812981000	11.837994000	8.510238000
С	0.021906000	14.724998000	9.166073000
С	-1.680489000	13.134651000	11.137923000
Si	0.384833000	9.070373000	12.406182000
С	0.511275000	9.024815000	10.524420000
С	-0.896919000	7.770792000	12.911150000
C	2.056516000	8.580679000	13.156118000
Si	-1.008312000	10.970753000	14.434949000
С	-0.300843000	10.054495000	15,935399000
Ĉ	-1.028573000	12.826846000	14.821347000
Ĉ	-2 809242000	10 443072000	14 188449000
č	3 185489000	13 216420000	14 603136000
č	2 911837000	14 726650000	14 786509000
č	2 921401000	12 467199000	15 932176000
C.	4 650737000	12 987923000	14 166813000
й	-0 022333000	11 667702000	7 770181000
н	-0.022000000	12 273/03000	7 987025000
н		10 86302/000	8 9096/1000
н	2 077030000	15 105607000	0.3030 4 1000 0.017020000
ц	2.977939000	14 388266000	10 10011/000
	4.392431000	14.500200000	11 502061000
	2 052017000	14.302204000	11.002901000
	3.955017000 4.056747000	11.310074000	10.402422000
	4.900747000	10.265262000	10.403133000
	3.300727000	10.200202000	12 9/2620000
	3.074211000	15.200043000	15.043030000
	3.301130000	10.140910000	15.540003000
	1.07020000	14.090209000	10.101007000
	1.0090000	12.022123000	10.20300000
п	3.000757000	12.840731000	10.708298000
н	3.090085000	11.392927000	15.801335000
н	0.299768000	15.437652000	9.953586000
н	-0.898261000	15.090088000	8.689099000
н	0.814352000	14.736228000	8.407530000
н	2.422417000	11.340315000	7.915724000
н	3.815396000	12.429099000	7.765725000
н	2.1/1896000	13.075050000	7.628297000
н	-0.336425000	8.965949000	15.801229000
н	-0.870963000	10.295096000	16.843325000
н	0.745047000	10.336313000	16.106444000
н	-0.488296000	9.038234000	10.071965000
Н	1.016011000	8.105461000	10.197947000
Н	1.062832000	9.887857000	10.135957000
Н	-0.022121000	13.264206000	14.839849000
Н	-1.480953000	12.989121000	15.809626000
Н	-1.629286000	13.379347000	14.088742000
Н	-1.858287000	12.173921000	11.634961000
Н	-2.601540000	13.434533000	10.619362000
Н	-1.473658000	13.891752000	11.905859000
Н	4.853402000	11.916361000	14.061570000

Н	5.338464000	13.402643000	14.914491000
Н	4.847631000	13.474518000	13.205495000
Н	-1.017687000	7.679316000	13.997316000
Н	-0.571142000	6.792514000	12.530854000
н	-1.878478000	7.988447000	12.472190000
н	2 846305000	9 289369000	12 874212000
н	2 370187000	7 581493000	12 823645000
н	1 994763000	8 572338000	14 252188000
н	-3 235685000	10 011507000	13 29239/000
ц	-3.20000000	10.311337000	15 052573000
 Ц	2 016722000	0 357278000	14 080032000
11	-2.910722000	9.001210000	14:009032000
XV7	Coordinates of	triplet [A] (from	TPSSh) used for the CASSCE calculations
	1 620729000	0.000000000	0.00000000
	0.9525120000	0.000000000	1 207214000
	-0.000010000	-0.776373000	1.397214000
IN O	-0.901027000	0.590039000	-1.473544000
51	-0.591851000	-0.091710000	-3.073509000
C	1.026275000	0.609842000	-3.758459000
C	-0.511267000	-1.977960000	-3.017383000
С	-1.995122000	0.330357000	-4.275406000
Si	-1.696415000	2.156961000	-1.239815000
С	-3.557524000	1.991942000	-1.530312000
С	-0.971901000	3.462766000	-2.403810000
С	-1.452269000	2.777366000	0.527527000
Si	-1.869558000	-2.186817000	1.024736000
С	-3.111206000	-1.779185000	-0.335138000
С	-2.910391000	-2.728875000	2.514250000
С	-0.767400000	-3.643886000	0.537971000
Si	-0.418538000	-0.286645000	3.050357000
С	0.375881000	-1.726199000	3.993621000
С	0.796434000	1.157241000	3.069652000
С	-1.964698000	0.278943000	3.986175000
С	2.820083000	-0.801524000	-0.144617000
C	3.962313000	0.166538000	-0.526309000
Č	3.114207000	-1.458754000	1.220818000
Ĉ	2 673255000	-1 898462000	-1 213547000
Ĥ	-3 796945000	1 667617000	-2 549093000
н	-4 051182000	2 958392000	-1.358047000
н	-3 987968000	1 262277000	-0.833415000
н	0.007000000	1 670437000	-4 014760000
н	1 3/6830000	0.075182000	-4.662781000
н	1.340000000	0.073102000	-3.010642000
Ц	0 180111000	2 342446000	2 260086000
	0.109111000	-2.342440000	2,002762000
	1 406576000	2.000900000	
П	-1.4900/0000	-2.40/440000 0.640047000	
	3.134190000	0.04091/000	
Н	4.911/02000	-0.3/8462000	
Н	4.06182/000	0.952633000	0.229850000
Н	3.220619000	-0./01/30000	2.004949000
Н	4.045187000	-2.036557000	1.163966000

Н	2.296511000	-2.134204000	1.493094000
Н	0.103998000	3.581686000	-2.221318000
Н	-1.454567000	4.434305000	-2.229517000
Н	-1.108804000	3.209278000	-3.461999000
Н	-2.945350000	-0.101416000	-3.936425000
Н	-1.763807000	-0.104723000	-5.257885000
Н	-2.139447000	1.407790000	-4.418205000
Н	-0.267297000	-2.613441000	4.026318000
Н	0.577167000	-1.423946000	5.030799000
Н	1.330428000	-2.019723000	3.541255000
Н	-3.895182000	-1.123753000	0.066147000
Н	-3.592511000	-2.695395000	-0.703076000
Н	-2.643992000	-1.259561000	-1.176232000
Н	1.685353000	0.958733000	2.462125000
Н	1.112047000	1.338184000	4.107055000
Н	0.333599000	2.077431000	2.695495000
Н	-1.823536000	2.053981000	1.263189000
Н	-2.006906000	3.716741000	0.663697000
Н	-0.394883000	2.976376000	0.741352000
Н	1.883024000	-2.600841000	-0.928899000
Н	3.613192000	-2.456463000	-1.308785000
Н	2.428361000	-1.465380000	-2.187927000
Н	-2.325380000	-2.968868000	3.409214000
Н	-3.454992000	-3.638529000	2.223372000
Н	-3.656950000	-1.971279000	2.781370000
Н	-0.196685000	-3.425727000	-0.371824000
Н	-1.362736000	-4.548467000	0.353591000
Н	-0.051842000	-3.865527000	1.340737000
Н	-2.520592000	1.031444000	3.412436000
Н	-1.663291000	0.739908000	4.937158000
Н	-2.647395000	-0.545678000	4.217209000

References

- [1] http://supramolecular.org.
- [2] Brynn Hibbert, D.; Thordarson, P. Chem. Commun. 2016, 52, 12792–12805.
- [3] Evans, D. F. J. Chem. Soc. 1959, 2003.
- [4] Schubert, E. M. J. Chem. Educ. 1992, 69, 62.
- [5] Andersen, R. A.; Faegri, K.; Green, J. C.; Haaland, A.; Lappert, M. F.; Leung,
- W. P.; Rypdal, K. Inorg. Chem. 1988, 27, 1782–1786.
- [6] Bottaro, J. C.; Penwell, P. E.; Schmitt, R. J. Synth. Commun. **1997**, 27, 1465–1467.
- [7] Sheldrick, G. M. Acta Cryst. A 2015, 71, 3-8.
- [8] Sheldrick, G. M. Acta. Crystallogr. C 2015, 71, 3-8.
- [9] Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838.
- [10] Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. *J. Appl. Crystallogr.* **2003**, *36*, 1487.

[11] Fueß, H., Ed. *International tables for crystallography*, 1. online ed.; Springer: Berlin, 2006.

- [12] SADABS-2016/2. Bruker, 2016.
- [13] Neese, F. WIREs Comput Mol Sci 2022, 12.
- [14] Neese, F. WIREs Comput Mol Sci 2018, 8.
- [15] Neese, F. WIREs Comput Mol Sci 2012, 2, 73-78.
- [16] Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys. 2020, 152, 224108.
- [17] Perdew, J. P.; Ernzerhof, M.; Burke, K. *J. Chem. Phys.* **1996**, *105*, 9982–9985.
- [18] Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.
- [19] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. *Phys. Rev. Lett.* **2003**, *91*, 146401.
- [20] Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. *J. Chem. Phys.* **2003**, *119*, 12129–12137.
- [21] van Wüllen, C. J. Chem. Phys. 1998, 109, 392–399.
- [22] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [23] Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.;
- Bannwarth, C.; Grimme, S. J. Chem. Phys. 2019, 150, 154122.

[24] Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[25] Reith, S.; Demeshko, S.; Battistella, B.; Reckziegel, A.; Schneider, C.; Stoy,

A.; Lichtenberg, C.; Meyer, F.; Munz, D.; Werncke, C. G. *Chem. Sci.* **2022**, *13*, 7907–7913.

[26] Yang, P.-C.; Yu, K.-P.; Hsieh, C.-T.; Zou, J.; Fang, C.-T.; Liu, H.-K.; Pao, C.-

W.; Deng, L.; Cheng, M.-J.; Lin, C.-Y. Chem. Sci. 2022, 13, 9637–9643.

[27] Roos, B. O.; Taylor, P. R.; Sigbahn, P. E. *Chem. Phys.* **1980**, *48*, 157–173.