Electronic Supplementary Information

Experimental section

Materials: Pinewood (PW) board was obtained from Shandong Nature Wood Co, Ltd. (Shandong Province, China). Sodium nitrate (NaNO₃), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), ethanol (C₂H₆O), sodium salicylate (C₇H₅NaO₃), trisodium citrate dehydrate(C₆H₅Na₃O₇·2H₂O), p-dimethylaminobenzaldehyde (C₉H₁₁NO), sodium nitroferricyanide dehydrate (C₅FeN₆Na₂O·2H₂O) and sodium hypochlorite solution (NaClO) were purchased from Aladdin Ltd. (Shanghai, China). Iron chloride hexahydrate (FeCl₃·6H₂O) was purchased from Chengdu Kelong Chemical Regent Co. Ltd. Sulfuric acid (H₂SO₄), hydrogrn peroxide (H₂O₂), hydrochloric acid (HCl), hydrazine monohydrate (N₂H₄·H₂O), ethylalcohol (C₂H₅OH) and methanol (CH₄O) were bought from Beijing Chemical Corporation. (China). Chemical Ltd. in Chengdu. All chemical reagents used in this work were not purified further.

Synthesis of Fe₃O₄/PC and PC: In brief, PW was cut into small strips ($30 \times 10 \times 3$ mm³), and washed with methanol and ultrapure water. After being dried, the PW was immersed into the 30 mL 0.1 M FeCl₃·6H₂O solution at 60 °C for 24 h. The soaked PW was then dried at 60 °C overnight. Subsequently, the pretreated samples were calcined at 700 °C for 2 h under an Ar atmosphere to get Fe₃O₄-modified PW-derived carbon (Fe₃O₄/PC). The pure PC was obtained under the same preparation conditions without adding FeCl₃·6H₂O.

Characterizations: XRD data were acquired by a LabX XRD–6100 X-ray diffractometer with a Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM measurements were carried out on a Gemini SEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of the spectrophotometer were measured on UV-Vis spectrophotometer. TEM image was obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200

kV. Gas chromatography (GC-2014C, SHIMADZU) was utilized to quantitatively detect H_2 and N_2 .

Electrochemical measurements: All electrochemical measurements were performed in a H-type cell separated by a treated Nafion 117 membrane with a CHI660e electrochemical workstation (Shanghai, Chenhua). Electrolyte solution was Arsaturated 0.1 M NaOH with 0.1 M NaNO₃, using Fe₃O₄/PC (0.05 cm³) as the working electrode, a graphite rod as the counter electrode, and a Hg/HgO as the reference electrode. All potentials reported in our work were converted to reversible hydrogen electrode (RHE) scale via calibration with the following equation: E (RHE) = E (vs. Hg/HgO) + 0.0591 × pH + 0.098 V and the current density was normalized by the geometric surface area.

Determination of NH3: The concentration of produced NH₃ was determined by spectrophotometry measurement with the indophenol blue method (the obtained electrolyte was diluted 20 times).¹ In detail, 2 mL of the diluted catholyte was obtained from the cathodic chamber and mixed with 2 mL of a 1 M NaOH solution that contained salicylic acid and sodium citrate. Then, 1 mL of 0.05 M NaClO and 0.2 mL of 1 wt% C₅FeN₆Na₂O were dropped into the collected electrolyte solution. After standing at room temperature for 2 h, the ultraviolet-visible absorption spectrum was measured. The concentration-absorbance curve was calibrated using the standard NH4Cl solution with NH₃ concentrations of 0, 0.2, 0.5, 1.0, 2.0 and 5.0 ppm in 0.1 M NaOH. The absorbance at 655 nm was measured to quantify the NH₃ concentration using standard NH4Cl solutions (y = 0.34993 x + 0.02177, R² = 0.9999).

Determination of NO₂⁻: Griess tests can be applied to determine the remaining NO₂⁻ concentration in the reaction electrolytes.² Firstly, the Griess reagents were prepared by dissolving 0.2 g N-(1-naphthyl) ethylenediamine dihydrochloride, 2.0 g sulfonamide, and 5.88 mL H₃PO₄ in 100 mL ultrapure water. Then, diluting the electrolyte to a measurable concentration range. After that, 1.0 mL of the tested electrolyte was added in to a mixture of 1.0 mL of Griess reagent and 2.0 mL ultrapure water to react at room temperature for 10 min under dark conditions, where an azo dye (magenta) can be formed. The absorbance at 540 nm was measured to

quantify the NO₂⁻ concentration with a standard NaNO₂ solution with different NO₂⁻ concentrations in 0.1 M NaOH (y = 0.21739 x + 0.03390, $R^2 = 0.9994$).

Determination of N₂H₄: In this work, we used the method of Watt and Chrisp³ to determine the concentration of produced N₂H₄. The chromogenic reagent was a mixed solution of 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL C₂H₅OH. In detail, 1 mL of electrolyte was added into 1 mL prepared colour reagent and stirred for 15 min in the dark. The concentration-absorbance curve was calibrated using the standard N₂H₄ solution with concentrations of 0, 0.2, 0.6, 1.0 and 2.0 ppm. The absorbance at 455 nm was measured to quantify the N₂H₄ concentration with a standard curve of hydrazine (y = 0.70054 x + 0.10119, R² = 0.9998).

Calculations of FE and NH₃ yield:

The amount of NH_3 (m_{NH3}) was calculated by the following equation:

$$m_{\rm NH3} = [\rm NH_3] \times V$$

FE of NH₃ formation was calculated by the following equation:

$$FE = (8 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\%$$

The NH₃ yield rate was calculated using the following equation:

NH₃ yield = ([NH₃]
$$\times$$
 V) / (M_{NH3} \times t \times A)

Where F is the Faradic constant (96485 C mol⁻¹), [NH₃] is the NH₃ concentration, V is the volume of electrolyte in the anode compartment (60 mL), M_{NH3} is the molar mass of NH₃ molecule, Q is the total quantity of applied electricity, t is the electrolysis time (1 h) and A is the geometric area of the working electrode ($0.5 \times 0.5 \times 0.2 \text{ cm}^3$).

 NO_3^- isotopic labelling experiment: The generated NH₃ was verified by an isotopelabelled tracer experiment using a 0.1 M $^{15}NO_3^-$ as a N source. After 1 h of electroreduction at -0.4 V, the electrolyte in the cathodic chamber was adjusted to 2 with a 0.5 M HCl. After that, the neutralized electrolyte (1mL) was mixed with deuterium oxide (D₂O, 0.1 mL). And the mixture was sealed into a nuclear magnetic resonance (NMR) tube (5 mm in diameter, 600 MHz) for further tests.

Fig. S1. (a) Low- and (b) high-magnification SEM images of pure PC.

Fig. S2. XRD patterns of Fe_3O_4/PC -600, Fe_3O_4/PC -700, and $Fe@Fe_3O_4/PC$ -800.

Fig. S3. SEM images of (a) Fe_3O_4/PC -600, (b) Fe_3O_4/PC -700, and (c) $Fe@Fe_3O_4/PC$ -

800.

3-		Element	Line Type	Apparent Concentration	k Ratio	Wt%	Atomic %
		С	K series	42.61	0.42609	58.46	77.03
		N	K series	3.33	0.00592	2.36	2.67
2-	100	0	K series	17.29	0.05817	13.03	12.89
	C	Fe	K series	21,81	0.21813	26.15	7.41
		Total:				100.00	100.00

Fig. S4. EDX spectrum of Fe₃O₄/PC.

Fig. S5. XPS survey spectrum of Fe₃O₄/PC.

Fig. S6. N_2 adsorption-desorption isotherms and pore-size distribution (inset) of Fe₃O₄/PC.

Fig. S7. (a) UV-Vis spectra and (b) corresponding calibration curve for determining NH₃.

Fig. S8. (a) UV-Vis spectra and (b) corresponding calibration curve for determining NO_2^{-} .

Fig. S9. (a) UV-Vis spectra and (b) corresponding calibration curve for determining N_2H_4 .

Fig. S10. LSV curves of (a) PC (b) Fe_3O_4/GF for NO_3^-RR in 0.1 M NaOH with/without 0.1 M NO_3^- .

Fig. S11. LSV curves of $Fe_3O_4/PC-600$, $Fe_3O_4/PC-700$, and $Fe@Fe_3O_4/PC-800$ for NO_3^-RR in 0.1 M NaOH with/without 0.1 M NO_3^- .

Fig. S12. (a) Chronoamperometry curves of Fe_3O_4/PC at different potentials and (b) UV-Vis spectra of NH₃ produced in the electrolyte at the corresponding potentials.

Fig. S13. NH₃ yields and FEs of Fe₃O₄/PC and Fe₃O₄/GF at -0.4 V.

Fig. S14. UV-Vis adsorption spectra of N_2H_4 for Fe₃O₄/PC at each given potential.

Fig. S15. Comparison of NH_3 yields under different conditions.

Fig. S16. NH₃ yields of pure PC in 0.1 M NaOH with/without 0.1 M NO₃⁻ at -0.4 V.

Fig. S17. (a) Chronoamperometry curves and (b) corresponding UV-Vis spectra of NH_3 produced by Fe₃O₄/PC during the alternating cycle tests between NO_3^{-1} -containing and NO_3^{-1} -free electrolytes.

Fig. S18. ¹H NMR spectra for the post-electrolysis electrolyte with $Na^{15}NO_3$ and $Na^{14}NO_3$ as the nitrogen resources.

Fig. S19. (a) Chronoamperometry curves and (b) corresponding UV-Vis spectra for generated NH_3 during recycling tests at -0.4 V.

Fig. S20. EPR spectra of Fe_3O_4/PC before and after long-term stability test.

Fig. S21. (a) Low- and (b) high-magnification SEM images of Fe_3O_4/PC after stability test.

Fig. S22. XRD pattern for Fe₃O₄/PC after long-time electrolysis.

Fig. S23. XPS spectrum of post-electrolysis Fe₃O₄/PC. Based on the integrated peak areas of Fe 2p, the ratio of Fe^{3+}/Fe^{2+} in Fe₃O₄ slightly decreased after the long-term stability test, and a small amount of Fe^{3+} (from 29.63% to 25.62%) transformed to Fe^{2+} (from 70.37% to 74.38%).

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.
Fe ₃ O ₄ /PC	0.1 M NaOH (0.1 M NO ₃ ⁻)	394.8 μ mol h ⁻¹ cm ⁻²	91.6	This work
Pd facets	0.1 M NaOH (20 mM NO ₃ ⁻)	$18 \ \mu mol \ h^{-1} \ cm^{-2}$	35.0	4
In-S-G	0.1 M KOH (0.1 M NO ₃ ⁻)	$1272 \ \mu g \ h^{-1} \ cm^{-2}$	75.0	5
Fe SAC	0.1 M K ₂ SO ₄ (0.5 M NO ₃ ⁻)	$0.46 \text{ mmol } h^{-1} \text{cm}^{-2}$	75.0	6
Fe-Co ₃ O ₄ /TM	0.1 M PBS (50 mM NO ₃ ⁻)	$36.7 \ \mu mol \ h^{-1} \ cm^{-2}$	95.5	7
Co-Fe@Fe ₂ O ₃	0.1 M Na ₂ SO ₄ (500 ppm NO ₃ ⁻)	$1505.9 \ \mu g \ h^{-1} \ cm^{-2}$	85.2	8
Co ₃ O ₄ /Co	0.01 M H ₂ SO ₄ (1000 ppm NO ₃ ⁻)	260.6 μ mol h ⁻¹ mg _{cat.} ⁻¹	88.7	9
Co-NCNT	0.1 M NaOH (0.1 M NO ₃ ⁻)	$352.7 \ \mu mol \ h^{-1} \ cm^{-2}$	92.0	10
CoP/CC	1 M NaOH (0.5 mM NO ₃)	$317 \ \mu g \ h^{-1} \ cm^{-2}$	65.0	11
Cu50Ni50	1 M KOH (100 mM NO ₃ ⁻)	80.7 μ mol h ⁻¹ cm ⁻²	82.0	12
TiO _{2-X}	0.5 M Na ₂ SO ₄ (0.81 mM NO ₃ ⁻)	45.0 μ mol h ⁻¹ cm ⁻²	85.0	13
Cu	0.1 M NaOH (20 mM NO ₃ ⁻)	/	46.3	14
pCuO-5	0.05 M H ₂ SO ₄ (0.05 M NO ₃ ⁻)	292.0 μ mol h ⁻¹ cm ⁻²	89.0	15
BCN@Ni	0.1 M KOH (0.1 M NO ₃ ⁻)	$140 \ \mu mol \ h^{-1} \ cm^{-2}$	91.2	16

Table S1. Comparison of catalytic performance of Fe_3O_4/PC with other reported NO_3^- RR electrocatalysts.

References

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S.
 R. Tannenbaum, *Anal. Biochem.*, 1982, **126**, 131–138.
- 4 J. Lim, C.-Y. Liu, J. Park, Y.-H. Liu, T. P. Senftle, S. W. Lee and M. C. Hatzell, *ACS Catal.*, 2021, **11**, 7568–7577.
- 5 F. Lei, W. Xu, J. Yu, K. Li, J. Xie, P. Hao, G. Cui and B. Tang, *Chem. Eng. J.*, 2021, **426**, 131317.
- Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.*, 2021, 12, 2870.
- P. Wei, J. Liang, Q. Liu, L. Xie, X. Tong, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. M. Asiri, M. S. Hamdy, Q. Kong, Z. Wang and X. Sun, J. Colloid Interface Sci., 2022, 615, 636–642.
- S. Zhang, M. Li, J. Li, Q. Song and X. Liu, *Proc. Natl. Acad. Sci. U. S. A.*, 2022, **119**, 1–11.
- F. Zhao, G. Hai, X. Li, Z. Jiang and H. Wang, *Chem. Eng. J.*, 2023, 461, 141960.
- 10 J. Chen, Q. Zhou, L. Yue, D. Zhao, L. Zhang, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, M. S. Hamdy, F. Gong and X. Sun, *Chem. Commun.*, 2022, 58, 3787–3790.
- H. Zhang, G. Wang, C. Wang, Y. Liu, Y. Yang, C. Wang, W. Jiang, L. Fu andJ. Xu, J. Electroanal. Chem., 2022, 910, 116171.
- 12 Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.-H. Nam, C.-S. Tan, Y. Ding, J. Wu, Y. Lum, C.-T. Dinh, D. Sinton, G. Zheng and E. H. Sargent, *J. Am. Chem. Soc.*, 2020, **142**, 5702–5708.

- R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, *ACS Catalysis*, 2020, 10, 3533–3540.
- D. Reyter, G. Chamoulaud, D. Bélanger and L. Roué, *J. Electroanal. Chem.*, 2006, **596**, 13–24.
- 15 R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M. H. A. Khan, A. Asghar Esmailpour, A. Jalili, M. Lim, A. Tricoli, R.-S. Liu, X. Lu, E. Lovell and R. Amal, *Energy Environ. Sci.*, 2021, 14, 3588–3598.
- X. Zhao, Z. Zhu, Y. He, H. Zhang, X. Zhou, W. Hu, M. Li, S. Zhang, Y. Dong,
 X. Hu, A. V. Kuklin, G. V. Baryshnikov, H. Ågren, T. Wågberg and G. Hu, *Chem. Eng. J.*, 2022, 433, 133190.