Supporting Information

Nanoflower-like high-entropy Ni-Fe-Cr-Mn-Co (oxy)hydroxides for oxygen evolution

Mingyuan Shi^{a,b}, Tianmi Tang^b, Liyuan Xiao^b, Jingyi Han^b, Xue Bai^b, Yuhang Sun^{a,b}, Siyu Chen^b, Jingru Sun^b, Yuanyuan Ma^{a,*}, and Jingqi Guan^{b,*}

^a College of Chemistry and Chemical Engineering, Qiqihar University, Heilongjiang
Province 161006, China. *E-mail: <u>mayuanyuan1219@126.com</u> (Y.Y. Ma)
^b Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang
Road, Changchun 130021, P. R. China. *E-mail: <u>guanjq@jlu.edu.cn</u> (J.Q. Guan)

Synthesis of FeNiCrMnCoOOH/NF

Nickel NF foam (2 cm \times 2 cm) was treated in 3 M HCl, distilled water and absolute ethanol for 15 min, respectively. Then, 0.404 g Fe(NO₃)₃·9H₂O, 0.291 g Co(NO₃)₂·6H₂O, 0.2326 g Ni(NO₃)₂·6H₂O, 0.32 g Cr(NO₃)₃·9H₂O, 0.136 g MnSO₄·H₂O, 0.24 g NH₂CONH₂ and 0.075 g PVP were dissolved in 20 mL of H₂O via ultrasonic treatment. Subsequently, the solution was transferred into a 25 mL Teflon autoclave and a processed piece of NF was added, which was heated at 100 °C for 12 hours. Finally, the obtained NF was washed three times with ethanol and distilled water and dried at 60 °C for 12 hours, which was nominated as FeNiCrMnCoOOH/NF. For comparison, the quaternary FeNiCrMnOOH/NF, ternary FeNiMnOOH/NF, binary NiMnOOH/NF, unary NiOOH/NF and four other highentropy (oxy)hydroxides FeNiCrMnAlOOH, FeNiCrMnCuOOH, FeNiCrMnMoOOH and FeNiCrMnCeOOH were synthesized following a process similar to that for FeNiCrMnCoOOH/NF.

Characterization

Powder X-ray diffraction (XRD) patterns were collected using a Shimadzu XRD-6000 with Cu Kα radiation (40 kV, 30 mA). HRTEM images were recorded on a JEM-2100 transmission electron microscope (Tokyo, Japan) at 200 kV. SEM images were recorded on a HITACHI SU8020 field emission scanning electron microscope. Raman spectra were acquired using a Renishaw micro-Raman spectrometer with a 532 nm laser at 0.2 mW. The valence state was determined using XPS recorded on a Thermo ESCALAB 250Xi. The X-ray source selected was monochromatized Al Kα source (15 kV, 10.8 mA). Region scans were collected using 30 eV pass energy. Peak positions were calibrated relative to C 1s peak position at 284.6 eV.

Electrochemical measurements

All electrochemical measurements were performed on a CHI760E electrochemical working station at room temperature. The catalysts were measured in 1 M KOH aqueous solution using a typical three-electrode configuration. Linear sweep voltammetry (LSV) polarization curves were acquired at a scan rate of 5 mV·s⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were performed at open-circuit potential in the frequency range from 100 kHz to 0.1 Hz with an a.c.

perturbation of 5 mV. All potentials measured were calibrated to RHE using the following equation: E (versus RHE) = E (versus SCE) + 0.241 V + 0.0591 pH.

Fig. S1. XRD patterns of NF and FeNiCrMnCoOOH/NF.

Fig. S2. SEM image of NF.

Fig. S3. SEM image of FeNiCrMnCoOOH/NF.

Fig. S4. Overpotential comparison at 10 mA cm⁻².

Fig. S5. LSV curves of FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, FeNiCrMnMoOOH/NF, FeNiCrMnCeOOH/NF and FeNiCrMnCoOOH/NF.

Fig. S6. Tafel slopes of FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, FeNiCrMnMoOOH/NF, FeNiCrMnCeOOH/NF and FeNiCrMnCoOOH/NF.

Fig. S7. OER polarization curves of NiOOH/NF, NiMnOOH/NF, FeNiMnOOH/NF, FeNiCrMnOOH/NF and FeNiCrMnCoOOH/NF in three-electrode configuration in 1 M KOH at 20 °C, 30 °C, 40 °C, 50 °C and 55 °C.

Fig. S8. Arrhenius plots.

Fig. S9. (a) CVs of the FeNiCrMnCoOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S10. (a) CVs of the NiOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S11. (a) CVs of the NiMnOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S12. (a) CVs of the FeNiMnOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S13. (a) CVs of the FeNiCrMnOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S14. (a) CVs of the FeNiCrMnAlOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S15. (a) CVs of the FeNiCrMnCuOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S16. (a) CVs of the FeNiCrMnMoOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S17. (a) CVs of the FeNiCrMnCeOOH/NF measured in a non-Faradaic region at different scan Rate. (b) The cathodic and anodic currents measured as a function of the scan Rate.

Fig. S18. (a) Electrochemical analysis in alkaline seawater. (b) Tafel slopes. (c) EIS plots (inset: equivalent circuit model corresponding to EIS data). (d) Chronoamperometric curves of the FeNiCrMnCoOOH/NF in 0.5 M NaCl + 1 M KOH.

Fig. S19. (a) LSV curves of FeNiCrMnCoOOH/NF||Pt/C and IrO₂||Pt/C of overall water splitting. (b) Stability test.

Fig. S20. XPS survey spectra of FeNiCrMnCoOOH/NF (before and after OER test).

Fig. S21. High-resolution XPS spectrum for O 1s (before and after OER test).

Fig. S22. (a, b) SEM images of FeNiCrMnCoOOH/NF after OER testing.

catalyst	Content (mol%)					
	Fe	Ni	Cr	Mn	Co	
FeNiCrMnCoOOH/NF	19.82%	22.36%	20.44%	18.95%	18.43%	

 Table S1. Chemical composition of FeNiCrMnCoOOH/NF.

Catalant	η@10 mA cm ⁻	Tafel slope	Ref.
Catalyst	² (mV)	$(mV dec^{-1})$	
FeNiCrMnCoOOH/NF	201	31	This work
Fe(Ni)OOH	300	34	1
Te/FeNiOOH-NC	220	52	2
(Fe,Co)OOH/MI	230	73	3
(Ni ₇ Fe ₃)OOH-S	238	42.7	4
Fe-Co-OOH/Ni	250	40.28	5
S-(Fe/Ni)OOH@NiNCAs-SSM	245	65	6
Fe(Cr)OOH/Fe ₃ O ₄ /NF	198	34	7
γ-MnOOH/CoOOH-0.1	313	87	8
NiOOH@CoCu CH	263	43.2	9
FeNi-CoOOH NSs/CFC	247	42.7	10
Co ₃ O ₄ -CoOOH/CP	245	68.8	11
Mo-NiOOH	310	68	12

 Table S2. Comparison of OER performance of FeNiCrMnCoOOH/NF with

 other (oxy)hydroxides in 1 M KOH

References

- 1 D. Tang, O. Mabayoje, Y. Q. Lai, Y. X. Liu and C. B. Mullins, *Chemistryselect*, 2017, **2**, 2230-2234.
- S. Ibraheem, X. T. Li, S. S. A. Shah, T. Najam, G. Yasin, R. Iqbal, S. Hussain, W. Y. Ding and F. Shahzad, ACS Appl. Mater. Inter., 2021, 13, 10972-10978.
- 3 W. Z. Huang, J. T. Li, X. B. Liao, R. H. Lu, C. H. Ling, X. Liu, J. S. Meng, L. B. Qu, M. T. Lin, X. F. Hong, X. B. Zhou, S. L. Liu, Y. Zhao, L. Zhou and L. Q. Mai, *Adv. Mater.*, 2022, **34**, 2200270.
- 4 W. Liu, X. T. Wang, F. Wang, X. L. Liu, Y. Zhang, W. T. Li, Y. Z. Guo, H. Y. Yin and D. H. Wang, *Chem. Eng. J.*, 2023, **454**, 140030.
- 5 P. C. Wang, Z. A. Xu, Y. Q. Lin, L. Wan and B. G. Wang, *ACS Sustain. Chem. Eng.*, 2020, **8**, 8949-8957.
- 6 M. H. Kahnamouei and S. Shahrokhian, ACS Appl. Energy Mater., 2021, 4, 10627-10638.
- 7 L. Li, G. W. Zhang, B. Wang and S. C. Yang, Appl. Catal., B, 2022, 302, 120847.
- 8 M. L. Cui, H. H. Zhao, X. P. Dai, Y. Yang, X. Zhang, X. B. Luan, F. Nie, Z. T. Ren, Y. Dong, Y. Wang, J. T. Yang and X. L. Huang, *ACS Sustain. Chem. Eng.*, 2019, 7, 13015-13022.
- 9 B. Li, K. F. Wang, J. X. Ren and P. Qu, New J. Chem., 2022, 46, 7615-7625.
- 10 N. Ma, C. C. Gong, H. A. Xie, C. S. Shi, J. W. Sha, C. N. He, F. He, N. Q. Zhao and E. Z. Liu, *Int. J. Hydrogen Energy*, 2022, **47**, 29762-29770.
- 11 L. Yan and B. Zhang, Int. J. Hydrogen Energy, 2021, 46, 34287-34297.
- 12 Y. S. Jin, S. L. Huang, X. Yue, C. Shu and P. K. Shen, *Int. J. Hydrogen Energy*, 2018, **43**, 12140-12145.