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Synthesis of FeNiCrMnCoOOH/NF

Nickel NF foam (2 cm × 2 cm) was treated in 3 M HCl, distilled water and 

absolute ethanol for 15 min, respectively. Then, 0.404 g Fe(NO3)3·9H2O, 0.291 g 

Co(NO3)2·6H2O, 0.2326 g Ni(NO3)2·6H2O, 0.32 g Cr(NO3)3·9H2O, 0.136 g 

MnSO4·H2O, 0.24 g NH2CONH2 and 0.075 g PVP were dissolved in 20 mL of H2O 

via ultrasonic treatment. Subsequently, the solution was transferred into a 25 mL 

Teflon autoclave and a processed piece of NF was added, which was heated at 100 °C 

for 12 hours. Finally, the obtained NF was washed three times with ethanol and 

distilled water and dried at 60 °C for 12 hours, which was nominated as 
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FeNiCrMnCoOOH/NF. For comparison, the quaternary FeNiCrMnOOH/NF, ternary 

FeNiMnOOH/NF, binary NiMnOOH/NF, unary NiOOH/NF and four other high-

entropy (oxy)hydroxides FeNiCrMnAlOOH, FeNiCrMnCuOOH, FeNiCrMnMoOOH 

and FeNiCrMnCeOOH were synthesized following a process similar to that for 

FeNiCrMnCoOOH/NF.

Characterization

Powder X-ray diffraction (XRD) patterns were collected using a Shimadzu XRD-

6000 with Cu Kα radiation (40 kV, 30 mA). HRTEM images were recorded on a 

JEM-2100 transmission electron microscope (Tokyo, Japan) at 200 kV. SEM images 

were recorded on a HITACHI SU8020 field emission scanning electron microscope. 

Raman spectra were acquired using a Renishaw micro-Raman spectrometer with a 

532 nm laser at 0.2 mW. The valence state was determined using XPS recorded on a 

Thermo ESCALAB 250Xi. The X-ray source selected was monochromatized Al Kα 

source (15 kV, 10.8 mA). Region scans were collected using 30 eV pass energy. 

Peak positions were calibrated relative to C 1s peak position at 284.6 eV.

Electrochemical measurements

All electrochemical measurements were performed on a CHI760E 

electrochemical working station at room temperature. The catalysts were measured in 

1 M KOH aqueous solution using a typical three-electrode configuration. Linear 

sweep voltammetry (LSV) polarization curves were acquired at a scan rate of 5 mV·s-

1. Electrochemical impedance spectroscopy (EIS) measurements were performed at 

open-circuit potential in the frequency range from 100 kHz to 0.1 Hz with an a.c. 
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perturbation of 5 mV. All potentials measured were calibrated to RHE using the 

following equation: E (versus RHE) = E (versus SCE) + 0.241 V + 0.0591 pH.

Fig. S1. XRD patterns of NF and FeNiCrMnCoOOH/NF.
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Fig. S2. SEM image of NF.

Fig. S3. SEM image of FeNiCrMnCoOOH/NF.
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Fig. S4. Overpotential comparison at 10 mA cm-2.
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Fig. S5. LSV curves of FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, 

FeNiCrMnMoOOH/NF, FeNiCrMnCeOOH/NF and FeNiCrMnCoOOH/NF.
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Fig. S6. Tafel slopes of FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, 

FeNiCrMnMoOOH/NF, FeNiCrMnCeOOH/NF and FeNiCrMnCoOOH/NF.

Fig. S7. OER polarization curves of NiOOH/NF, NiMnOOH/NF, FeNiMnOOH/NF, 

FeNiCrMnOOH/NF and FeNiCrMnCoOOH/NF in three-electrode configuration in 

1 M KOH at 20 °C, 30 °C, 40 °C, 50 °C and 55 °C.
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Fig. S8. Arrhenius plots.

Fig. S9. (a) CVs of the FeNiCrMnCoOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.
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Fig. S10. (a) CVs of the NiOOH/NF measured in a non-Faradaic region at different 

scan Rate. (b) The cathodic and anodic currents measured as a function of the scan 

Rate.

Fig. S11. (a) CVs of the NiMnOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.
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Fig. S12. (a) CVs of the FeNiMnOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.

Fig. S13. (a) CVs of the FeNiCrMnOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.
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Fig. S14. (a) CVs of the FeNiCrMnAlOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.

Fig. S15. (a) CVs of the FeNiCrMnCuOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.



S11

Fig. S16. (a) CVs of the FeNiCrMnMoOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.

Fig. S17. (a) CVs of the FeNiCrMnCeOOH/NF measured in a non-Faradaic region at 

different scan Rate. (b) The cathodic and anodic currents measured as a function of 

the scan Rate.
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Fig. S18. (a) Electrochemical analysis in alkaline seawater. (b) Tafel slopes. (c) EIS 
plots (inset: equivalent circuit model corresponding to EIS data). (d) 
Chronoamperometric curves of the FeNiCrMnCoOOH/NF in 0.5 M NaCl + 1 M 
KOH.

Fig. S19. (a) LSV curves of FeNiCrMnCoOOH/NF||Pt/C and IrO2||Pt/C of overall 
water splitting. (b) Stability test.
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Fig. S20. XPS survey spectra of FeNiCrMnCoOOH/NF (before and after OER 

test).
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Fig. S21. High-resolution XPS spectrum for O 1s (before and after OER test).
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Fig. S22. (a, b) SEM images of FeNiCrMnCoOOH/NF after OER testing.
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Table S1. Chemical composition of FeNiCrMnCoOOH/NF.

Content (mol%)catalyst

Fe Ni Cr Mn Co

FeNiCrMnCoOOH/NF 19.82% 22.36% 20.44% 18.95% 18.43%
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Table S2. Comparison of OER performance of FeNiCrMnCoOOH/NF with 

other (oxy)hydroxides in 1 M KOH

Catalyst
η@10 mA cm-

2（mV）

Tafel slope

（mV dec-1）

 Ref.

FeNiCrMnCoOOH/NF 201 31 This work

Fe(Ni)OOH 300 34 1

Te/FeNiOOH-NC 220 52 2

(Fe,Co)OOH/MI 230 73 3

(Ni7Fe3)OOH-S 238 42.7 4

Fe-Co-OOH/Ni 250 40.28 5

S-(Fe/Ni)OOH@NiNCAs-SSM 245 65 6

Fe(Cr)OOH/Fe3O4/NF 198 34 7

γ-MnOOH/CoOOH-0.1 313 87 8

NiOOH@CoCu CH 263 43.2 9

FeNi-CoOOH NSs/CFC 247 42.7 10

Co3O4-CoOOH/CP 245 68.8 11

Mo-NiOOH 310 68 12
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