Electronic Supplementary Information

Not in black or white, encryption of grayscale images by donor-acceptor

 Stenhouse adductsFanxi Sun, ${ }^{\dagger \mathrm{a}, \mathrm{b}}$ Ang Gao, ${ }^{\dagger \mathrm{a}, \mathrm{b}}{ }^{\mathrm{b}}$ Xiaoyu Xiong, ${ }^{\dagger \mathrm{b}}$ Yongli Duan, ${ }^{\mathrm{b}}$ Dacheng Dai, ${ }^{\mathrm{b}}$ Yifei Zhu, ${ }^{\text {c }}$ Chaoming Xie, ${ }^{\text {d }}$ Qiang Wei, ${ }^{e}$ Longquan Chen, ${ }^{\mathrm{f}}$ Bo He, ${ }^{\mathrm{g}}$ Hui Zhao, ${ }^{\text {h }}$ Yonghao Zheng, ${ }^{\text {b }}$ Xu Deng, ${ }^{\text {i }}$ Chen Wei ${ }^{* \boldsymbol{b}}$ and Dongsheng Wang* ${ }^{*}$, b
a. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China E-mail: wangds@uestc.edu.cn
b. School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 , China
c. The Experimental High School Attached to UESTC, Chengdu 611730, P. R. China
d. Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
e. State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
f. School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
g. LONGi Green Energy Technology Co., Ltd., Xi’an 710016, China
h. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
i. Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China

Contents

1. Experimental section 3
1.1. Material 3
1.2. Characterizations methods 3
1.3. Synthesis of DASA-MA 4
2. Photoisomerization of DASAs in solvents 6
3. Photoisomerization of DASAs on the paper surfaces 8
4. DFT calculations 11
5. Interrelationship between DFT calculations and isomerization kinetics 12
6. Solvatochromism of DASA-MA 14
7. Photoisomerization of DASA-MA on the PMMA pretreated paper surfaces 17
8. Image processing for grayscale printing 18
9. Grayscale printing of GTA on PMMA pretreated DASA paper 24
10. The relationships between grayscale bit depth and clarity 25
11. The reversible isomerization of DASA-MA 26
12. Crystal structure data for DASA-MA 28
13. NMR data and mass spectrum of DASA-MA 34
14. References 36
15. Calculated geometries: 37

1. Experimental section

1.1. Material

All the chemicals and reagents were commercially obtained and used without further purification. 2-furaldehyde $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}\right.$, CAS No. 98-01-1), N-propylaniline ($\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}$, CAS No. 622-80-0), Glycerol triacetate (GTA) $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6}\right.$, CAS No. 102-76-1), was purchased from the Aladdin Chemicals. Hexyl benzoate (HB) $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right.$, CAS No. 6789-88-4), Hexyl hexanoate (HH$)\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}\right.$, CAS No. 6378-65-0), Triethylene glycol diacetate (TGD) $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{6}\right.$, CAS No. 111-21-7), Polymethyl methacrylate (PMMA) (($\left.\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right) \mathrm{n}, M_{n}=800000 \mathrm{~g} / \mathrm{mol}$, CAS No. 9011-14-7), were purchased from Macklin. Ethanol ($\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, CAS No. 64-17-5) Tetrahydrofuran (THF)($\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$, CAS No. 109-99-9), Acetonitrile $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right.$, CAS No. 75-05-8) and methylene dichloride (DCM) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, CAS No. 75-09-2) were purchased from Chengdu Keshi Reagent. Milli-Q water (resistivity: 18.2 $\mathrm{M} \Omega \times \mathrm{cm}$) was used throughout the project.

1.2. Characterizations methods

UV-vis spectra (including absorbance and reflectance) were recorded on a Shimazu UV-2600 spectrophotometer. For the determination of the kinetics of isomerization between linear and cyclic donor-acceptor Stenhouse adducts (DASAs), the absorbance (reflectance) value at a typical wavelength was recorded to obtain precise results. The content of cyclic isomers was calculated as described in section 3.

Density functional theory (DFT) calculation was used to understand the relative pKa and molecular energy variation during the isomerization between linear and cyclic DASAs. Moreover, the length of the intramolecular hydrogen bond was calculated under surrounding functional molecules. These were described in detail in section 4.

For the controlling of isomerization between linear and cyclic DASAs, light-emitting diodes (LED) systems generating 520 nm green light was used to induce the linear-to-cyclic isomerization of DASAs in solutions, on paper surfaces (Zhongjiao Jinyuan Systems). The output intensity of the

LED was controlled by an LED controller (Zhongjiao Jinyuan Systems) and calibrated by a Laserpoint calibrator (A-02-D12-BBF). A uniformly exposed LED white light $(10,000)$ was used for recording videos in Fig. 3 and Supplementary videos 1-4.

For the printing of ester-contained invisible inks dissolved in EtOH, a commercial ink-jet printer (EPSON L130) was used.

1.3. Synthesis of DASA-MA

Scheme S1. Synthetic route for DASA-MA

Synthesis of DASA-MA. Synthesis of DASAs is according to previous reports without modifications. ${ }^{1,2}$ 2,2-dimethyl-1,3-dioxane-4,6-dione ($1 \mathrm{~g}, 6.93 \mathrm{mmol}$) was completely dissolved into 20 mL distilled water under stirring. 2-furaldehyde ($666.62 \mathrm{mg}, 6.93 \mathrm{mmol}$) was slowly dropped into the solution. Then, the solution was heated to $35^{\circ} \mathrm{C}$ and kept for 2 h , which formed a yellow solid. The yellow solid was collected by vacuum filtration, followed by washing with distilled water for several times. The solid was then dissolved into 50 mL methylene dichloride and washed by 50 mL saturated NaCl aqueous solution. The organic layer was purified by column chromatography, and obtained a yellow solution which was then condensed by rotary evaporation to give 1.233 g yellow product (Yield: 95%). The yellow product ($300 \mathrm{mg}, 1.35 \mathrm{mmol}$) was dissolved into 20 mL DCM,
followed by slowly adding N-Propylaniline ($182 \mathrm{mg}, 1.35 \mathrm{mmol}$) under stirring. After stirring at $40^{\circ} \mathrm{C}$ for 2 h , the solution turned to deep purple. The mixture was then condensed by rotary evaporation and further purified by column chromatography to give 289 mg (Yield: 60%) deep purple solid DASA-MA. Crystal structure data for DASA-MA can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif CCDC\# 2258697

2. Photoisomerization of DASAs in solvents

Fig. S1. Normalized UV-Vis absorption spectra of DASA-MA before and after green light irradiation $\left(520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}, 1 \mathrm{~min}\right)$ in DCM. Inner shows the photographic images before and after green light irradiation.

Fig. S2. Normalized UV-Vis absorption spectra of DASA-MA before and after green light irradiation $\left(520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}, 1 \mathrm{~min}\right)$ in THF. Inner shows the photographic images before and after green light irradiation.

Fig. S3. Normalized UV-Vis absorption spectra of DASA-MA before and after green light irradiation $\left(520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}, 1 \mathrm{~min}\right)$ in acetonitrile. Inner shows the photographic images before and after green light irradiation.

3. Photoisomerization of DASAs on the paper surfaces

The isomerization of DASA-MA on the paper surfaces under the promotion of ester-contained molecules was investigated by impregnation treatment. For example, to investigate the promotion by GTA, four 100 mL portions of $1 \mathrm{mg} / \mathrm{mL}$ DASA-MA/DCM solution were prepared, the amount of DASA-MA in each portion of the solution was 100 mg , followed by adding $0 \mathrm{mg}, 100 \mathrm{mg}, 200 \mathrm{mg}$, and 500 mg of GTA sequentially to the solution, and followed by impregnating the papers to the above solution for 30 s and dried in the dark at room temperature for 3 min . The samples were named $0,1,2$ and 5 , respectively, based on the mass ratio of GTA:DASA-MA.

Due to each scanning process taking 85 s , the real-time counting method was used to capture the peak reflectance, to get the reflectance at a specific time $\left(\mathrm{R}_{\mathrm{t}}\right)$, DASAs in cyclic do not absorb in the visible light region, ${ }^{3-6}$ therefore, the linear-to-cyclic isomerization induces the increase in reflectance. Therefore, the portion of cyclic DASAs at any given time $\left(C_{t}\right)$ was obtained by the following equation.

$$
\begin{equation*}
C_{t}=\frac{R_{0 s}-R_{t}}{R_{\text {Paper }-} R_{0 s}} \times 100 \% \tag{1}
\end{equation*}
$$

Fig. S4. Time-dependent linear-to-cyclic ($520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}$) isomerization of DASA-MA on the paper surface using $\mathbf{H H}$ as the additives $\mathbf{(H H / D A S A - M A ~}=0-5$ in weight ratio).

Fig. S5. Time-dependent linear-to-cyclic ($520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}$) isomerization of DASA-MA on the paper surface using $\mathbf{H B}$ as the additives (HB/DASA-MA $=0-5$ in weight ratio).

Fig. S6. Time-dependent linear-to-cyclic ($520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}$) isomerization of DASA-MA on the paper surface using TDG as the additives (TDG/DASA-MA $=0-5$ in weight ratio).

Fig. S7. Summarization of reflectance changes (left, \%) and cyclic content (right, \%) of DASA-MA with or without the promotion of $2 \mathrm{mg} / \mathrm{mg}$ (Ester-contained molecules/DASA-MA) under 40 $\mathrm{mW} / \mathrm{cm}^{2} 520 \mathrm{~nm}$ irradiation for 300 s .

4. DFT calculations

Geometry optimizations were performed with the Gaussian 16 program suite ${ }^{7}$ using the density functional theory (DFT) with the B3LYP(D3) exchange-correlational functionals ${ }^{8}$ and employing the TZVP basis setfor all atoms. ${ }^{9,10}$ The obtained stationary points were characterized by frequency calculations. The calculated geometries were shown in section 14.

Fig. S8. Schematic illustration of the calculated molecular structure of DASA-MA in the A" state surrounded by GTA, HH, HB and TGD.

5. Interrelationship between DFT calculations and isomerization kinetics

Fig. S9. Calculated decreased length of the intramolecular hydrogen bond of DASA-MA with various esters (left red axis); the linear-to-cyclic isomerization efficiency of DASA-MA with various esters (1:1 in weight ratio) after irradiation at $520 \mathrm{~nm}\left(40 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ for 150 s (right black axis); calculated $\mathrm{N}_{\mathrm{Ester}} / \mathrm{M}$ of various esters (right blue axis).

Five main intermediates are involved during the linear-to-cyclic photoisomerization of DASAMA (Fig. 2a). The intramolecular proton transfer from the hydroxyl group on the triene π-bridge to the carbonyl group on the electron-withdrawing moiety is critically important for the cyclization ${ }^{1}$. Therefore, the length of the intramolecular hydrogen bond closely affects the proton transfer.

The calculated intramolecular hydrogen bond length follows the order of GTA $<\mathbf{T G D}<\mathbf{H H}<$ HB, which was inferred based on well-established principles and assumptions. However, the theoretical predictions are based on simplified models and may not capture all the complexities of
real-world systems. A more in-depth analysis was conducted based on the contents of ester groups of the additives with the same weight.

Adding esters obviously decreases the hydrogen bond length as well as promoting the photoisomerization (Fig. S9). The promoting effect could be categorized into three stages: (1) In the absence of additives (bond length of $\sim 164.3 \mathrm{pm}$), only $\sim 14 \%$ linear DASA-MA isomerize to cyclic after 520 nm green light irradiation ($40 \mathrm{~mW} / \mathrm{cm}^{2}$) for 150 s (grey region in Fig. S9); (2) Adding GTA decreases the hydrogen bond length by 2 pm , and the linear-to-cyclic transition efficiency sharply reaches $\sim 80 \%$ (blue region in Fig. S9); (3) The other additives (TGD, HH and HB) decreased the hydrogen bond length by $0.3-1 \mathrm{pm}$ promote the linear-to-cyclic transition efficiency to $30-50 \%$ (red region in Fig. S9). Therefore, the promoting effect of the photoisomerization exhibits semiquantitative interrelationship with the decreased value of hydrogen bond length.

In the experiments, the amount of ester-containing additives was determined based on the mass ratio. However, it's important to note that each additive contains a varying number of ester groups as well as a distinct relative molecular mass. To further quantitatively investigate the relationship between experimental and simulation results, the $\mathrm{N}_{\mathrm{Ester}} / \mathrm{M}$ (the amount of the ester groups divided by corresponding molecular weight) was considered, indicating the molar quantity of ester groups on the additives with equal weight (Equation S1).

$$
\frac{N_{\text {Ester }}}{M}=\frac{m}{M} \times N_{\text {Ester }}
$$

where $\mathrm{N}_{\text {Ester }}$ indicates the number of ester groups on each molecule; M represents the molecular weight; m represents the mass of the additives.

GTA with 3 ester groups shows the highest value of $\mathrm{N}_{\mathrm{Ester}} / \mathrm{M}(\sim 0.013)$, indicating the strongest contribution of esters (blue line in Fig. S9). On the contrary, TGD, HB and HH with 1 or 2 ester groups exhibit lower values of $\mathrm{N}_{\mathrm{Ester}} / \mathrm{M}$. These are in good accordance with the results of promoting effect of photoisomerization of DASA-MA. Therefore, both the length of intramolecular hydrogen bond and the content of ester groups affect the linear-to-cyclic isomerization of DASA-MA.

6. Solvatochromism of DASA-MA

Fig. S10. Normalized reflectance spectra of paper after impregnation in $1 \mathrm{mg} / \mathrm{mL}$ DASA-MA/DCM solution (blue) and printed with $300 \mathrm{mg} / \mathrm{mL}$ GTA/EtOH ink (red). Inner show the images of the area with (inner circle) and without (outside the circle) GTA/EtOH ink,

Fig. S11. Normalized reflectance spectra of paper after impregnation in $1 \mathrm{mg} / 20 \mathrm{mg} / \mathrm{mL}$ DASAMA/PMMA/DCM solution (blue) and printed with $300 \mathrm{mg} / \mathrm{mL}$ GTA/EtOH ink (red). Inner show the images of the area with (inner circle) and without (outside the circle) GTA/EtOH ink.

The boiling point of GTA is $258-260^{\circ} \mathrm{C}$. Therefore, GTA is deposited on paper surface after printing, which promotes the linear-to-cyclic isomerization of DASA-MA. The reflectance spectra of DASA-MA on paper surface with and without the addition of GTA $(1 \mathrm{mg} / \mathrm{mL})$ were compared (Fig. S12). The addition of GTA does not lead to any significant changes in the reflectance spectra. Nevertheless, upon the addition of PMMA, there is an increase of reflectance between 200-300 nm, and a notable reduction of the full width at half maximum (FWHM) of the reflectance in visible light region. Therefore, the intermolecular interaction between GTA and DASA-MA might be too weak to be recognized by reflectance spectra.

Fig. S12. Reflectance spectra of paper treated with DASA-MA/DCM $=1 \mathrm{mg} / 1 \mathrm{~mL}$ (black), DASAMA/GTA/DCM $=1 \mathrm{mg} / 1 \mathrm{mg} / 1 \mathrm{~mL}$ (red) and DASA-MA/GTA/PMMA $=1 \mathrm{mg} / 1 \mathrm{mg} / 20 \mathrm{mg} / 1 \mathrm{~mL}$ (blue) solutions.

The chemistry on paper surface was monitored by ATR-FTIR spectroscopy. After immersing the paper in a $1 \mathrm{mg} / \mathrm{mL}$ DASA-MA solution, there were no significant changes between $\sim 1600-1000$ cm^{-1}. Peaks attributed to the vibration of benzene rings and double bonds on the triene π-bridge of DASA-MA are observed in the fingerprint region at $\sim 825-710 \mathrm{~cm}^{-1}$ (Fig. S13). After introducing GTA, a broad peak at $\sim 1647 \mathrm{~cm}^{-1}$ emerges due to the vibration of $\mathrm{C}=\mathrm{O}$ of ester groups (Fig. S13).

Finally, with the introduction of PMMA, a distinct peak at $\sim 1733 \mathrm{~cm}^{-1}$ appears due to the vibration of $\mathrm{C}=\mathrm{O}$ (Fig. S13). Due to the weak signals of ATR-FTIR spectra, it is difficult to recognize the intermolecular interaction between the molecules.

Fig. S13. ATR-FTIR spectra of pure paper (black), paper treated with DASA-MA/DCM $=1 \mathrm{mg} / 1$ mL (red), DASA-MA/GTA/DCM $=1 \mathrm{mg} / 1 \mathrm{mg} / 1 \mathrm{~mL}$ (blue) and DASA-MA/GTA/PMMA $=1 \mathrm{mg} / 1$ $\mathrm{mg} / 20 \mathrm{mg} / 1 \mathrm{~mL}$ (gray) solutions.

7. Photoisomerization of DASA-MA on the PMMA pretreated paper surfaces

Fig. S14. Time-dependent linear-to-cyclic ($520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}$) isomerization of DASA-MA on PMMA pretreated paper surfaces using GTA as the additives (GTA/DASA-MA $=0-10$ in weight ratio).

8. Image processing for grayscale printing

First, the specified image (Fig. S16) is converted from an RGB image to a gray image in MATLAB using the following code,

```
rgbImage = imread('image.jpg');
grayImage = rgb2gray(rgbImage);
imshow(grayImage);
```

The above image was then converted grayscale image to 1,2 , 4 bit representation (Scheme 1a) in MATLAB through code,

```
gray_img(gray_img <= 127) = 0;
gray_img(gray_img > 127) = 255;
imshow(gray_img);
imwrite(gray_img,' 1bit.jpg', jpg');
gray_img(gray_img <= 42) = 0;
gray_img(gray_img > 42 & gray_img <= 127) = 85;
gray_img(gray_img > 128 & gray_img <= 213) = 170;
gray_img(gray_img > 213) = 255;
imshow(gray_img);
imwrite(gray_img,' . 2bit.jpg ',' jpg ');
ray_img(gray_img <= 7) = 0;
gray_img(gray_img >= 7 & gray_img <= 23) = 15;
gray_img(gray_img > 23 & gray_img <= 39) = 31;
gray_img(gray_img >= 39 & gray_img <= 55) = 47;
gray_img(gray_img > 55 & gray_img <= 71) = 63;
gray_img(gray_img >= 71 & gray_img <= 87) = 79;
gray_img(gray_img > 87 & gray_img <= 103) = 95;
gray_img(gray_img > 103 & gray_img <= 119) = 111;
gray_img(gray_img > 119 & gray_img <= 135) = 127;
gray_img(gray_img > 135 & gray_img <= 151) = 143;
gray_img(gray_img > 151 & gray_img <= 167) = 159;
gray_img(gray_img > 167 & gray_img <= 183) = 175;
gray_img(gray_img > 183 & gray_img <= 199) = 191;
```

gray_img(gray_img > 199 \& gray_img $<=215)=207$;
gray_img $($ gray_img $>215 \&$ gray_img $<=231)=223$;
gray_img(gray_img > $231 \&$ gray_img $<=247$) $=239$;
gray_img $($ gray_img $>247)=255$;
imshow(gray_img);
imwrite(gray_img,' 4bit.jpg','jpg');

Before printing, the above mentioned 1-8 bit images need to go through the reverse processing as below (Fig. S22),
grayImage $=$ imread('grayscale_image.jpg');
invertedImage $=255$ - grayImage;
imshow(invertedImage);
imwrite(invertedImage, 'inverted_image.jpg');

The code to output the histogram of the gray scale distribution (Fig. 3c-e, Fig. S24b and S17-S21) is as follows,

```
clear;clc;
    [FileName,FilePath]=uigetfile('*.jpg;*.png;*.tif;*.img;*.gif;');
str=[FilePath,FileName];
color_image=imread(str);
grayscale_image=rgb2gray(color_image);
imshow(grayscale_image);title('Original Grayscale Image');
histogram = imhist(grayscale_image);
figure;
bar(histogram);
title('Grayscale Histogram');
xlabel('Pixel Intensity');
ylabel('Frequency')
```


Fig. S15. The schematic illustration of grayscale printing.

Fig. S16. Photographic image of Jialing River (shot by Wang in Chongqing).

Fig. S17. Normalized brightness distributions of the raw image.

Fig. S18. Normalized brightness distributions of the 1-bit image.

Fig. S19. Normalized brightness distributions of the 2-bit image.

Fig. S20. Normalized brightness distributions of the 4-bit image.

Fig. S21. Normalized brightness distributions of the 8-bit image.

Fig. S22. Reversed 1-8 bit grayscale map.
9. Grayscale printing of GTA on PMMA pretreated DASA paper

Fig. S23. Video screenshots of uniform exposure (10,000 lux) PMMA pretreated $(0.02 \mathrm{~g} / \mathrm{mL}$) DASAMA $(1 \mathrm{mg} / \mathrm{mL})$ paper printed with $15-1500 \mathrm{mg} / \mathrm{mL}$ GTA/EtOH ink at $0-9 \mathrm{~min}$.

10. The relationships between grayscale bit depth and clarity

Fig. S24. (a) Video screenshots after white light exposure for 7 min and raw images for the 1-bit and 8-bit images, the photographic image of Chongqing was used; (b) Grayscale distribution plots of the video screenshots after white light exposure for 7 min and raw images for the 1 -bit and 8 -bit images. (c) Video screenshots after white light exposure for 7 min and raw images for the 1-bit and 8-bit images, the photographic image of lunar surface was used.

A trade-off exists between clarity and grayscale depth for the recording of grayscale images. The brightness of the images with low bit depth (1-bit) tends to locate in the lowest and highest regions, which results in a strong visual contrast to preserve the original images' outlines. However, these lead to a loss of grayscale details, such as the cloud formations in Fig. S24a and the brightness variations of lunar surface craters in Fig. S24c. This could be observed in the grayscale distribution, where both 1-bit images exhibit a significant gap between the bright and dark (Fig. S24b). Therefore, with the increase of grayscale depth, more detail could be recorded, while the clarity decreases.

11. The reversible isomerization of DASA-MA

Fig. S25. Reflectance spectra of paper impregnated with DASA-MA/GTA/PMMA/DCM solution $(1 \mathrm{mg} / 1 \mathrm{mg} / 20 \mathrm{mg} / 1 \mathrm{~mL})$ over time upon green light irradiation ($520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}$), inner shows the time-dependent linear-to-cyclic isomerization of the above sample, the reflectance at 556 nm was monitored.

Fig. S26. Reflectance spectra of paper impregnated with DASA-MA/GTA/PMMA/DCM solution $(1 \mathrm{mg} / 1 \mathrm{mg} / 20 \mathrm{mg} / 1 \mathrm{~mL})$ over time under dark, the paper was pre-treated by 20 min green light irradiation ($520 \mathrm{~nm}, 40 \mathrm{~mW} / \mathrm{cm}^{2}$), inner shows the time-dependent cyclic-to-linear isomerization of the above sample, the reflectance at 556 nm was monitored.

12. Crystal structure data for DASA-MA

Fig. S27. Crystal structure data for DASA-MA could be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif CCDC\# 2258697.

Table S1. Crystal data and structure refinement for DASA-MA.

CCDC number	2258697
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5}$
Formula weight	357.39
Temperature [K]	150(2)
Crystal system	monoclinic
Space group (number)	$P 2_{1} / \mathrm{C}$ (14)
$a[A ̊]$	9.87(3)
b [Å]	24.42(4)
$c[A ̊]$	7.70(2)
$\alpha\left[{ }^{\circ}\right]$	90
$\beta\left[{ }^{\circ}\right]$	98.161(17)
$\gamma\left[{ }^{\circ}\right]$	90
Volume [${ }^{\circ}{ }^{3}$]	1838(7)
Z	4
$\rho_{\text {calc }}\left[\mathrm{gcm}^{-3}\right]$	1.292
$\mu\left[\mathrm{mm}^{-1}\right]$	0.763
F(000)	760
Crystal size [mm^{3}]	$0.200 \times 0.100 \times 0.100$
Crystal colour	red
Crystal shape	block
Radiation	$\mathrm{CuK}_{\alpha}(\lambda=1.54184 \mathrm{~A}$)
2Θ range [${ }^{\circ}$]	7.24 to 133.50 (0.84 Å)
Index ranges	$-11 \leq h \leq 11$
Reflections collected	10742
Independent reflections	3228
Completeness to	99.2 \%
Data / Restraints /	3228/0/239
Goodness-of-fit on F^{2}	1.027
Final R indexes	$R_{1}=0.0752$
Final R indexes	$R_{1}=0.1257$
Largest peak/hole [e \AA^{-3}]	0.34/-0.27

Table S2. Atomic coordinates and Ueq [$\AA 2]$ for DASA-MA.

Atom	x	y	z	$U_{\text {eq }}$
C12	$0.9418(4)$	0.40329(16)	0.8694(5)	0.0409(9)
C11	$0.9046(4)$	0.43328(16)	0.7143(5)	0.0413(9)
H11	0.941062	0.418721	0.616227	0.050
C13	$1.0132(4)$	$0.35253(17)$	0.8531(5)	0.0422(9)
N1	0.6427(3)	0.60183(13)	0.1970(4)	0.0432(8)
C7	$0.7139(4)$	0.56009(16)	0.2713(5)	0.0433(9)
H7	0.761826	0.538571	0.197223	0.052
C10	0.8260(4)	0.47962(16)	0.6751(5)	0.0442(9)
C9	0.8049(4)	$0.49927(17)$	0.5027(5)	0.0429(9)
H9	0.848057	0.480263	0.417817	0.052
C15	$0.9278(4)$	$0.42212(17)$	1.0428(5)	0.0449(9)
C1	$0.5702(4)$	$0.63856(17)$	$0.2977(5)$	0.0448(9)
01	$1.0526(3)$	$0.32243(11)$	1.0022(4)	0.0457(7)
C8	$0.7262(4)$	0.54423(17)	0.4471(6)	0.0458(9)
H8	0.680700	0.564224	0.527589	0.055
C2	$0.6325(4)$	0.68667 (17)	0.3600(6)	0.0494(10)
H2	0.721803	0.695463	0.336397	0.059
C14	$0.9864(4)$	$0.33171(17)$	1.1523(6)	0.0487(10)
02	0.9707(3)	0.38921(12)	1.1816(4)	$0.0504(7)$
C16	$0.6540(4)$	0.61765(18)	0.0129(6)	0.0505(10)
H16A	0.710675	0.590106	-0.037756	0.061
H16B	0.701896	0.653275	0.013800	0.061
05	0.8844(3)	0.46759(12)	1.0827(4)	0.0534(8)
С3	$0.5631(5)$	$0.72202(18)$	0.4575(6)	0.0551(11)
H3	0.606062	0.754689	0.504248	0.066
04	1.0463(3)	$0.33456(13)$	0.7174(4)	0.0564(8)
03	0.7615(3)	0.50708(13)	0.7937(4)	0.0572(8)
H3A	0.789446	0.495401	0.895140	0.086
C17	0.5177(5)	0.62234(19)	-0.1043(6)	0.0562(11)
H17A	0.458081	0.647766	-0.049498	0.067
H17B	0.532701	0.638207	-0.218314	0.067
C6	0.4389(4)	$0.6263(2)$	$0.3274(7)$	0.0577(12)
H6	0.396307	0.593372	0.282299	0.069
C4	$0.4325(5)$	0.7098(2)	0.4864(6)	0.0581(12)
H4	0.384865	0.734640	0.551096	0.070
C19	$1.0817(6)$	0.3102(2)	1.3048(6)	0.0618(12)
H19A	1.044181	0.317726	1.413554	0.093
H19B	1.170917	0.328047	1.309181	0.093
H19C	1.092453	0.270538	1.291778	0.093
C20	0.8479(5)	0.3042(2)	1.1251(7)	0.0617(12)
H20A	0.800071	0.312009	1.225483	0.093
H2OB	0.859849	0.264602	1.114568	0.093
H20C	0.794098	0.318309	1.017640	0.093
C5	$0.3695(5)$	0.6621(2)	$0.4231(7)$	0.0648(13)
H5	0.279356	0.653854	0.444728	0.078
C18	0.4459(5)	$0.5684(2)$	-0.1362(7)	0.0647(13)
H18A	0.360925	0.573524	-0.217285	0.097
H18B	0.424516	0.553681	-0.024806	0.097
H18C	0.505289	0.542636	-0.187471	0.097

[^0]Table S3. Bond lengths and angles for DASA-MA.

Atom-Atom	Length [A]	C20-H2OC	0.9800
C12-C11	1.405(6)	C5-H5	0.9500
C12-C15	1.437(7)	C18-H18A	0.9800
C12-C13	1.440(6)	C18-H18B	0.9800
C11-C10	1.381(6)	C18-H18C	0.9800
C11-H11	0.9500		
C13-04	1.220(6)	Atom-Atom-Atom	Angle [${ }^{\text {] }}$]
C13-01	1.372(5)	C11-C12-C15	125.1(4)
N1-C7	1.321(5)	C11-C12-C13	116.5(4)
N1-C1	1.441(6)	C15-C12-C13	118.0(3)
N1-C16	1.489(7)	C10-C11-C12	133.1(4)
C7-C8	1.397(7)	C10-C11-H11	113.4
C7-H7	0.9500	C12-C11-H11	113.4
C10-03	1.361(5)	O4-C13-O1	116.4(4)
C10-C9	1.399(7)	O4-C13-C12	125.3(4)
C9-C8	1.378(6)	O1-C13-C12	118.2(4)
C9-H9	0.9500	C7-N1-C1	121.4(4)
C15-05	1.244(5)	C7-N1-C16	120.4(4)
C15-02	$1.356(5)$	C1-N1-C16	117.4(3)
C1-C2	1.380(6)	N1-C7-C8	127.0(4)
C1-C6	1.380(7)	N1-C7-H7	116.5
O1-C14	1.425(6)	C8-C7-H7	116.5
C8-H8	0.9500	O3-C10-C11	124.0(4)
C2-C3	1.387(7)	O3-C10-C9	116.6(4)
C2-H2	0.9500	C11-C10-C9	119.4(4)
C14-02	1.434(6)	C8-C9-C10	124.7(4)
C14-C19	1.492(7)	C8-C9-H9	117.7
C14-C20	1.510(7)	C10-C9-H9	117.7
C16-C17	1.514(7)	O5-C15-02	114.5(4)
C16-H16A	0.9900	O5-C15-C12	126.6(4)
C16-H16B	0.9900	O2-C15-C12	118.8(4)
C3-C4	1.373(8)	C2-C1-C6	120.7(4)
C3-H3	0.9500	C2-C1-N1	119.1(4)
O3-H3A	0.8400	C6-C1-N1	120.3(4)
C17-C18	1.500(7)	C13-01-C14	119.0(3)
C17-H17A	0.9900	C9-C8-C7	119.3(4)
C17-H17B	0.9900	C9-C8-H8	120.4
C6-C5	1.387(7)	C7-C8-H8	120.4
C6-H6	0.9500	C1-C2-C3	119.2(4)
C4-C5	1.377(7)	C1-C2-H2	120.4
C4-H4	0.9500	C3-C2-H2	120.4
C19-H19A	0.9800	O1-C14-02	110.9(3)
C19-H19B	0.9800	O1-C14-C19	105.8(4)
C19-H19C	0.9800	O2-C14-C19	107.0(4)
C20-H2OA	0.9800	O1-C14-C20	109.1(4)
C20-H2OB	0.9800	O2-C14-C20	109.9(4)

C19-C14-C2O	$114.2(4)$	C5-C4-H4	119.5
C15-O2-C14	$119.0(3)$	C14-C19-H19A	109.5
N1-C16-C17	$114.0(4)$	C14-C19-H19B	109.5
N1-C16-H16A	108.8	H19A-C19-H19B	109.5
C17-C16-H16A	108.8	C14-C19-H19C	109.5
N1-C16-H16B	108.8	H19A-C19-H19C	109.5
C17-C16-H16B	108.8	H19B-C19-H19C	109.5
H16A-C16-H16B	107.6	C14-C20-H2OA	109.5
C4-C3-C2	$120.0(4)$	C14-C20-H2OB	109.5
C4-C3-H3	120.0	H20A-C20-H2OB	109.5
C2-C3-H3	120.0	C14-C20-H20C	109.5
C10-O3-H3A	109.5	H20A-C20-H20C	109.5
C18-C17-C16	$113.0(4)$	H20B-C20-H2OC	109.5
C18-C17-H17A	109.0	C4-C5-C6	$119.3(5)$
C16-C17-H17A	109.0	C4-C5-H5	120.4
C18-C17-H17B	109.0	C6-C5-H5	120.4
C16-C17-H17B	109.0	C17-C18-H18A	109.5
H17A-C17-H17B	107.8	C17-C18-H18B	109.5
C1-C6-C5	$119.9(4)$	H18A-C18-H18B	109.5
C1-C6-H6	120.1	C17-C18-H18C	109.5
C5-C6-H6	120.1	H18A-C18-H18C	109.5
C3-C4-C5	$120.9(4)$	H18B-C18-H18C	109.5
C3-C4-H4	119.5		

Table S4. Torsion angles for DASA-MA.

Atom-Atom-Atom-Atom	Torsion Angle [${ }^{\circ}$]	C10-C9-C8-C7	179.5(4)
C15-C12-C11-C10	-14.6(7)	N1-C7-C8-C9	179.9(4)
C13-C12-C11-C10	172.7(4)	C6-C1-C2-C3	1.8(7)
C11-C12-C13-O4	1.9(6)	N1-C1-C2-C3	-179.8(4)
C15-C12-C13-O4	-171.3(4)	C13-O1-C14-02	-43.8(5)
C11-C12-C13-01	179.2(3)	C13-01-C14-C19	-159.4(3)
C15-C12-C13-01	6.0(5)	C13-O1-C14-C20	77.4(5)
C1-N1-C7-C8	2.4(6)	O5-C15-O2-C14	162.9(4)
C16-N1-C7-C8	172.2(4)	C12-C15-O2-C14	-20.0(5)
C12-C11-C10-O3	-1.1(7)	O1-C14-O2-C15	43.8(5)
C12-C11-C10-C9	-178.4(4)	C19-C14-O2-C15	158.6(4)
O3-C10-C9-C8	0.9(6)	C20-C14-O2-C15	-76.9(5)
C11-C10-C9-C8	178.5(4)	C7-N1-C16-C17	127.8(4)
C11-C12-C15-O5	-1.8(7)	C1-N1-C16-C17	-61.9(5)
C13-C12-C15-O5	170.7(4)	C1-C2-C3-C4	-2.0(7)
C11-C12-C15-O2	-178.6(4)	N1-C16-C17-C18	-67.0(5)
C13-C12-C15-O2	-6.0(5)	C2-C1-C6-C5	-1.1(7)
C7-N1-C1-C2	95.3(5)	N1-C1-C6-C5	-179.4(4)
C16-N1-C1-C2	-74.8(5)	C2-C3-C4-C5	1.4(7)
C7-N1-C1-C6	-86.3(5)	C3-C4-C5-C6	-0.6(8)
C16-N1-C1-C6	103.6(5)	C1-C6-C5-C4	0.4(8)
O4-C13-O1-C14	-162.3(4)		
C12-C13-O1-C14	20.1(5)		

Table S5. Hydrogen bonds for DASA-MA.

D-H \cdots [A]	d(D-H) [Å]	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$ [Å]	d($\mathrm{D} \cdots \mathrm{A})$ [A]	<(DHA) [${ }^{\circ}$]
$\mathrm{C} 7-\mathrm{H7} \cdots \mathrm{O} 5^{\# 1}$	0.95	2.36	3.278(7)	163.4
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\# 2}$	0.95	2.49	3.349(10)	149.8
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O}^{\# 1}$	0.99	2.50	3.431(7)	157.4
C16-H16B $\cdots \mathrm{O}^{\# 2}$	0.99	2.52	3.263(9)	132.1
O3-H3A $\cdots 5$	0.84	1.74	2.566(6)	165.6
C19-H19A $\cdots{ }^{\# 3}$	0.98	2.37	3.299(10)	157.5
C19-H19C $\cdots{ }^{\text {O }}{ }^{\# 4}$	0.98	2.66	3.605(8)	163.5

13. NMR data and mass spectrum of DASA-MA

Fig. S28. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz at 298 K) of DASA-MA ([DASA-MA]=10 mM in CDCl_{3}).

Fig. S29. ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz at 298 K) of DASA-MA ([DASA-MA] $=10$ mM in CDCl_{3}).

Fig. S30. Matrix-assisted laser ionization-time of flight (MALDI-TOF) mass spectrum of DASA-MA. m/z: M+ calcd. for 357.16, found 357.35.

14. References

1. X. Xiong, F. Sun, A. Gao, Z. Wang, Y. Duan, Z. Yao, C. He, R. Han, X. Deng and Y. Zheng, Chem. Eng. J., 2022, 450, 138090.
2. F. Sun, X. Xiong, A. Gao, Y. Duan, L. Mao, L. Gu, Z. Wang, C. He, X. Deng and Y. Zheng, Chem. Eng. J., 2022, 427, 132037.
3. S. Helmy, F. A. Leibfarth, S. Oh, J. E. Poelma, C. J. Hawker and J. Read de Alaniz, J. Am. Chem. Soc., 2014, 136, 8169-8172.
4. M. M. Lerch, W. Szymański and B. L. Feringa, Chem. Soc. Rev., 2018, 47, 19101937.
5. J. R. Hemmer, S. O. Poelma, N. Treat, Z. A. Page, N. D. Dolinski, Y. J. Diaz, W. Tomlinson, K. D. Clark, J. P. Hooper and C. Hawker, J. Am. Chem. Soc., 2016, 138, 13960-13966.
6. N. Mallo, P. T. Brown, H. Iranmanesh, T. S. MacDonald, M. J. Teusner, J. B. Harper, G. E. Ball and J. E. Beves, Chem. Commun., 2016, 52, 13576-13579.
7. Gaussian 16, R. A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT., 2016.
8. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
9. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-77.
10. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-35.

15. Calculated geometries:

H	6.21112	-1.35026	2.05409
H	1.19677	1.3073	0.61652
H	1.18207	3.75326	0.40079
H	2.99136	4.92054	-0.84726
H	4.80499	3.5918	-1.90425
H	4.796	1.12884	-1.74147
H	-2.70621	-3.04045	-1.10811
H	2.5194	-3.06818	-0.38241
H	1.07282	-0.45673	-1.11531

GTA

C
O
C
C
C
C
O
C
C
O
O
O
C
C
O
H
H
H
H
H
H
H
H
H
H
H
H
H
H
C
C
C

-1.11423	3.66001	-1.95161
-0.80048	3.54255	-3.35172
-0.85354	5.0836	-1.48518
-2.56307	3.23547	-1.80878
0.48018	3.30415	-3.69897
0.63236	3.26998	-5.18658
-1.60411	6.02142	-2.27589
-0.96697	6.585	-3.33343
-1.92097	7.40845	-4.1482
0.20368	6.42274	-3.57401
1.36088	3.12719	-2.88617
-2.68502	1.85792	-2.18325
-3.27913	1.58218	-3.38653
-3.1598	0.12567	-3.71345
-3.8039	2.4221	-4.06889
-0.46689	2.99269	-1.38415
-1.19325	5.21129	-0.4578
0.20689	5.31077	-1.55408
-2.86622	3.31027	-0.76409
-3.21313	3.84943	-2.42837
0.07756	4.09142	-5.63628
1.68247	3.32619	-5.45542
0.22336	2.33164	-5.56482
-2.5695	6.73313	-4.71097
-2.55641	8.01595	-3.50476
-1.36418	8.03416	-4.84047
-3.25414	-0.48711	-2.8184
-3.91699	-0.14173	-4.44638
-2.1692	-0.06326	-4.13615
-1.26296	-2.91887	-0.61637
0.1208	-2.90667	-0.21439
0.50604	-3.50087	1.06963

O
C
O
O
O
C
C
C
C
C
O
C
C
N
C
C
C
C
C
C
C
C
C

H
H
H
H
H
H
H
H

H
H
H

H
H
H
H
H

H
H
H

H
H

-0.52083	-3.97484	1.85097
-1.81207	-3.40408	1.67455
-2.16996	-3.38108	0.27834
-1.69511	-2.56068	-1.71614
1.63902	-3.63908	1.46494
-1.84825	-1.98543	2.22462
-2.79863	-4.33223	2.34426
1.16388	-2.34752	-0.94999
1.2753	-1.89511	-2.27613
2.43674	-1.23706	-2.68572
0.34798	-2.14827	-3.23558
3.33683	-0.56483	-1.8514
2.96454	-0.06709	-0.61796
3.76637	0.48102	0.31196
5.18203	0.34121	0.29143
3.12935	1.26307	1.38783
2.60262	2.62224	0.93265
1.92437	3.36489	2.07972
6.00281	1.45553	0.46086
7.38451	1.30338	0.47491
7.95472	0.04622	0.31294
7.13275	-1.06544	0.14762
5.7527	-0.92394	0.14252
-1.10471	-1.36066	1.72931
-2.83519	-1.55706	2.05552
-1.63155	-2.00556	3.29243
-3.80974	-3.94561	2.22217
-2.73419	-5.321	1.89303
-2.56691	-4.40778	3.40576
2.09879	-2.33658	-0.40652
2.61981	-1.22325	-3.75547
-0.50099	-2.41674	-2.80552
4.33733	-0.366	-2.21668
1.91166	-0.02407	-0.36411
2.30096	0.66811	1.77878
3.86234	1.37366	2.1859
3.42172	3.22157	0.52667
1.88688	2.473	0.12317
1.4842	4.2983	1.72896
1.12357	2.75761	2.50827
2.63058	3.59696	2.88106
5.56388	2.43766	0.57038
8.01508	2.17389	0.60374
9.0308	-0.06882	0.32069
	39	

H

H

HH
C
C
C
O
C
O
O
O
C
C
C
C
C
O
C
C
N
C
C
C
C
C
C
C
C
C
H
H
H
H
H
H
H
H
H
H
H
H
H
C

H

H
$\begin{array}{lll}7.56677 & -2.05108 & 0.03813 \\ 5.11182 & -1.78884 & 0.03882\end{array}$

1.92061	-0.89249	-1.21187
0.56426	-1.34644	-0.97192
0.34871	-2.60814	-0.24923
1.45393	-3.16892	0.33215
2.57004	-2.32083	0.60654
2.90901	-1.55702	-0.56488
2.26209	-0.01728	-1.99434
-0.71332	-3.17757	-0.14196
3.75103	-3.22548	0.87127
2.25541	-1.38586	1.76642
-0.59281	-0.71704	-1.41051
-0.85873	0.50456	-2.05477
-2.16935	0.95982	-2.18107
0.09094	1.29632	-2.60914
-3.32113	0.54438	-1.4885
-3.31362	-0.09836	-0.27458
-4.36963	-0.61851	0.38111
-5.64579	-0.77603	-0.23396
-4.17794	-1.07737	1.76663
-4.03426	0.05239	2.78445
-3.7957	-0.48902	4.19166
-6.77887	-0.22002	0.35567
-8.02578	-0.40526	-0.23114
-8.14455	-1.13369	-1.40901
-7.00954	-1.6858	-1.99691
-5.76304	-1.51382	-1.41145
3.92763	-3.85852	0.00328
4.63932	-2.62538	1.06513
3.54452	-3.85335	1.73679
3.1077	-0.73904	1.96245
1.4003	-0.75155	1.53751
2.03092	-1.9767	2.65376
-1.47482	-1.30884	-1.21671
-2.29583	1.76964	-2.89285
0.97419	0.85562	-2.5321
-4.27948	0.8062	-1.92025
-2.38434	-0.17677	0.27394
-5.02843	-1.71041	2.01552
-3.28738	-1.71346	1.78481

H
H
H
H

H
H
H
H
H
H
C
C
C
C
C
C
O
C
C
C
C
C
C
O
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H
H

-3.20585	0.69941	2.48741
-4.93097	0.67655	2.76719
-3.68748	0.32451	4.91011
-4.62699	-1.11659	4.52204
-2.88664	-1.09362	4.23315
-6.68261	0.36331	1.26141
-8.90308	0.03041	0.2297
-9.11554	-1.27308	-1.86623
-7.0961	-2.26391	-2.90799
-4.87905	-1.95299	-1.85397
9.07818	2.74546	-1.90702
7.66455	2.18448	-2.0477
6.66317	3.21149	-2.57376
5.24631	2.65861	-2.71504
4.27371	3.70538	-3.24157
2.84956	3.21836	-3.33655
2.07096	4.12245	-3.97398
0.65678	3.82446	-4.00232
-0.05436	4.97671	-4.67799
-1.56848	4.77128	-4.69325
-2.31708	5.90978	-5.38156
-3.836	5.78754	-5.281
-4.57779	6.96277	-5.91451
2.43138	2.17471	-2.90167
9.77281	1.99219	-1.52959
9.45935	3.09704	-2.86952
9.09766	3.59191	-1.21549
7.31908	1.81181	-1.07802
7.67755	1.31941	-2.71889
7.00952	3.58575	-3.54498
6.64861	4.0774	-1.90124
4.89006	2.29499	-1.74861
5.25038	1.79122	-3.38117
4.57802	4.06709	-4.22834
4.25591	4.58052	-2.58692
0.5021	2.88586	-4.53809
0.30744	3.69017	-2.97869
0.18027	5.90109	-4.14364
0.32451	5.09185	-5.69831
-1.80812	3.82566	-5.19196
-1.92026	4.67747	-3.66214
-2.0106	6.85743	-4.93154
-2.02233	5.96135	-6.43624
-4.15501	4.85172	-5.7513

H
H
H
H

HB

C
C
C
O

C
O
O
O
C
C
C
C
C
O
C
C
N
C
C
C
C
C
C
C

C
C
H

H
H
H
H
H
H
H
H
H
H

C

,

C

H

-4.11453	5.70961	-4.2256
-5.66012	6.82992	-5.85792
-4.33073	7.89698	-5.40632
-4.31052	7.07658	-6.96863

-1.83318	0.83286	-1.44038
-0.50618	1.3667	-1.18591
-0.38162	2.68516	-0.54461
-1.53946	3.22638	-0.05519
-2.60652	2.33172	0.26716
-2.87188	1.45934	-0.84808
-2.1006	-0.10098	-2.18431
0.64493	3.31513	-0.44159
-3.85016	3.16884	0.44432
-2.25238	1.50991	1.49834
0.69198	0.75873	-1.52692
1.0305	-0.45617	-2.15924
2.35717	-0.87253	-2.20424
0.14391	-1.24918	-2.80543
3.43222	-0.4456	-1.40278
3.28887	0.11553	-0.15909
4.25691	0.63924	0.62385
5.55725	0.94785	0.13618
3.93602	0.89611	2.03606
3.8165	-0.36792	2.88569
3.45664	-0.04053	4.33243
6.68717	0.51875	0.83136
7.95505	0.85721	0.37241
8.10417	1.61302	-0.78426
6.97433	2.0396	-1.47746
5.70529	1.71568	-1.01994
-4.04981	3.722	-0.47195
-4.69757	2.52401	0.66786
-3.70417	3.87202	1.26316
-3.06077	0.81846	1.71861
-1.34231	0.93356	1.33579
-2.09873	2.17887	2.34443
1.5475	1.37155	-1.28067
2.56457	-1.65168	-2.93085
-0.76394	-0.85811	-2.731
4.43456	-0.63533	-1.76755
2.31283	0.1046	0.30909

H

H
H
H

H
H
H
H
H
H
H
H
C
C
C
C
C
C
C
O
C
C
C
C
C
C
O
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

H
H

4.70947	1.55361	2.43013
2.99527	1.45468	2.06642
3.05689	-1.02068	2.44978
4.75577	-0.925	2.84597
3.36242	-0.94962	4.92776
4.22005	0.58619	4.79995
2.50613	0.49542	4.3909
6.57605	-0.08575	1.72122
8.82712	0.5186	0.91719
9.09213	1.87178	-1.1422
7.08033	2.64126	-2.3711
4.82586	2.06354	-1.54444
-3.68064	-3.79546	-3.32239
-3.90413	-3.53979	-1.96996
-4.93178	-4.18903	-1.29993
-5.75411	-5.08283	-1.98111
-5.54324	-5.32809	-3.33458
-4.50443	-4.69196	-4.00348
-2.57271	-3.06704	-4.00269
-2.12582	-3.73092	-5.08891
-1.03146	-3.11712	-5.81055
-0.41756	-4.17133	-6.70661
0.75018	-3.61804	-7.52237
1.3973	-4.67405	-8.4159
2.63085	-4.16723	-9.1601
3.27757	-5.22819	-10.04828
-2.13117	-2.00809	-3.63001
-3.25967	-2.83624	-1.46083
-5.0938	-3.99797	-0.24675
-6.55922	-5.58463	-1.45899
-6.18754	-6.01552	-3.86816
-4.335	-4.87554	-5.05536
-1.42613	-2.27659	-6.38647
-0.31155	-2.73358	-5.09075
-0.06509	-4.998	-6.08395
-1.18527	-4.57846	-7.37204
0.40478	-2.78247	-8.14109
1.50208	-3.21465	-6.83898
1.6836	-5.53102	-7.79957
0.66133	-5.04623	-9.13862
2.35376	-3.29839	-9.76606
3.36165	-3.80907	-8.42861
4.14038	-4.82798	-10.5847
3.62049	-6.07723	-9.4539

$\begin{array}{llll}\mathrm{H} & 2.5695 & -5.60506 & -10.79142\end{array}$

TGD

C
C
C
O
C
O
O
O
C
C
C
C
C
O
C
C
N
C
C
C
C
C
C
C
C
C
H
H
H
H

H
H
H
H
H
H
H
H

H
H

0.50572	-0.21423	-1.74565
-0.65217	-1.0167	-1.43454
-0.48012	-2.271	-0.69322
0.7797	-2.51688	-0.20865
1.63847	-1.40125	0.01273
1.67792	-0.56215	-1.16159
0.54139	0.74417	-2.51239
-1.34255	-3.09632	-0.50393
3.03581	-1.95434	0.17579
1.15737	-0.58502	1.20536
-1.96507	-0.69587	-1.75868
-2.56627	0.33359	-2.50736
-3.95472	0.4689	-2.48534
-1.89086	1.18747	-3.31474
-4.78307	0.03004	-1.44296
-4.29326	-0.12788	-0.16215
-4.92178	-0.67465	0.89414
-6.09921	-1.46454	0.76807
-4.32485	-0.46895	2.22444
-4.48295	0.95448	2.75453
-3.76642	1.13739	4.0896
-7.21606	-1.19112	1.55571
-8.34896	-1.99038	1.45315
-8.37698	-3.05609	0.5611
-7.25885	-3.32777	-0.22308
-6.12034	-2.54145	-0.11883
3.29039	-2.55499	-0.69597
3.75469	-1.14179	0.26529
3.07907	-2.58112	1.06563
1.82909	0.25397	1.3797
0.15668	-0.18834	1.03081
1.13419	-1.22161	2.08941
-2.66913	-1.42891	-1.39243
-4.40008	1.00741	-3.31594
-0.91667	1.05022	-3.18573
-5.83757	-0.13059	-1.63334
-3.32218	0.29411	0.07186
-4.78063	-1.18966	2.90182
-3.2623	-0.71637	2.15149
-4.07102	1.64736	2.01778

H
H
H
H

H
H
H

H
H

C
C
O
C
C
O
C
C
O
C
C
O
C
C
O
O
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H

-5.54544	1.1913	2.85725
-3.88727	2.15529	4.46294
-4.15671	0.45564	4.84948
-2.69609	0.94611	3.98532
-7.20161	-0.35183	2.23801
-9.2138	-1.77176	2.06656
-9.26111	-3.67505	0.48044
-7.26587	-4.1662	-0.90776
-5.24031	-2.76451	-0.70684
2.22228	3.61443	-3.9345
0.92857	3.24155	-4.595
0.79483	3.85373	-5.78681
-0.45042	3.69341	-6.49808
-1.30293	4.93129	-6.28921
-2.54128	4.68533	-6.93372
-3.50056	5.70791	-6.70263
-4.80135	5.24304	-7.3262
-5.82491	6.11937	-6.89016
-7.09911	5.78169	-7.40114
-8.0849	6.77683	-6.82826
-9.37733	6.41038	-7.34876
-10.41831	7.18395	-6.96119
-11.7052	6.69627	-7.5691
0.09348	2.50038	-4.12202
-10.30021	8.13068	-6.22631
2.0524	4.52295	-3.3509
2.52766	2.8263	-3.25057
2.99665	3.81338	-4.67244
-0.18534	3.56895	-7.54618
-0.97108	2.8083	-6.14028
-1.44745	5.11472	-5.22081
-0.80898	5.81259	-6.717
-3.64144	5.86703	-5.62943
-3.17442	6.65442	-7.14987
-4.73021	5.2412	-8.42107
-5.01077	4.21485	-7.00298
-7.10621	5.82959	-8.49775
-7.379	4.76157	-7.10633
-8.09662	6.73514	-5.73891
-7.83639	7.79458	-7.1292
-11.63263	6.71236	-8.65758
-11.89167	5.66428	-7.26832
-12.52318	7.33203	-7.24191

[^0]: $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalized $U_{i j}$ tensor.

