Supporting Information

Internal charge-transfer in metal-catalyzed oxidative addition reaction turns an inhibitive electric field stimulus to catalytic.

Karthik Gopakumar,^a Vivekananda Samantaray,^{ab} Mithun Kumar Prusty,^{ab} Lopita Swain^a and Rajeev Ramanan^{*a}

^a Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008 India

^b Equal contribution with the first author

To whom correspondence should be addressed. E-mail: rrajeev@nitrkl.ac.in

Table of Contents

SI. No.	Content	Page No.
1	Computational Details	3
2	List of Tables	4
S1	Energies in Hartree for TS s of all PtCl ₂ (L)(CH ₄) model systems with variable <i>trans</i> -ligands under applied EEF (mV/Å).	4
S2	Energies in Hartree for the RC s of all PtCl ₂ (L)(CH ₄) model systems with variable <i>trans</i> -ligands under applied EEF (mV/Å).	4
S3	Dipole moment along F_z (μ_z) in Debye for the TS s of all PtCl ₂ (L)(CH ₄) model systems with variable <i>trans</i> -ligands under applied EEF (mV/Å).	5
S4	Dipole moment along F_z (μ_z) in Debye for the RC s of all PtCl ₂ (L)(CH ₄) model systems with variable <i>trans</i> -ligands under applied EEF (mV/Å).	5
S5	HOMO-LUMO energies in eV for the catalyst (PtCl ₂ (L)) and substrate (CH ₄) systems with variable <i>trans</i> -ligands under applied EEF (mV/Å).	6
S6	The values of ERP, maximum barrier under EEF and μ_z for pristine reaction for PtCl ₂ (L)(CH ₄) systems with variable <i>trans</i> -ligands under applied EEF (mV/Å).	7
S7	Energies in Hartree for the RC s and TS s of $PtCl_2(L)(CH_4)$ model systems with Ph and CH ₃ groups as <i>trans</i> -ligands under MP2, M06-L and B3LYP level of theories under applied EEF (mV/Å).	8
S8	Energies in Hartree for the gas-phase optimized RC s and TS s of Me _{trans} - Pt ^{II} -CH ₄ under ω B97xD and MP2 level of theories with Def2TZVP basis set under applied EEF (mV/Å).	9
S9	Energies in Hartree for the TS of Me _{trans} -Pt ^{II} -CH ₄ using energy decomposition analysis under applied EEF (mV/Å).	9
3	List of Figures	10
S1	Effect of EEF on the relative energies of TS s and RC s of PtCl ₂ (L)(CH ₄) catalyzed C-H activation reaction.	10
S2	Effect of EEF on the dipole moment of TS s and RC s of $PtCl_2(L)(CH_4)$ catalyzed C-H activation reaction	11
S3	Mechanistic crossover between the charge-transfer in the oxidative addition reaction of CO _{trans} -Pt ^{II} -CH ₄ complex in the presence of variable EEF.	12
S4	Effect of EEF on the barrier energy (ΔE) of PtCl ₂ (L)(CH ₄) catalyzed C-H activation reaction.	13
S5	Correlation between change in dipole moment along the reaction axis $(\Delta \mu_z)$ with EEF and in dipole moment along the reaction axis (μ_z) for pristine reaction with their ERP values.	14
4	Full citation of Gaussian 16	15
5	Cartesian Coordinates of the Optimized Geometries PtCl ₂ (L)(CH ₄) systems with variable trans-ligands	15
6	References	25

Computational Details

The geometry optimizations and energy calculations for the Pt^{II}-catalyzed C-H activation reaction were conducted using Gaussian 16 programs.¹ The optimization of the transition states (**TS**s) and reaction complexes (**RC**s) geometries was performed using the B3LYP (DFT) level of theory² with the Def2SVP^{3,4} basis set (B1). SMD solvation model with water as a solvent was used for geometrical optimization.⁵ The true minima and the first-order saddle points of the **RC**s and **TS**s respectively were validated via frequency calculations. No imaginary vibrations were detected for the **RC**s while optimized **TS**s displayed one imaginary frequency along the reaction axis. Further verification of the **TS**s were conducted using the intrinsic reaction coordinate (IRC) calculations.^{6,7} Oriented external electric field (EEF) calculations were performed by a single point calculations on the B1 optimized geometries at the ω B97xD/Def2TZVP level of theory and basis sets (B2) along with SMD solvation. Grimme's D3 dispersion correction was included during the geometry optimization.⁸

The B1 optimized geometries of the **RC**s and **TS**s of PtCl₂(L)(CH₄) model systems with Ph and CH₃ groups as *trans*-ligands were re-evaluated for EEF analysis using single point with the MP2 level of theory and Def2TZVP basis set.⁹ Only marginal variation in the Electrostatic Resistance Point (ERP) values (from **100.2** mV/Å to **90.15** mV/Å for Ph_{trans}-Pt^{II}-CH₄ and from **0.6** mV/Å to **0.13** mV/Å for Me_{trans}-Pt^{II}-CH₄ were detected when compared to the results from ω B97xD functional (Table S1, S2 and S7). EEF analysis for the Me_{trans}-Pt^{II}-CH₄ system using B3LYP as well as M06-L functional¹⁰ with Def2TZVP basis set (Table S7) also provided negligible deviation in the ERP values. SMD solvation model with water was used for the geometrical optimization and energy calculations. The solvation model under water as the solvent was applied due to the popular usage of water as a solvent for Shilov type C-H activation reactions.^{11,12} EEF correlation with the gas-phase optimized geometries under B1 level of theory (Table S8) for the CH₃-PtCl₂(CH₄) system were undertaken with ω B97xD/Def2TZVP and MP2/Def2TZVP level of theories and basis sets. The variations were negligible as in the absence of solvation model the ERP of Me_{trans}-Pt^{II}-CH₄ was found to change from **0.6** mV/Å to **-1.24** mV/Å for the ω B97xD functional and from **0.13** mV/Å to **1.59** mV/Å for the MP2 functional. Similar negligible variations were also observed in the solvation analysis of cyclopentadiene-ethylene Diels-Alder reaction.¹³

The energy decomposition analysis of the Me_{trans}-Pt^{II}-CH₄ model was conducted using Multiwfn program.^{14,15} The decomposed energies are provided in Table S9. The relative change in Electrostatic energy ($\Delta E_{Electrostatic}$) with EEF provided a direct corelation with the relative change in **TS** energy (ΔTS_{EEF}). Both $\Delta E_{Electrostatic}$ and ΔTS_{EEF} displayed similar characteristics of having a highest energy point with variable EEF. The highest energy point of $\Delta E_{Electrostatic}$ was found to be **-3.02** mV/Å which is close to the ERP value of **0.6** mV/Å. The similarity between the $E_{Electrostatic}$ and the TS_{EEF} shows that the mechanistic swapping of charge-transfer in Pt^{II}-catalyzed C-H activation reaction is a product of the electrostatic interference from the EEF.

List of Tables

	Field	0	154.2	308.4	462.6	616.8	771	925.2	1079.4	1233.6
	+Fz	2654.840	-3654.812	-3654.806	-3654.802	-3654.799	-3654.798	-3654.798	-3654.800	-3654.805
BI-PICI2-CH4	-Fz	-3054.619	-3654.828	-3654.839	-3654.851	-3654.864	-3654.879	-3654.895	-3654.913	-3654.932
	+Fz	1100 704	-1193.735	-1193.737	-1193.741	-1193.745	-1193.751	-1193.759	-1193.767	-1193.777
CO-PICI2-CH4	-Fz	-1193.734	-1193.735	-1193.737	-1193.740	-1193.745	-1193.752	-1193.759	-1193.769	-1193.780
	+Fz	1150 005	-1159.007	-1159.011	-1159.017	-1159.024	-1159.032	-1159.043	-1159.055	-1159.068
C2H4-FICI2-CH4	-Fz	-1159.005	-1159.004	-1159.004	-1159.006	-1159.010	-1159.015	-1159.022	-1159.030	-1159.041
	+Fz	1120 441	-1120.442	-1120.444	-1120.449	-1120.455	-1120.462	-1120.472	-1120.483	-1120.497
CH3-FICI2-CH4	-Fz	-1120.441	-1120.442	-1120.444	-1120.449	-1120.455	-1120.462	-1120.472	-1120.483	-1120.497
	+Fz	1540.014	-1540.806	-1540.800	-1540.795	-1540.791	-1540.789	-1540.788	-1540.789	-1540.791
CI-PICI2-CH4	-Fz	-1540.814	-1540.823	-1540.834	-1540.846	-1540.859	-1540.873	-1540.889	-1540.906	-1540.924
	+Fz	1172 / 11	-1173.401	-1173.393	-1173.386	-1173.381	-1173.377	-1173.375	-1173.375	-1173.376
	-Fz	-1173.411	-1173.422	-1173.434	-1173.449	-1173.464	-1173.481	-1173.500	-1173.520	-1173.542
	+Fz	1212 101	-1312.180	-1312.182	-1312.187	-1312.195	-1312.206	-1312.221	-1312.239	-1312.263
FII-FIGI2-CH4	-Fz	-1312.101	-1312.184	-1312.191	-1312.200	-1312.212	-1312.227	-1312.245	-1312.266	-1312.290
	+Fz	1156 405	-1156.400	-1156.395	-1156.392	-1156.390	-1156.389	-1156.390	-1156.392	-1156.395
0H-FtCl2-CH4	-Fz	-1150.405	-1156.412	-1156.420	-1156.429	-1156.440	-1156.451	-1156.464	-1156.477	-1156.492
	+Fz	1005 700	-1285.698	-1285.689	-1285.681	-1285.675	-1285.671	-1285.668	-1285.667	-1285.669
NO2-PICI2-CH4	-Fz	-1205.700	-1285.720	-1285.733	-1285.748	-1285.764	-1285.781	-1285.800	-1285.820	-1285.841
	+Fz	1127 011	-1137.016	-1137.023	-1137.030	-1137.039	-1137.049	-1137.060	-1137.073	-1137.086
NT3-FLCI2-CH4	-Fz	-1137.011	-1137.007	-1137.004	-1137.002	-1137.001	-1137.002	-1137.003	-1137.006	-1137.010

Table S1. Energies in Hartree for **TS**s of all $PtCl_2(L)(CH_4)$ model systems with variable *trans*-ligands under applied EEF (mV/Å). (0.001 a.u. = 51.4 mV/Å)

Table S2. Energies in Hartree for the **RC**s of all $PtCl_2(L)(CH_4)$ model systems with variable *trans*-ligands under applied EEF (mV/Å). (0.001 a.u. = 51.4 mV/Å)

	Field	0	154.2	308.4	462.6	616.8	771	925.2	1079.4	1233.6
	+Fz	2654 929	-3654.831	-3654.826	-3654.822	-3654.819	-3654.818	-3654.819	-3654.821	-3654.825
BI-FICI2-CH4	-Fz	-3034.030	-3654.847	-3654.856	-3654.868	-3654.880	-3654.894	-3654.910	-3654.927	-3654.945
	+Fz	4400 770	-1193.776	-1193.775	-1193.776	-1193.777	-1193.780	-1193.784	-1193.789	-1193.795
CO-PtCl2-CH4	-Fz	-1193.778	-1193.782	-1193.786	-1193.792	-1193.799	-1193.808	-1193.818	-1193.829	-1193.841
	+Fz	1150 044	-1159.046	-1159.048	-1159.052	-1159.057	-1159.064	-1159.072	-1159.082	-1159.093
C2H4-P1C12-CH4	-Fz	-1159.044	-1159.045	-1159.046	-1159.049	-1159.053	-1159.059	-1159.067	-1159.076	-1159.086
	+Fz	1100 500	-1120.501	-1120.502	-1120.503	-1120.507	-1120.511	-1120.517	-1120.524	-1120.533
CH3-P(Cl2-CH4	-Fz	-1120.502	-1120.504	-1120.507	-1120.512	-1120.518	-1120.525	-1120.534	-1120.543	-1120.555
	+Fz	1540.001	-1540.823	-1540.816	-1540.811	-1540.807	-1540.804	-1540.803	-1540.803	-1540.805
GI-P[CI2-CH4	-1540.83	-1540.631	-1540.840	-1540.850	-1540.862	-1540.875	-1540.889	-1540.904	-1540.921	-1540.939
	+Fz	1170 455	-1173.444	-1173.434	-1173.425	-1173.418	-1173.413	-1173.408	-1173.406	-1173.404
CN-F1C12-CH4	-Fz	-1173.455	-1173.467	-1173.481	-1173.496	-1173.513	-1173.531	-1173.550	-1173.571	-1173.594
	+Fz	1210 044	-1312.240	-1312.241	-1312.244	-1312.250	-1312.259	-1312.270	-1312.284	-1312.309
PII-PICI2-CH4	-Fz	-1312.241	-1312.246	-1312.252	-1312.261	-1312.273	-1312.287	-1312.304	-1312.323	-1312.346
	+Fz	1156 401	-1156.414	-1156.408	-1156.404	-1156.401	-1156.399	-1156.398	-1156.398	-1156.400
0n-PlCl2-Ch4	-Fz	-1100.421	-1156.428	-1156.437	-1156.447	-1156.458	-1156.470	-1156.484	-1156.498	-1156.514
	+Fz	1005 700	-1285.728	-1285.719	-1285.712	-1285.707	-1285.703	-1285.700	-1285.699	-1285.701
NU2-PICI2-CH4	-Fz	- 1200.738	-1285.749	-1285.761	-1285.775	-1285.791	-1285.807	-1285.825	-1285.845	-1285.866
	+Fz	1127 024	-1137.039	-1137.045	-1137.052	-1137.059	-1137.068	-1137.078	-1137.090	-1137.102
NH₃-PtCl₂-CH4	-Fz	- 1137.034	-1137.031	-1137.028	-1137.027	-1137.027	-1137.027	-1137.029	-1137.032	-1137.036

	Field	0	154.2	308.4	462.6	616.8	771	925.2	1079.4	1233.6
	+Fz	0.05	5.67	4.37	3.05	1.68	0.28	-1.16	-2.67	-4.24
Br-PtCl2-CH4	-Fz	6.95	8.21	9.45	10.68	11.90	13.12	14.33	15.55	16.77
	+Fz	0.05	-1.19	-2.32	-3.44	-4.56	-5.68	-6.81	-7.94	-9.10
CO-PICI2-CH4	-Fz	-0.05	1.10	2.28	3.48	4.71	5.97	7.27	8.61	10.00
	+Fz	1.40	-2.77	-4.06	-5.37	-6.69	-8.04	-9.43	-10.87	-12.38
G2H4-FICI2-CH4	-Fz	-1.49	-0.20	1.10	2.41	3.75	5.12	6.53	8.00	9.53
	+Fz	0.00	-1.44	-2.89	-4.35	-5.82	-7.32	-8.86	-10.46	-12.12
GH3-FIGI2-GH4	-Fz	0.00	1.45	2.89	4.35	5.83	7.34	8.88	10.48	12.15
	+Fz	7.04	6.11	4.96	3.78	2.58	1.34	0.06	-1.27	-2.65
GI-PICI2-CH4	-Fz	7.24	8.36	9.46	10.55	11.64	12.72	13.80	14.88	15.96
	+Fz	0.01	7.59	6.34	5.06	3.77	2.44	1.08	-0.33	-1.81
	-Fz	0.04	10.09	11.33	12.58	13.84	15.11	16.41	17.73	19.08
	+Fz	1.07	-0.44	-2.91	-5.46	-8.12	-10.96	-14.07	-17.67	-22.24
FII-FICI2-CH4	-Fz	1.97	4.34	6.70	9.05	11.42	13.83	16.31	18.91	21.71
	+Fz	E 07	4.27	3.25	2.21	1.15	0.06	-1.06	-2.22	-3.44
	-Fz	5.27	6.27	7.25	8.23	9.20	10.18	11.16	12.15	13.15
NO. BICL CH.	+Fz	0.49	8.28	7.05	5.77	4.42	3.00	1.48	-0.16	-1.97
	-Fz	9.40	10.65	11.79	12.93	14.05	15.18	16.32	17.46	18.63
	+Fz	4.00	-4.97	-5.95	-6.94	-7.93	-8.95	-9.98	-11.04	-12.13
NH3-FICI2-CH4	-Fz	-4.00	-3.03	-2.06	-1.09	-0.11	0.89	1.89	2.92	3.98

Table S3. Dipole moment along F_z (μ_z) in Debye for the **TS**s of all PtCl₂(L)(CH₄) model systems with variable *trans*-ligands under applied EEF (mV/Å). (0.001 a.u. = 51.4 mV/Å)

Table S4. Dipole moment along F_z (μ_z) in Debye for the **RC**s of all PtCl₂(L)(CH₄) model systems with variable *trans*-ligands under applied EEF (mV/Å). (0.001 a.u. = 51.4 mV/Å)

	Field	0	154.2	308.4	462.6	616.8	771	925.2	1079.4	1233.6
	+Fz	6.40	5.26	4.02	2.76	1.48	0.17	-1.17	-2.56	-4.00
Br-PtCl2-CH4	-Fz	0.49	7.71	8.92	10.13	11.33	12.55	13.77	15.01	16.27
	+Fz	0.00	1.28	0.26	-0.76	-1.77	-2.78	-3.80	-4.83	-5.87
CO-PtCl2-CH4	-Fz	2.32	3.36	4.42	5.50	6.60	7.72	8.87	10.06	11.29
	+Fz	0.44	-1.60	-2.76	-3.93	-5.09	-6.27	-7.46	-8.68	-9.92
G2H4-PtCl2-CH4	-Fz	-0.44	0.73	1.92	3.12	4.35	5.61	6.91	8.25	9.65
	+Fz	1.00	0.10	-1.00	-2.11	-3.24	-4.40	-5.59	-6.83	-8.13
CH3-P[Cl2-CH4	-Fz	1.20	2.28	3.37	4.47	5.57	6.69	7.84	9.02	10.25
	+Fz	7.04	6.15	5.05	3.93	2.79	1.61	0.41	-0.84	-2.14
CI-PtCI ₂ -CH ₄	-Fz	7.24	8.31	9.38	10.44	11.50	12.56	13.63	14.71	15.80
	+Fz	0.00	8.85	7.70	6.56	5.40	4.23	3.03	1.80	0.53
	-Fz	9.99	11.14	12.30	13.47	14.65	15.87	17.11	18.38	19.69
	+Fz	0.20	0.30	-1.81	-3.94	-6.11	-8.34	-10.66	-13.11	-77.15
PII-PICI2-CH4	-Fz	2.39	4.48	6.58	8.71	10.88	13.12	15.45	17.91	20.55
	+Fz	6 1 2	5.18	4.22	3.24	2.24	1.21	0.15	-0.96	-2.12
0n-PtCl2-Ch4	-Fz	0.15	7.06	7.99	8.92	9.85	10.78	11.72	12.67	13.64
	+Fz	8.06	7.78	6.58	5.34	4.06	2.73	1.33	-0.15	-1.73
NO2-PICI2-CH4	-Fz	0.90	10.11	11.26	12.40	13.54	14.69	15.86	17.06	18.30
	+Fz	2.40	-4.39	-5.29	-6.20	-7.12	-8.05	-9.00	-9.98	-10.98
NT3-PICI2-CH4	-Fz	-3.49	-2.59	-1.69	-0.79	0.13	1.07	2.02	3.00	4.02

Table S5. HOMO-LUMO energies in eV for the catalyst (PtCl₂(L)) and substrate (CH₄) systems with variable *trans*-ligands under applied EEF (mV/Å). (0.001 a.u. = 51.4 mV/Å)

			Field	0	154.2	308.4	462.6	616.8	771	925.2	1079.4	1233.6
			+Fz		-0.2990	-0.2980	-0.2502	-0.2498	-0.2500	-0.2507	-0.2519	-0.2537
		номо	-Fz	-0.3001	-0.3013	-0.3025	-0.3038	-0.3051	-0.3065	-0.3079	-0.2737	-0.3108
	Br-PtCl ₂		+Fz		-0.0487	-0.0477	-0.1077	-0.1075	-0.1077	-0.1083	-0.1092	-0.1106
		LUMO	-Fz	-0.0499	-0.0514	-0.0532	-0.0552	-0.0574	-0.0598	-0.0625	-0.1185	-0.0685
Br-PtCl₂-CH₄			+Fz		-0.4595	-0.4734	-0.4873	-0.5013	-0.5153	-0.5293	-0.5434	-0.5576
		номо	-Fz	-0.4456	-0.4318	-0.4180	-0.4043	-0.3906	-0.3769	-0.3633	-0.3497	-0.3361
	CH₄		+Fz		0.1197	0.1045	0.0886	0.0720	0.0550	0.0374	0.0195	0.0012
		LUMO	-Fz	0.1342	0.1479	0.1609	0.1731	0.1845	0.1953	0.2055	0.2151	0.2242
			+Fz		-0.3438	-0.3427	-0.3416	-0.3407	-0.3399	-0.3392	-0.3386	-0.3381
		номо	-Fz	-0.3451	-0.3464	-0.3478	-0.3493	-0.3509	-0.3526	-0.3544	-0.3563	-0.3582
	CO-PtCl ₂		+Fz		-0.0622	-0.0612	-0.0605	-0.0601	-0.0600	-0.0604	-0.0614	-0.0629
		LUMO	-Fz	-0.0635	-0.0650	-0.0667	-0.0687	-0.0708	-0.0731	-0.0756	-0.0783	-0.0812
CO-PtCl2-CH4			+Fz	0.4440	-0.4589	-0.4728	-0.4868	-0.5009	-0.5150	-0.5292	-0.5434	-0.5577
		HOMO	-Fz	-0.4449	-0.4311	-0.4172	-0.4035	-0.3897	-0.3761	-0.3624	-0.3488	-0.3353
	CH4		+Fz	0.4040	0.1203	0.1052	0.0894	0.0731	0.0561	0.0388	0.0209	0.0028
		LOMO	-Fz	0.1348	0.1485	0.1616	0.1740	0.1858	0.1972	0.2081	0.2186	0.2288
			+Fz	0.0007	-0.3278	-0.3260	-0.3242	-0.3226	-0.3210	-0.3194	-0.3179	-0.3166
		помо	-Fz	-0.3297	-0.3316	-0.3336	-0.3356	-0.3378	-0.3400	-0.3422	-0.3446	-0.3471
	C2H4-P[C]2		+Fz	0.0517	-0.0497	-0.0480	-0.0466	-0.0457	-0.0453	-0.0456	-0.0466	-0.0485
		LONIO	-Fz	-0.0517	-0.0541	-0.0567	-0.0595	-0.0626	-0.0659	-0.0696	-0.0735	-0.0777
G2H4-F1C12-CH4		номо	+Fz	0.4476	-0.4618	-0.4759	-0.4901	-0.5044	-0.5187	-0.5331	-0.5475	-0.5620
	CH.	ПОШО	-Fz	-0.4470	-0.4336	-0.4195	-0.4056	-0.3916	-0.3778	-0.3639	-0.3502	-0.3364
CH4		+Fz	0 13/7	0.1201	0.1047	0.0887	0.0721	0.0549	0.0372	0.0191	0.0007	
	LONIO	-Fz	0.1347	0.1486	0.1618	0.1744	0.1863	0.1978	0.2088	0.2193	0.2296	
CH ₃ -PtCl ₂	номо	+Fz	-0.2830	-0.2820	-0.2811	-0.2805	-0.2800	-0.2798	-0.2798	-0.2801	-0.2807	
	110100	-Fz	-0.2030	-0.2841	-0.2854	-0.2868	-0.2883	-0.2900	-0.2917	-0.2936	-0.2956	
	тимо	+Fz	0.0193	0.0199	0.0197	0.0184	0.0160	0.0123	0.0074	0.0016	-0.0050	
CH3-PtCl2-CH4	CH ₃ -PtCl ₂ -CH ₄		-Fz	0.0.00	0.0180	0.0161	0.0136	0.0106	0.0069	0.0025	-0.0029	-0.0097
01.01.012 01.4		номо	+Fz	-0 4620	-0.4783	-0.4946	-0.5109	-0.5272	-0.5435	-0.5598	-0.5760	-0.5923
	CH₄		-Fz		-0.4458	-0.4296	-0.4134	-0.3972	-0.3811	-0.3650	-0.3490	-0.3330
	-	LUMO	+Fz	0.1350	0.1182	0.1006	0.0822	0.0631	0.0433	0.0231	0.0024	-0.0187
			-F _z		0.1510	0.1661	0.1804	0.1940	0.2069	0.2193	0.2311	0.2426
		номо	+Fz	-0.3048	-0.3039	-0.3030	-0.3022	-0.2579	-0.2578	-0.2583	-0.2592	-0.2606
	CI-PtCl₂		-Fz		-0.3058	-0.3069	-0.3080	-0.3091	-0.3102	-0.3114	-0.3126	-0.3139
		LUMO	+Fz	-0.0521	-0.0513	-0.0507	-0.0504	-0.1103	-0.1104	-0.1108	-0.1116	-0.1126
CI-PtCl₂-CH₄			-Fz		-0.0532	-0.0544	-0.0558	-0.0574	-0.0592	-0.0611	-0.0631	-0.0653
		номо	+Fz	-0.4418	-0.4553	-0.4689	-0.4825	-0.4961	-0.5098	-0.5235	-0.5373	-0.5511
	CH₄		-Fz		-0.4283	-0.4149	-0.4015	-0.3882	-0.3748	-0.3616	-0.3483	-0.3351
		LUMO	+Fz	0.1339	0.1197	0.1048	0.0893	0.0731	0.0564	0.0393	0.0217	0.0038
			-+z		0.14/25	0.15989	0.1/1//	0.18292	0.19339	0.20324	0.21252	0.22132
		номо	+Fz	-0.3140	-0.3127	-0.3115	-0.3104	-0.3095	-0.3087	-0.3080	-0.3075	-0.3042
	CN-PtCl ₂		-+z		-0.3154	-0.3169	-0.3185	-0.3202	-0.3221	-0.3240	-0.3261	-0.3283
		LUMO	+Fz	-0.0217	-0.0208	-0.0203	-0.0202	-0.0208	-0.0220	-0.0241	-0.0271	-0.0312
CN-PtCl ₂ -CH ₄			-Fz		-0.0230	-0.0246	-0.0265	-0.0286	-0.0310	-0.0337	-0.0367	-0.0399
		номо	+==	0.1349	0.1199	0.1042	0.0877	0.0706	0.0529	0.0347	0.0161	-0.0029
СН₄	CH₄		-Fz		0.1491	0.1020	0.1754	0.1070	0.1992	0.2104	0.2211	0.2315
		LUMO	+rz	-0.4527	-0.4072	-0.4018	-0.4905	-0.3111	-0.5259	-0.5407	-0.0000	-0.3704
			-Fz		-0.4302	-0.4230	-0.4094	-0.3950	-0.3007	-0.3003	-0.3323	-0.3301
		номо	+Fz	-0.2901	-0.2017	-0.2090	-0.2003	-0.2400	-0.2239	-0.2100	-0.1955	-0.1910
	Ph-PtCl₂-CH₄		-==z		-0.2923	-0.2947	-0.2973	-0.3001	-0.3032	-0.3005	-0.3102	-0.3143
		LUMO	+Fz	0.0143	0.0101	0.0171	0.0170	0.0100	0.0120	0.0002	0.0025	-0.0020
Ph-PtCl₂-CH₄		}	-Fz	}	0.0110	0.0079	0.0014	-0.0134	-0.0311	-0.0343	-0.0914	-0.1290
		номо	+Fz	-0.4614	-0.4///	-0.4940	-0.0103	-0.0207	0.3906	-0.0094	-0.3/5/	-0.0921
	CH₄		-rz +F		0.4452	-0.4290	0.0823	-0.3907	-0.3600	0.0040	0.0400	-0.3327
		LUMO	-F-	0.1351	0.1510	0.1661	0.1804	0 1940	0.2069	0.2104	0.2313	0.2420
1	1	i	• 2	i	0.1010	0.1001	0.1004	0.1040	0.2000	0.2.04	0.2010	0.2120

		номо	+Fz	0 2012	-0.3005	-0.2997	-0.2991	-0.2985	-0.2980	-0.2955	-0.2931	-0.2910
OH-PtCl ₂ OH-PtCl ₂ -CH ₄ CH ₄		HOMO	-Fz	-0.3013	-0.3023	-0.3033	-0.3044	-0.3055	-0.3068	-0.3081	-0.3094	-0.3109
	OH-PICI2		+Fz	0.0265	-0.0265	-0.0269	-0.0277	-0.0291	-0.0310	-0.0336	-0.0368	-0.0407
		LOMO	-Fz	-0.0205	-0.0268	-0.0275	-0.0284	-0.0295	-0.0310	-0.0326	-0.0346	-0.0369
		номо	+Fz	0.4420	-0.4565	-0.4702	-0.4839	-0.4976	-0.5114	-0.5252	-0.5390	-0.5529
	CU.	HOINO	-Fz	-0.4429	-0.4294	-0.4159	-0.4024	-0.3889	-0.3755	-0.3621	-0.3488	-0.3355
			+Fz	0 1000	0.1195	0.1045	0.0888	0.0725	0.0556	0.0383	0.0205	0.0025
		LOMO	-Fz	0.1330	0.1473	0.1601	0.1720	0.1831	0.1936	0.2034	0.2126	0.2212
		номо	+Fz	0 2121	-0.3106	-0.3090	-0.3074	-0.3060	-0.3047	-0.3035	-0.3025	-0.3017
NO2-PtCl2 NO2-PtCl2-CH4	HONIO	-Fz	-0.3121	-0.3139	-0.3156	-0.3174	-0.3192	-0.3211	-0.3230	-0.3252	-0.3274	
		+Fz	0.0271	-0.0360	-0.0352	-0.0347	-0.0347	-0.0352	-0.0362	-0.0378	-0.0400	
		LOMO	-Fz	-0.0371	-0.0385	-0.0401	-0.0420	-0.0440	-0.0462	-0.0527	-0.0627	-0.0727
		номо	+Fz	0.4480	-0.4622	-0.4764	-0.4906	-0.5049	-0.5192	-0.5336	-0.5480	-0.5624
	CH.	HOINIO	-Fz	-0.4400	-0.4339	-0.4198	-0.4057	-0.3917	-0.3777	-0.3638	-0.3499	-0.3360
			+Fz	0 13/6	0.1198	0.1042	0.0880	0.0712	0.0538	0.0359	0.0176	-0.0010
		LONIO	-Fz	0.1340	0.1486	0.1618	0.1743	0.1861	0.1972	0.2077	0.2177	0.2272
		номо	+Fz	0 31/2	-0.3133	-0.3125	-0.3119	-0.3113	-0.3108	-0.3105	-0.3103	-0.3103
		HOWO	-Fz	-0.3142	-0.3151	-0.3162	-0.3173	-0.3185	-0.3198	-0.3212	-0.3227	-0.3243
	1113-1 1012		+Fz	0.0434	-0.0431	-0.0431	-0.0435	-0.0443	-0.0455	-0.0473	-0.0497	-0.0528
NH ₃ -PtCl ₂ -CH ₄		LOMO	-Fz	-0.0434	-0.0440	-0.0449	-0.0460	-0.0475	-0.0492	-0.0514	-0.0540	-0.0573
		номо	+Fz	0 4 4 1 1	-0.4545	-0.4680	-0.4815	-0.4951	-0.5087	-0.5224	-0.5361	-0.5498
	CH.		-Fz	-0.4411	-0.4277	-0.4143	-0.4010	-0.3877	-0.3745	-0.3613	-0.3482	-0.3351
	0114		+Fz	0 1330	0.1199	0.1051	0.0896	0.0736	0.0570	0.0399	0.0225	0.0047
		LOMO	-Fz	0.1339	0.1473	0.1599	0.1717	0.1829	0.1934	0.2033	0.2126	0.2215

Table S6. The values of ERP, maximum barrier under EEF, and μ_z for pristine reaction for PtCl₂(L)(CH₄) systems with variable *trans*-ligands. (0.001 a.u. = 51.4 mV/Å)

<i>trans-</i> ligand (L)	∆E for PtCl₂(L)(CH₄)	Charge-transfer at Pristine conditions	ERP (mV/Å)	Maximum inhibition on ∆E w.r.t EEF	µ₂ for pristine reaction
Br	10.59	LMCT	799.1	944.92	6.9503
СО	25.97	LMCT	7.9	-a-	-0.0519
C ₂ H ₄	22.88	LMCT	-171.5	-a-	-1.4856
CH ₃	35.50	MLCT	0.6	-498.22	0.0035
CI	8.96	LMCT	938.1	0	7.2402
CN	25.73	MLCT	1058.8	-a-	8.8426
Ph	35.62	MLCT	100.2	-242.5	1.9682
ОН	9.51	LMCT	776.6	-a-	5.2732
NO ₂	17.06	LMCT	1101.7	1144.55	9.4777
NH ₃	12.87	LMCT	-627.6	-a-	-3.9995

-a- The maximum inhibition on barrier energy (ΔE) under applied EEF were found to be beyond 1400 mV/Å, which is the experimentally tested limit. Experimental simulation of EEF on organocatalytic reactions were tested at electric field strength of +/- 260 mV/Å (0.005 a.u.) whereas the highest strength of electric field strength measured in enzymes was 1400 mV/Å (0.027 a.u.).¹⁶⁻¹⁹

Table S7. Single point energies in Hartree for the **RC**s and **TS**s of $PtCl_2(L)(CH_4)$ model systems with Ph and CH₃ groups as *trans*-ligands under MP2, M06-L and B3LYP level of theories with Def2TZVP basis set along with their corresponding ERP values under applied EEF (mV/Å). Geometries optimized at the B1 level of theory is used for single point calculations. (0.001 a.u. = 51.4 mV/Å).

	MP2/De	f2TZVP	MP2/De	f2TZVP	M06-L/D	ef2TZVP	B3LYP/Def2TZVP		
Field	Ph-PtC	Cl₂-CH₄	CH₃-Pt	Cl₂-CH₄	CH₃-Pt	Cl₂-CH₄	CH ₃ -PtCl ₂ -CH ₄		
	TS	RC	TS	RC	TS	RC	TS	RC	
-1233.6	-1310.124	-1310.154	-1118.734	-1118.765	-1120.522	-1120.581	-1120.582	-1120.612	
-1079.4	-1310.100	-1310.133	-1118.720	-1118.755	-1120.507	-1120.569	-1120.568	-1120.600	
-925.2	-1310.080	-1310.114	-1118.708	-1118.746	-1120.495	-1120.559	-1120.556	-1120.590	
-771	-1310.062	-1310.098	-1118.699	-1118.738	-1120.485	-1120.550	-1120.546	-1120.581	
-616.8	-1310.047	-1310.085	-1118.691	-1118.732	-1120.477	-1120.543	-1120.538	-1120.574	
-462.6	-1310.035	-1310.074	-1118.684	-1118.726	-1120.471	-1120.537	-1120.532	-1120.568	
-308.4	-1310.026	-1310.066	-1118.680	-1118.723	-1120.467	-1120.533	-1120.527	-1120.563	
-154.2	-1310.019	-1310.061	-1118.677	-1118.720	-1120.464	-1120.529	-1120.525	-1120.560	
0	-1310.016	-1310.057	-1118.676	-1118.719	-1120.463	-1120.527	-1120.524	-1120.558	
154.2	-1310.015	-1310.057	-1118.677	-1118.719	-1120.464	-1120.527	-1120.525	-1120.558	
308.4	-1310.017	-1310.059	-1118.680	-1118.720	-1120.467	-1120.527	-1120.527	-1120.558	
462.6	-1310.022	-1310.063	-1118.684	-1118.723	-1120.471	-1120.529	-1120.532	-1120.560	
616.8	-1310.030	-1310.070	-1118.691	-1118.727	-1120.477	-1120.533	-1120.538	-1120.564	
771	-1310.042	-1310.079	-1118.699	-1118.732	-1120.485	-1120.537	-1120.546	-1120.569	
925.2	-1310.057	-1310.092	-1118.708	-1118.739	-1120.495	-1120.544	-1120.556	-1120.575	
1079.4	-1310.077	-1310.107	-1118.720	-1118.747	-1120.507	-1120.551	-1120.568	-1120.583	
1233.6	-1310.101	-1310.072	-1118.734	-1118.757	-1120.521	-1120.560	-1120.581	-1120.593	
ERP values	90.15	mV/Å	0.13 mV/Å		0.76	mV/Å	0.52	mV/Å	

Table S8. Energies in Hartree for the gas-phase optimized **RC**s and **TS**s of Me_{trans}-Pt^{II}-CH₄ under ω B97xd and MP2 level of theories with Def2TZVP basis set along with their corresponding ERP values under applied EEF (mV/Å). Geometries optimized at the B1 level of theory is used for single point calculations. (0.001 a.u. = 51.4 mV/Å)

Field	ωB97xD/I	Def2TZVP	MP2/De	f2TZVP
	TS	RC	TS	RC
-1233.6	-1120.408	-1120.468	-1118.649	-1118.686
-1079.4	-1120.399	-1120.460	-1118.640	-1118.679
-925.2	-1120.392	-1120.452	-1118.632	-1118.672
-771	-1120.386	-1120.446	-1118.626	-1118.666
-616.8	-1120.381	-1120.441	-1118.621	-1118.661
-462.6	-1120.377	-1120.436	-1118.617	-1118.658
-308.4	-1120.374	-1120.433	-1118.614	-1118.655
-154.2	-1120.373	-1120.430	-1118.612	-1118.653
0	-1120.372	-1120.429	-1118.612	-1118.652
154.2	-1120.373	-1120.428	-1118.612	-1118.652
308.4	-1120.374	-1120.428	-1118.614	-1118.652
462.6	-1120.377	-1120.430	-1118.617	-1118.654
616.8	-1120.381	-1120.432	-1118.621	-1118.657
771	-1120.386	-1120.435	-1118.626	-1118.661
925.2	-1120.392	-1120.439	-1118.632	-1118.665
1079.4	-1120.399	-1120.444	-1118.640	-1118.671
1233.6	-1120.408	-1120.451	-1118.648	-1118.678
	-1.24	mV/Å	1.59	mV/Å

Table S9. Energies in Hartree for the **TS** of Me_{trans} -Pt^{II}-CH₄ using energy decomposition analysis under applied EEF (mV/Å). (0.001 a.u. = 51.4 mV/Å)

Field	Esteric	EElectrostatic	EQuantum
-1233.6	14556.324	-2077.984	-13598.792
-925.2	14556.296	-2077.937	-13598.799
-616.8	14556.277	-2077.903	-13598.806
-308.4	14556.267	-2077.882	-13598.812
0	14556.263	-2077.875	-13598.813
308.4	14556.266	-2077.882	-13598.811
616.8	14556.276	-2077.904	-13598.804
925.2	14556.293	-2077.938	-13598.796
1233.6	14556.320	-2077.985	-13598.788

List of Figures

Fig. S1. Effect of EEF on the relative energies of **TS**s and **RC**s of $PtCl_2(L)(CH_4)$ C-H activation reaction, where L corresponds to the *trans*-ligands. a) Plot between relative change in **TS** energies for each system to pristine **TS** (ΔTS_{EEF}) to the applied EEF. b) Plot between relative change in **RC** energies for each system to pristine **RC** (ΔRC_{EEF}) to the applied EEF. (0.001 a.u. = 51.4 mV/Å)

Fig. S2. Effect of EEF on the dipole moment of **TS**s and **RC**s of $PtCl_2(L)(CH_4)$ C-H activation reaction, where L corresponds to the *trans*-ligands. a) Plot between relative change in **TS** dipole moment for each system to the applied EEF. b) Plot between relative change in **RC** dipole moment for each system to the applied EEF. (0.001 a.u. = 51.4 mV/Å)

Fig. S3. Mechanistic crossover between the charge-transfer process in the oxidative addition reaction of CO_{trans} -Pt^{II}-CH₄ complex in the presence of variable EEF. (0.001 a.u. = 51.4 mV/Å)

Fig. S4. Effect of EEF on the barrier energy (ΔE) of PtCl₂(L)(CH₄) catalyzed C-H activation reaction, where L corresponds to the *trans*-ligands. a) Plot between ΔE to the applied EEF for PtCl₂(Ph)(CH₄) C-H activation. b) Plot between ΔE for each system to the applied EEF for PtCl₂(Ph)(CH₄) catalyzed C-H activation reaction. (0.001 a.u. = 51.4 mV/Å)

Fig. S5. Correlation between the change in dipole moment along the reaction axis ($\Delta\mu_z$) with EEF and in dipole moment along the reaction axis (μ_z) for the pristine reaction with their ERP values. a) Plot between the change in dipole moment along the reaction axis ($\Delta\mu_z$) and the applied EEF for Ph_{trans}-Pt^{II}- catalyzed C-H activation. b) Correlation between the dipole moment along the reaction axis (μ_z) of the pristine PtCl₂(L)-catalyzed C-H activation reaction, where L corresponds to the *trans*-ligands, to their corresponding ERP (mV/Å) values.

Full citation of Gaussian 16.

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Cartesian Coordinates of the Optimized Geometries PtCl₂(L)(CH₄) systems with variable *trans*-ligands.

The Cartesian coordinates of the **RC**s optimized at the B3LYP/Def2SVP with Grimme's D3 dispersion correction and their corresponding energies re-calculated at ω B97xD/Def2TZVP using SMD model with water as solvent are given in Hartree.

Brtrans-PtCl₂-CH₄

Energy = -3654.838 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.50718800
CI	2.36091700	0.00000000	0.08949700
CI	-2.36089500	-0.01569800	0.08940800
н	0.00250700	-0.81077200	1.70677600
н	-0.91400400	-0.20241600	3.08039100
н	0.91490800	-0.19701100	3.08082800
н	-0.00303300	1.04919500	2.18145800
Br	-0.00083600	0.26798100	-2.41405600

(C₂H₄) trans-PtCl₂-CH₄

Energy = - 1159.044 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.49439000
CI	2.34667400	0.00000000	0.04112000
Н	-0.91602000	0.00087400	3.09841300
Н	0.00017500	-0.95894400	1.92584300
Н	-0.00017500	0.95751900	1.92313700
CI	-2.34667400	-0.00070900	0.04112000
н	0.91601900	0.00121100	3.09841300

С	-0.00013200	0.71003600	-1.99536600
С	0.00013100	-0.70190600	-1.99823400
Н	0.92920100	1.25966900	-2.16847800
Н	-0.92967500	1.25931800	-2.16847600
Н	-0.92921400	-1.25074400	-2.17377600
н	0.92968300	-1.25039400	-2.17377500

(CH₃) trans-PtCl₂-CH₄

Energy = -1120.502 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.89065900
CI	2.35564300	0.00000000	0.07275400
н	-0.90543200	0.09717900	3.50613400
н	-0.00466400	-0.98407200	2.39801000
н	0.00465800	0.82834500	2.15551400
CI	-2.35551300	0.02382800	0.07313500
н	0.90563800	0.08802500	3.50721700
С	-0.00056400	-0.07807900	-2.01190000
н	-0.90125000	0.41417900	-2.40973000
н	0.90503600	0.40495800	-2.40987600
н	-0.00600700	-1.13966600	-2.31691900

CI trans-PtCI2-CH4

Energy = -1540.831 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.45483000
CI	2.36152300	0.00000000	0.06285400
CI	-2.36116500	0.04110100	0.06251600
н	0.00736000	0.81749200	1.64811200
н	0.91660200	0.20976500	3.02066200
н	-0.91278900	0.22606700	3.02056400
н	-0.00940500	-1.05753400	2.15994300
CI	-0.00284700	-0.34466800	-2.28222000

CN trans-PtCl₂-CH₄

Energy = -1173.455 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.56753600
Cl	2.35313700	0.00000000	0.05724000
Cl	-2.35313700	0.00000000	0.05724000
н	0.00000000	-0.94112800	1.97840400
н	-0.91392900	-0.00001400	3.17516500
н	0.91392800	-0.00001400	3.17516500
н	0.00000000	0.94114700	1.97843700
С	0.00000000	0.00001500	-1.89856600
N	0.00000000	0.00002400	-3.06975300

CO trans-PtCl₂-CH₄

Energy = -1193.778 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.45860100
CI	2.35121800	0.00000000	0.05841800
CI	-2.35120800	-0.00015700	0.05871600
н	0.00005400	-0.96413500	1.89814000
н	-0.91895400	-0.00000600	3.05759100
н	0.91873700	-0.00007800	3.05792100
н	0.00012300	0.96418100	1.89823700
С	-0.00012500	0.00000900	-1.83290000
0	-0.00000600	0.00000800	-2.96967200

Ph trans-PtCl₂-CH₄

Energy = -1312.241 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.88108500
CI	2.35298800	0.00000000	0.10552600
н	-0.89759200	0.12659700	3.50247100
н	-0.06015600	-0.96991800	2.36341700
н	0.04765700	0.84924400	2.17318800
CI	-2.35200400	-0.00265300	0.11339800
н	0.91138400	0.02004000	3.49485300

С	-0.00416100	-0.04536400	-1.96805700
С	0.73904900	-1.01629500	-2.66504300
С	-0.75141700	0.89170000	-2.70585100
С	0.72750700	-1.04983000	-4.06444200
н	1.34057700	-1.74080500	-2.11452000
С	-0.74884700	0.85837100	-4.10527100
Н	-1.34940400	1.64187900	-2.18677100
С	-0.01303900	-0.11270400	-4.79221100
Н	1.30927800	-1.81398500	-4.58771000
Н	-1.33400500	1.59681000	-4.66068300
Н	-0.01666500	-0.13886700	-5.88471200

OH trans-PtCl₂-CH₄

Energy = -1156.421 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.47845500
CI	2.36612700	0.00000000	0.00948100
н	-0.92090200	0.24624800	3.02217700
н	-0.00307900	-1.06380300	2.21402000
н	0.03085900	0.79123000	1.64597200
CI	-2.35930200	-0.00982100	-0.06598100
н	0.90094600	0.23001400	3.06194900
0	-0.02815000	-0.29212200	-1.95292400
н	-0.98046800	-0.31654900	-2.14905000

(NO₂) trans-PtCl₂-CH₄

Energy = -1285.738 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.54946900
CI	2.36133500	0.00000000	0.02985900
н	-0.91896400	-0.17237300	3.12424700
н	-0.00051900	-0.81563500	1.76726700
н	0.01278200	1.03948200	2.19447600
CI	-2.36105700	-0.00151000	0.03375500
н	0.90808300	-0.19067500	3.13603800
N	-0.00215100	0.21251200	-1.95472500

0	0.26840000	-0.75371400	-2.65766800
0	-0.27432700	1.31145100	-2.42442400

(NH₃) trans-PtCl₂-CH₄

Energy = -1137.034 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.43279800
CI	2.35453700	0.00000000	-0.03849800
н	-0.91259800	0.21537700	3.00235200
н	-0.00812100	-1.05545300	2.12666300
н	0.00638600	0.83417300	1.64644000
CI	-2.35425700	0.03630800	-0.03858700
н	0.91584900	0.20132400	3.00227300
Ν	-0.00208700	-0.27435200	-2.00558600
н	-0.00973800	-1.27488300	-2.23417400
н	-0.83122400	0.14551500	-2.43856400
н	0.83338100	0.13278500	-2.43855400

The Cartesian coordinates of the **TS**s optimized at the B3LYP/Def2SVP with Grimme's D3 dispersion correction and their corresponding energies re-calculated at ω B97xD/Def2TZVP using SMD model with water as solvent are given in Hartree.

Br trans-PtCl2-CH4

Energy = -3654.819 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.12694700
CI	2.36550100	0.00000000	0.03826200
н	-0.89968100	0.43409200	2.58078200
н	-0.01578700	-1.09494300	2.24238100
н	0.01722200	1.19553000	0.99422000
CI	-2.36451900	0.06814500	0.03826200
н	0.91182500	0.40797500	2.58077600
Br	-0.01369000	-0.95028900	-2.34447600

(C₂H₄) trans-PtCl₂-CH₄

Energy = -1159.005 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.10377200
CI	2.35176000	0.00000000	-0.01256200
н	-0.91253500	0.40770000	2.55393100
н	0.01054500	-1.09969400	2.19712600
н	-0.01158700	1.24783200	0.92951400
CI	-2.35135900	-0.04349300	-0.01255200
н	0.90450300	0.42509400	2.55405600
С	-0.00539600	0.60566300	-2.33013400
С	0.00678700	-0.75776100	-2.24782400
н	0.92282700	1.17446700	-2.42895800
н	-0.94361900	1.15781200	-2.42900700
н	-0.92386900	-1.32978600	-2.29874400
н	0.94751500	-1.31307300	-2.29871100

(CH₃) trans-PtCl₂-CH₄

Energy = -1120.441 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.14802500
CI	2.36294800	0.00000000	0.00155300
н	-0.90895400	0.45676000	2.57659400
н	0.02813100	-1.05420300	2.49106100
н	-0.04243600	1.50901700	-0.03741500
CI	-2.35921600	-0.13274800	0.00174200
н	0.88332700	0.50459900	2.57651600
С	0.00294200	-0.10712200	-2.14535600
н	-0.90626400	0.32604300	-2.59724800
н	0.88593100	0.37709300	-2.59742300
Н	0.03338200	-1.17706400	-2.43537100

CI trans-PtCl₂-CH₄

Energy = -1540.814 Hartree

Pt	0.00000000	0.00000000	0.0000000
С	0.00000000	0.00000000	2.12184100

CI	2.36431500	0.00000000	0.02552900
н	-0.89995800	0.43104900	2.57813600
н	-0.01391700	-1.09528200	2.23417900
н	0.01505800	1.18714300	1.00130700
CI	-2.36355300	0.05997100	0.02553400
н	0.91062400	0.40804500	2.57812600
CI	-0.01147200	-0.90411400	-2.21859900

CN trans-PtCl₂-CH₄

Energy = -1173.411 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.09864900
CI	2.36267400	0.00000000	0.01096500
Н	-0.90553500	0.44383700	2.53388700
н	0.00884800	-1.08598900	2.29538400
н	-0.01130000	1.38025200	0.66162600
CI	-2.36236100	-0.03872000	0.01097400
н	0.89819200	0.45853100	2.53386900
С	0.00309700	-0.37863200	-2.06486900
N	0.00487200	-0.59550400	-3.21451700

CO trans-PtCl₂-CH₄

Energy = -1193.734 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.10152200
CI	2.35914400	0.00000000	0.01051100
н	-0.91445700	0.41368300	2.54276300
н	0.01811300	-1.09725900	2.21876000
н	-0.01889000	1.28387600	0.86715500
CI	-2.35806000	-0.06941400	0.01053200
н	0.90004100	0.44349300	2.54348200
С	0.00017500	0.00055400	-2.04969000
0	-0.00154500	0.13243000	-3.17111700

Ph trans-PtCl₂-CH₄

Energy = -1312.181 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.13458200
CI	2.36248400	0.00000000	0.03317900
Н	-0.90769500	0.44888000	2.56946800
Н	0.02762000	-1.06571300	2.43325400
Н	-0.03712800	1.48879500	0.27229900
CI	-2.35616900	-0.11828100	0.02571700
Н	0.88579800	0.49441100	2.56527600
С	-0.00535100	-0.15429100	-2.13420500
С	0.96623500	-0.91130900	-2.82301100
С	-0.99494300	0.46276100	-2.92938600
С	0.94773900	-1.05760800	-4.21671900
н	1.77276600	-1.38746500	-2.25808000
С	-1.01257100	0.34206000	-4.32444400
Н	-1.78620200	1.04118300	-2.44409700
С	-0.04145300	-0.42581300	-4.97725300
н	1.71419800	-1.66207200	-4.71189500
Н	-1.79172700	0.84489600	-4.90591600
н	-0.05541800	-0.52924600	-6.06570700

OH trans-PtCl₂-CH₄

Energy = -1156.405 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.11907900
CI	2.36618300	0.00000000	-0.02525800
н	-0.90809200	0.41580300	2.57588900
н	0.00823100	-1.09339500	2.25775000
н	0.01717900	1.21104600	0.97048000
CI	-2.35982600	-0.01894000	-0.09041300
н	0.89236700	0.43071500	2.59281300
0	-0.01989800	-0.81926400	-1.84653400
н	-0.96465100	-0.89456600	-2.05795300

(NO₂) trans-PtCl₂-CH₄

Energy = -1285.708 Hartree

0.00000000	0.00000000	0.00000000
0.00000000	0.00000000	2.09900100
2.35871300	0.00000000	-0.04688300
-0.90596400	0.43774600	2.53746000
0.00527300	-1.09077300	2.25726100
-0.00391100	1.30800800	0.80112500
-2.35797400	-0.01868300	-0.04602700
0.90088400	0.44693000	2.53864100
-0.00024800	-0.63361500	-2.05229600
0.00209700	-1.85367000	-2.25261600
-0.00312000	0.15571600	-2.99620300
	0.00000000 0.00000000 2.35871300 -0.90596400 0.00527300 -0.00391100 -2.35797400 0.90088400 -0.00024800 0.00209700 -0.00312000	0.000000000.000000000.000000000.000000002.358713000.00000000-0.905964000.437746000.00527300-1.09077300-0.003911001.30800800-2.35797400-0.018683000.900884000.44693000-0.00024800-0.633615000.00209700-1.85367000-0.003120000.15571600

(NH₃) trans-PtCl₂-CH₄

Energy = -1137.011 Hartree

Pt	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	2.09044200
CI	2.35303100	0.00000000	-0.06238500
н	-0.90234600	0.44406500	2.52917600
Н	-0.00107700	-1.09087500	2.24645800
н	0.00125900	1.29568800	0.82246000
CI	-2.35302500	0.00488900	-0.06255300
Н	0.90322200	0.44228300	2.52917400
Ν	-0.00079300	-0.73488700	-2.04558800
н	-0.00151700	-1.76038600	-2.05535800
н	-0.83020700	-0.43361400	-2.56375300
н	0.82888600	-0.43480000	-2.56401500

The Cartesian coordinates of the **RC** and **TS** of (CH₃) _{trans}-PtCl₂-CH₄ optimized under gas phase at the B3LYP/Def2SVP with Grimme's D3 dispersion correction and their corresponding energies re-calculated at ω B97xD/Def2TZVP and MP2/Def2TZVP are given in Hartree.

RC

Energy (wB97xD/Def2TZVP) = -1120.372 Hartree

Energy (MP2/Def2TZVP) = -1118.612 Hartree

Pt 0.0000000 0.0000000 0.0000000

С	0.00000000	0.00000000	2.78027188
CI	2.31784198	0.00000000	0.04910855
Н	-0.90910455	0.01234708	3.39373945
Н	-0.00467549	-0.90959029	2.15885411
Н	0.00467280	0.89585132	2.13820216
CI	-2.31770753	0.02556292	0.04895309
Н	0.90910513	0.00292573	3.39385283
С	-0.00003894	-0.02089604	-1.97306721
Н	-0.90625480	0.48189786	-2.33903855
Н	0.91162625	0.47199811	-2.33897312
Н	-0.00578377	-1.07808676	-2.28773838

тѕ

Energy (ωB97xD/Def2TZVP) = -1120.372 Hartree				
Energy (MP2/Def2TZVP) = -1118.612 Hartree				
Pt	0.00000000	0.00000000	0.0000000	
С	0.00000000	0.00000000	2.11939136	
CI	2.32174878	0.00000000	0.00275637	
н	-0.91768251	0.44228558	2.54079219	
н	0.03780073	-1.05679414	2.45106006	
н	-0.05261934	1.49227123	-0.04947295	
CI	-2.31597732	-0.16363437	0.00266968	
н	0.88376104	0.50668244	2.54079489	
С	0.00500452	-0.14019570	-2.11474232	
н	-0.91155107	0.27335593	-2.56667121	
н	0.88991767	0.33735094	-2.56664617	
н	0.04325934	-1.21663004	-2.37565711	

References

- 1. Gaussian16, Revision C.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT 2016 (full reference given above)
- 2. A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 3. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.
- 4. J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 84106.
- 5. A. V Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- 6. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154–2161.
- 7. C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523–5527.
- 8. S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 9. M. Head-Gordon, J. A. Pople and M. J. Frisch, *Chem. Phys. Lett.*, 1988, **153**, 503–506.
- 10. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- 11. A. E. Shilov and G. B. Shul'pin, Chem. Rev., 1997, 97, 2879–2932.
- 12. P. Vidossich, G. Ujaque and A. Lledós, Chem. Commun., 2012, 48, 1979–1981.
- 13. K. Gopakumar, S. Shaik and R. Ramanan, Angew. Chemie Int. Ed., 2023, 62, e202307579.
- 14. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 15. S. Liu, J. Chem. Phys., 2007, 126, 244103
- 16. A. C. Aragonès, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez and M. L. Coote, *Nature*, 2016, **531**, 88.
- 17. C. Yang, Z. Liu, Y. Li, S. Zhou, C. Lu, Y. Guo, M. Ramirez, Q. Zhang, Y. Li, Z. Liu, K. N. Houk, D. Zhang and X. Guo, *Sci. Adv.*, 2021, **7**, eabf0689.
- X. Huang, C. Tang, J. Li, L.-C. Chen, J. Zheng, P. Zhang, J. Le, R. Li, X. Li, J. Liu, Y. Yang, J. Shi, Z. Chen, M. Bai, H.-L. Zhang, H. Xia, J. Cheng, Z.-Q. Tian and W. Hong, *Sci. Adv.*, 2023, 5, eaaw3072.
- 19. S. D. Fried, S. Bagchi and S. G. Boxer, Science (80-.)., 2014, 346, 1510-1514