Binding Modes of High Stoichiometry Guest Complexes with a Co₈L₁₂ Cage Uncovered by Mass Spectrometry

Daniel L. Stares^{+a}, Cristina Mozaceanu ^{+b}, Michael D. Ward^{*b} and Christoph A. Schalley^{*a}

a - Institut für Chemie und Biochemie Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany

b - Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

Table of Contents

E	xperimental section	2
	Sample Preparation	3
	Mass spectrometer instrumental parameters	3
	Computational and $^{TM}CCS_{N2}$ calculations	4
	References	.11

Experimental section

The solvents and guests were purchased from commercial sources. The H^w cage was synthesised according to published procedures.¹

L^w ligand

Chemical formula: C₃₀H₂₆N₆O₂

H^wCo: [Co₈L^w₁₂](BF₄)₁₆

Chemical formula: $Co_8C_{360}H_{312}N_{72}O_{24}B_{16}F_{64}$

Sample Preparation

A 100 μ M stock solution of H^w_{co} in H₂O was prepared by heating and vigorously stirring the solution for 2 h at 80 °C. The resulting solution was used to prepare a 1:10 diluted host solution in H₂O (10 μ M), which was used in the experiments.

A 100 μ M stock solution of **MAC** in 10% CH₃OH / H₂O was prepared. This solution together with the 100 μ M H^w_{co} were used to prepare the solution of 10 μ M H^w_{co} / 50 μ M **MAC** in 5% CH₃OH / H₂O, by mixing the following: 100 μ L of 100 μ M H^w_{co} + 500 μ L of 100 μ M **MAC** + 400 μ L H₂O.

A 100 μ M stock solution of **MC** in 10% CH₃OH / H₂O was prepared. This solution together with the 100 μ M H^{W}_{co} were used to prepare the solution of 10 μ M H^{W}_{co} / 50 μ M **MC** in 5% CH₃OH / H₂O, by mixing the following: 100 μ L of 100 μ M H^{W}_{co} + 500 μ L of 100 μ M **MC** + 400 μ L H₂O.

A 100 μ M stock solution of **CUD** in 10% DMSO / H₂O was prepared. This solution together with the 100 μ M H^w_{co} were used to prepare the solution of 10 μ M H^w_{co} / 50 μ M **CUD** in 5% DMSO / H₂O, by mixing the following: 100 μ L of 100 μ M H^w_{co} + 500 μ L of 100 μ M **CUD** + 400 μ L H₂O.

Prior to their injection in the MS equipment, all solutions were centrifuged. All used solvents were of LC-MS grade.

Mass spectrometer instrumental parameters

Electrospray ionisation quadrupole-time-of-flight mass spectrometric (ESI-Q-TOF-MS) experiments were performed using a Synapt G2-S HDMS (Waters Co., Milford, MA, USA) instrument. ESI-HRMS and CID experiments were done using the following instrumental parameters: flow rate 5 μ L/min, capillary voltage 1.63 kV, sample cone voltage 25 V, source offset 30 V, source temperature 85 °C, desolvation temperature 200 °C, nebulizer gas 4 bar, desolvation gas flow 180 Lh⁻¹. CID experiments employed N₂ as buffer gas and were performed in the transfer cell of the MS instrument, at collision voltages of 2–15 V with a 1 V increment. IMS measurements were done using an IMS wave velocity of 600 ms⁻¹ and IMS wave height of 18 V. MassLynxTM (version 4.1) software was used for data acquisition and processing. Origin pro 2023 (OriginLab corporation) was used to plot graphs.

Computational and [™]CCS_{№2} calculations

Energy minimised structures were calculated using the universal force field (UFF) level of theory implemented in Avogadro.² Structures were initially generated from crystal structures by deleting solvent molecules and performing a minimisation for gas-phase structures. For the H^{W}_{Co} ¹⁰⁺ the counterions in the portal were retained and the others deleted. The respective guests were added and structures minimised again at UFF level. Theoretical TMCCS_{N2} values were calculated using the trajectory method implemented in IMoS software (Larriba Lab).³ figures were generated using Scigress (Fujitsu software). Corner structure with MAC bound was optimised at the B97-3c level of theory implemented in the ORCA software. ⁴⁻⁶

Fig. S1: ESI-MS of 10 μ M H^w_{co} in H₂O at different capillary voltages. The ratio between the different charge states changes and cage fragmentation dominates at higher capillary voltages likely as a result of the increased charged repulsion at higher charge states. H^w_{co}¹¹⁺ was never observed.

Fig. S2: Stacked MS/MS spectra of $H^{W}_{co}^{10+}$ ion (blue) at collision voltages 2–12 V. The $H^{W}_{co}^{10+}$ ion was fragmented completely at 8 V.

Fig. S3: Representation of the fragments of $[H^{W}_{Co}]^{10+}$, their labels and m/z values. The deprotonated ligand L^{W} (pink) was chosen arbitrarily. The BF₄⁻ and F⁻ anions were also placed arbitrarily.

Fig. S4: Parent ion relative intensity versus transfer collision voltage for $H^{w}_{co}^{10+}$, $H^{w}_{co}^{9+}$; $H^{w}_{co}^{8+}$. The inflection point of the curves, which can be used to compare relative stabilities, is shown in parentheses

Fig. S5: ESI-HRMS spectrum of H^{w}_{co}/CUD (10 μ M / 50 μ M) in 5% DMSO/H₂O. The inset Fig. represents the calculated *vs* experimental isotopic patterns and *m/z* values for the H^{w}_{co}/CUD^{10+} ion.

Fig. S6: ESI-HRMS spectrum of H^{w}_{co}/MC (10 μ M / 50 μ M) in 5% CH₃OH/H₂O.

Fig. S7: 1025-1425 m/z region of ESI-HRMS spectrum of H^w_{co} with MAC (10 μ M / 50 μ M) in 5% CH₃OH/H₂O. Stoichiometry with 7 MAC are observed albeit at low signal intensity.

Fig. S10: Stacked CID MS/MS spectra of mass-selected ions H^Wco/4MAC¹⁰⁺ A gradual loss of the MAC is observed when increasing the CID voltage.

Fig. S11: Relative ion intensity versus transfer collision voltage for the H^w_{Co}/G^{8+} with the different guests.

Fig. S13: Binding mode of **MAC** with two L^w in a *fac* corner of H^w_{co} . Structure was optimised at the B97-3c level of theory.

References

- 1. M. Whitehead, S. Turega, A. Stephenson, C. A. Hunter and M. D. Ward, *Chem. Sci.*, 2013, **4**, 2744-2751.
- 2. A. K. Rappé, C. J. Casewit, K. Colwell, W. A. Goddard III and W. M. Skiff, *J. Am. Chem. Soc.*, 1992, **114**, 10024-10035.
- 3. V. Shrivastav, M. Nahin, C. J. Hogan and C. Larriba-Andaluz, J. Am. Soc. Mass Spectrom., 2017, 28, 1540-1551.
- 4. J. G. Brandenburg, C. Bannwarth, A. Hansen and S. Grimme, J. Chem. Phys., 2018, 148.
- 5. F. Neese, WIREs: Comput. Mol. Sci., 2012, 2, 73-78.
- 6. F. Neese, WIREs: Comput. Mol. Sci., 2022, **12**, e1606.