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Experimental section

The solvents and guests were purchased from commercial sources. The HW cage was

synthesised according to published procedures.?
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Chemical formula: C3gH26N602
HYCo: [CosL"12](BF4)16

Chemical formula: CogCssoH312N72024B16Fs4

Sample Preparation

A 100 puM stock solution of HW¢, in H,0 was prepared by heating and vigorously stirring the
solution for 2 h at 80 °C. The resulting solution was used to prepare a 1:10 diluted host

solution in H,0 (10 uM), which was used in the experiments.

A 100 puM stock solution of MAC in 10% CH3OH / H,0 was prepared. This solution together
with the 100 uM HW¢, were used to prepare the solution of 10 pM HW¢, / 50 uM MAC in 5%
CH30OH / H,0, by mixing the following: 100 pL of 100 uM HW¢, + 500 pL of 100 uM MAC + 400
puL H20.

A 100 uM stock solution of MCin 10% CH3OH / H,0 was prepared. This solution together with
the 100 uM HW¢, were used to prepare the solution of 10 uM HW¢, / 50 uM MC in 5% CH3OH
/ H20, by mixing the following: 100 pL of 100 uM HW¢, + 500 pL of 100 uM MC + 400 pL H-O.

A 100 puM stock solution of CUD in 10% DMSO / H,O was prepared. This solution together
with the 100 uM HW¢, were used to prepare the solution of 10 uM HW¢, / 50 uM CUD in 5%
DMSO / H,0, by mixing the following: 100 pL of 100 uM HW¢, + 500 plL of 100 pM CUD + 400
puL H20.

Prior to their injection in the MS equipment, all solutions were centrifuged. All used solvents

were of LC-MS grade.



Mass spectrometer instrumental parameters

Electrospray ionisation quadrupole-time-of-flight mass spectrometric (ESI-Q-TOF-MS)
experiments were performed using a Synapt G2-S HDMS (Waters Co., Milford, MA, USA)
instrument. ESI-HRMS and CID experiments were done using the following instrumental
parameters: flow rate 5 plL/min, capillary voltage 1.63 kV, sample cone voltage 25 V, source
offset 30 V, source temperature 85 °C, desolvation temperature 200 °C, nebulizer gas 4 bar,
desolvation gas flow 180 Lh™. CID experiments employed N> as buffer gas and were
performed in the transfer cell of the MS instrument, at collision voltages of 2-15 V witha 1V
increment. IMS measurements were done using an IMS wave velocity of 600 ms™ and IMS
wave height of 18 V. MassLynx™ (version 4.1) software was used for data acquisition and

processing. Origin pro 2023 (OriginLab corporation) was used to plot graphs.

Computational and ™CCSy; calculations

Energy minimised structures were calculated using the universal force field (UFF) level of
theory implemented in Avogadro.? Structures were initially generated from crystal structures
by deleting solvent molecules and performing a minimisation for gas-phase structures. For
the HY¢o1%* the counterions in the portal were retained and the others deleted. The respective
guests were added and structures minimised again at UFF level. Theoretical ™CCSy; values
were calculated using the trajectory method implemented in IMoS software (Larriba Lab).?
figures were generated using Scigress (Fujitsu software). Corner structure with MAC bound

was optimised at the B97-3c level of theory implemented in the ORCA software. 4®
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Fig. S1: ESI-MS of 10 uM HY¢, in H20 at different capillary voltages. The ratio between the different charge states
changes and cage fragmentation dominates at higher capillary voltages likely as a result of the increased charged
repulsion at higher charge states. HV¢!'* was never observed.
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Fig. S2: Stacked MS/MS spectra of HWc,1% ion (blue) at collision voltages 2-12 V. The HW¢,!% ion was fragmented

completely at 8 V.
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Fig. S3: Representation of the fragments of [HVco]'%*, their labels and m/z values. The deprotonated ligand LW
(pink) was chosen arbitrarily. The BF4~ and F~ anions were also placed arbitrarily.
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Fig. S4: Parent ion relative intensity versus transfer collision voltage for H%c'%, H%co®*; Hco®*. The inflection

point of the curves, which can be used to compare relative stabilities, is shown in parentheses
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Fig. S5: ESI-HRMS spectrum of HW¢o/CUD (10 pM / 50 uM) in 5% DMSO/H20. The inset Fig. represents the
calculated vs experimental isotopic patterns and m/z values for the H%co/CUD®* ion.
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Fig. S6: ESI-HRMS spectrum of H¥co/MC (10 uM / 50 uM) in 5% CH3zOH/H.O.
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Fig. S7: 1025-1425 m/z region of ESI-HRMS spectrum of HVco with MAC (10 uM / 50 uM) in 5% CH3OH/H:0.
Stoichiometry with 7 MAC are observed albeit at low signal intensity.
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Fig. S8: Stacked CID spectra of mass selected HVco/CUD®* (10 uM / 50 uM) in 5% DMSO/H-0.
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Fig. S9: Stacked CID spectra of mass-selected HV¢o/MC° (10 uM / 50 uM) in 5% CH3OH/H:0.
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Fig. S10: Stacked CID MS/MS spectra of mass-selected ions HW¢o/4MAC%* A gradual loss of the MAC is observed

when increasing the CID voltage.
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Fig. S11: Relative ion intensity versus transfer collision voltage for the HWco/G?* with the different guests.
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Fig. S12: UFF structures of HWco'® (top left) HWco/CUD* (top right) HWco/MAC!* (bottom left) HWeo/MC0*

(bottom right) used for ™CCSn; calculations. The ™CCSn2 (A2) is shown underneath the structures.



Fig. $13: Binding mode of MAC with two LY in a fac corner of HWc. Structure was optimised at the B97-3c level
of theory.
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