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Experimental Section

Preparation of Samples.

The in situ synthesis of CoO@NCNR and Co@NCNT arrays: 2 g CoCl,-6H,0
and 5 g melamine or 3 g triazole were added to 5 ml aqueous solution under
tempestuously stirring to form a brown or purple colored slurry. Then, the colloidal
compounds were milled continually to form a paste, following the evaporation of
water. The obtained paste was dried at 80 °C for 24 h and manually ground into
powder. The powder was transferred to a semiclosed quartz boat and heated at 350 °C

for 1 h at a heating rate of 2 °C min’! in a tubular furnace under N, flow, and the
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temperature was increased to 700 °C at 2 °C min-! and kept at 700 °C for 3 h, followed
by cooling to room temperature naturally.

The in situ synthesis of Co;0,@NCNR and Co;0,@NCNT arrays: The
obtained Co@NCNR and Co@NCNT powder was calcined in a muffle furnace in air
at 410 °C for 1 h with a heating rate of 5 °C min‘!, and the final product was obtained.

The synthesis of Co;0,@CB: 6 g CoCl,-6H,0 and 5 g carbon black was
dispersed in 5 ml deionized water and ground by mortar and pestle to form a slurry.
Then the slurry was dried at 80 °C in oven overnight. The obtained powder was
transferred to a quartz boat and covered by a quartz cap. Then heat treated at 410 °C
for 1 h in air to form Co;0,4@CB.

Material Characterization

The crystalline structure of the products was characterized by X-ray diffraction
(XRD) on a Rigaku SmartLab9 powder diffractometer equipped with Cu K, radiation
(A=1.541 A). Thermogravimetric analysis (TGA) was performed on a TA SDT Q600
analyser in air with a heating rate of 10 K min-!. The morphology of the products was
observed by field emission scanning electron microscopy (FE-SEM) on a ZEISS
SUPRA 55 microscope and transmission electron microscopy (TEM) on a Tecnai G2
F20 microscope. X-ray photoelectron spectroscopy (XPS) was conducted using a
Kratos Axis Ultra DLD (delay line detector) spectrometer equipped with a
monochromatic Al K, X-ray source (1486.6 eV). Raman spectra were collected on a
Renishaw-1000 spectrometer by exciting a 514.5 nm Ar ion laser. N, adsorption-
desorption isotherms were recorded at 77 K on a Quantachrome NOV A 2000e sorption

analyzer.

Electrochemical Characterization

Co3;04@NCNR, Co3;04@NCNT or Co3;04@CB and polyvinylidene fluoride
(PVDF) binder in a weight ratio of 9 : 1 were mixed in N-methylpyrrolidone (NMP)
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and stirred for 24 h to make a slurry. The slurry was then spread on a Cu foil (13 mm
in diameter, 0.3 mm in thickness) with a surface density of 1.0 mg cm and dried at
120 °C for 24 h to fabricate the working electrodes in vacuum. Lithium foil was used
as both the reference electrode and the counter electrode (13 mm in diameter, 0.5 mm
in thickness). 1.0 M LiPFg in a 1:1 (v/v) mixture of ethylene carbonate (EC) and diethyl
carbonate (DEC) was employed as the electrolyte. Celgard 2300 membrane (25 pm-
thick polyethylene) was adopted as a separator. The assembly of CR2032-type coin
cells was conducted in a high-purity Ar filled glovebox. Galvanostatic cycling was
performed between 0.01 and 3 V vs Li*/Li at various C rates on a Land Battery Tester
(Wuhan, China), where 1 C corresponds to 1000 mA g!. Cyclic voltammetry (CV) was
conducted between 0.01 and 3 V at 0.1 mV s using a CHI660E electrochemical
workstation. Electrochemical impedance spectroscopy (EIS) was performed on the
same electrochemical system over the frequency range from 100 kHz to 100 mHz with
a perturbation voltage of 5 mV. All of the electrochemical measurements were

performed at 25 °C in an ambient atmosphere.
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Fig. S1 EDS analysis for (a) Co;04@NCNR and (b) Co;04@NCNT,

respectively.
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Fig. S2 TEM images of (a-c) Co;04@NCNR and (d-f) Co;04@NCNT,

respectively.
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Fig. S3 SEM images of Co;04@NCNR precursor of one-dimensional

Co(Il)-triazole framework composed nanobelts.
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Fig. S4 (a) XPS survey spectra of Co;0,@NCNR and Coz;04@NCNT

hybrids, High-resolution XPS of Co2p (b) and N 1s (c) for Co3;04@NCNT.
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Fig. S5 The pore size distribution of (a) Co;0,@NCNR and (b)
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Fig. S6 Co3;04@NCNR, Co;0,4@NCNT]|| Li half-cells: (a) CV at 0.1 mV
s, (b) EIS and equivalent circuit model (inset), (¢) voltage window of
0.01-3 V, (d) rate capability from 100 mA g'!to 5 A g, and (e) long-term

cycling performance at 1 A g, the capacity based on the mass of C030,.
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Fig. S7 CV curves of (a) Co;04,@NCNR and (b) Co;04@CB hybrid

electrodes at the Ist, 2nd, 3rd and 5th cycle.
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Fig. S8 Discharge/charge voltage window of (a) Co;04@NCNR and (b)
Co;04@NCNT hybrid electrodes at the 1st, 2nd, 3rd and 5th cycle between

0.01-3 V.
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CO304@NCNT

Fig. S9 The cross-sectional SEM images of (a) Co;04@NCNR and (b)

Co;04@NCNT electrode after 600 cycles.

Fig. S10 Top-view SEM images of (a, b) Co;04@NCNR and (c, d)

Co;04@NCNT electrode after 600 cycles.
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Table S1. Comparison of the electrochemical performances of various Co;04-based anode materials

for LIBs.
Initial
Current Discharge capacity Rate
discharge/charge
Electrode materials density - [mA h g'] and capability Ref.
A g] capacities (cyel ber) [mA h g]
g cycle number mAhg
[mA hg']
Co;0,@C 1463/1118 596
1.0 840 (150) [S1]
polyhedrons (0.1Agh (5.0A gh
Co3;0,/carbon 1458/945 669
0.089 877 (200) [S2]
(Co304/C) (0.089A g1 20Agh
Double
carbon coated cross- 537
linked Co;0, 1.0 1570/1020 1017(500) [S3]
(8.0A gh
(Co304
NP@NC@CNTs)
Co@Co0304/CNTs 529
2.0 1115/750 529 (600) [S4]
nanocomposite 20Agh
Co;04 nanoparticles
embedded 1246/733 240
0.089 730 (100) [S5]
carbonaceous fibre (0.089 A g'h) (4.45A g
(CO304/CF)
three-dimensional
1143/862 593
Co30,/C 2.0 561 (500) [S6]
' (0.1AghH 20AghH
nanocomposites
Co050, nanoparticles
into nitrogen-doped
1060.2/500.8 484.4
graphitic carbon 2.0 408.4 (600) [S7]
Q20AghH 20AghH
nanofibers
(CO304@NGFS)
the in-situ
fabricated 3D flower-
1265.4/989.1 498.8
like hybrid with 0.5 671.1 (500) [S8]
(0.1AghH 40AghH
Co050, nanoparticles
(CO304/NC)
N-doped carbon 1.0 1567/768 905 (350) 271 [S9]
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coated hollow Co;0,
nanocrystals

H-N-C@Co;0,/CNT

(125 A gV

Co;04/Co@N-doped
carbon nanotubes (T-

CO304/C0@NC)

0.5

693/563.5

689.2 (400)

655.4
(02A g

[S10]

Nitrogen-doped
carbon nanobelts
decorated with Co3;0,
nanoparticles

(CO304@NCNR)

1.0

1389.2/1050.7
(0.1A g

944.7(600)

768
(5.0Ag"

This

work
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