Supporting Information

Pd(II)-Catalyzed Atroposelective C-H Olefination:
Synthesis of Enantioenriched \boldsymbol{N}-Aryl Peptoid Atropisomers

Tian-Yu Jiang, ${ }^{\text {a }}$ Yi-Ting Ke, ${ }^{\text {a }}$ Yong-Jie Wu, ${ }^{\text {a }}$ Qi-Jun Yao, ${ }^{\text {a, }}{ }^{*}$ Bing-Feng Shi ${ }^{\text {ab,c, }, d^{*}}$

${ }^{\text {a Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China }}$${ }^{\mathrm{b}}$ School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China${ }^{\mathrm{c}}$ Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China${ }^{d}$ College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China*E-mail: 3110000156@zju.edu.cn (Q.J. Yao), bfshi@zju.edu.cn (B.F. Shi).

Table of Contents

1. General Information. 2
2. Experimental Section and Characterization Date 3
2.1 Preparation of Substrates. 3
2.2 Optimization of Reaction Conditions 5
2.3 General Procedures for Pd(II)-Catalyted Atroposelective C-H Olefination 6
2.4 Gram-Scale Synthesis 33
3. References 34
4. NMR Spectra. 35
5. Copies of HPLC Analysis 73

1. General Information

All the materials and solvents were purchased from commercial suppliers and used without additional purification. $\mathrm{Pd}(\mathrm{OAc})_{2}$ was purchased from Laajoo (China). NMR spectra were recorded on a Bruke Avance operating for ${ }^{1} \mathrm{H}$ NMR at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at $101 \mathrm{MHz},{ }^{19} \mathrm{~F}$ NMR at 376 MHz using TMS as internal standard. The peaks were internally referenced to residual undeuterated chloroform in $\mathrm{CDCl}_{3}(\delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}$). The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Melting points were determined using an INESA WRS-1B melting point apparatus. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument. The ee value was determined on Shimadzu HPLC using CHIRALPAK column with hexane and 2propanol as eluent, Wavelength $=254 \mathrm{~nm}$.

2. Experimental Section and Characterization Date

2.1 Preparation of Substrates

General Procedure A (Ugi reaction) for the Preparation of Compound 1a-1v

To a solution of the amine ($\mathbf{S} 1$) ($5.0 \mathrm{mmol}, 1.0$ equiv) in methanol $(10 \mathrm{~mL}, 0.5 \mathrm{M})$ was added paraformaldehyde (S2) (1.2 equiv). After being stirred for 1 h at room temperature, picolinic acid (S3) (1.2 equiv) and isocyanide (S4) (1.2 equiv) was added. The mixture was then stirred overnight at $60^{\circ} \mathrm{C}$ under air followed by cooling. The resulting mixture was filtered through a celite pad and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the product. ${ }^{[1]}$

Scheme S1. N-aryl Peptoids

Substrates $\mathbf{1 a - 1 j}, \mathbf{1 m - 1 v}$ are known compounds. ${ }^{[1]}$
$\approx \mathrm{CO}_{2} \mathrm{Et}$
2a

$2 f$

2b
$\gtrsim \mathrm{CO}_{2} t-\mathrm{Bu}$
2c
$\star \mathrm{CO}_{2} \mathrm{Ph}$
2d

2g

2h

$2 \mathbf{i}$

2e

2k

21

2m

Scheme S2. Olefins

Olefins 2a-2o are commercially available.

Methyl N-(2-isopropylphenyl)- N-(6-methylpicolinoyl)glycylglycinate (1k)
The title compound $\mathbf{1 k}$ was prepared according to the general procedure A and was purified by flash chromatography (petroleum ether: ethyl acetate: triethylamine $=1: 1: 1 \%$). $\mathbf{1 k}$ was obtained as a brown solid, $E: Z=5: 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{ddd}, J=8.5,5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=18.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- \boldsymbol{d}) $\delta 170.36,169.96,168.94,157.35,152.02,145.47,140.72$, $136.33,129.14,128.62,126.81,126.39,124.10,121.15,55.38,52.45,41.28,27.95,24.94,23.94$, 22.91 .

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4} 406.1739$; found: 406.1737.

Methyl N-(2-isopropylphenyl)-N-(6-(trifluoromethyl)picolinoyl)glycylglycinate (11)

The title compound $\mathbf{1 1}$ was prepared according to the general procedure A and was purified by flash chromatography (petroleum ether: ethyl acetate: triethylamine $=1: 1: 1 \%$). $\mathbf{1 k}$ was obtained as a yellow solid, $E: Z=10: 1$.
${ }^{1}$ H NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=18.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=18.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- \boldsymbol{d}) $\delta 170.35,168.33,168.10,153.21,146.58\left(\mathrm{q}, J_{\mathrm{CF} 3}=35.5\right.$ $\mathrm{Hz}), 145.27,140.18,138.02,129.08,128.85,127.07,127.00,126.45,121.10\left(\mathrm{q}, J_{\mathrm{CF}}=8.7 \mathrm{~Hz}\right)$, 55.26, 52.49, 41.30, 28.05, 24.80, 22.70.
${ }^{19}$ F NMR (376 MHz , Chloroform-d) δ-67.92.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{4} 460.1456$; found: 460.1455 .

2.2 Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions ${ }^{\mathbf{a}}$

Entry	Solvent	Sxidant	Yield (\%)	$e e(\%)^{c}$
1	HFIP	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	78	94
2	THF	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	46	90
3	1,4-dioxane	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	39	85
4	MeCN	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	82	81
5	trifluoroethanol	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	43	81
6	HFIP	AgOAc^{2}	49	79
7	HFIP	$\mathrm{Ag}_{2} \mathrm{O}$	22	75
8	HFIP	AgNO_{3}	57	89

${ }^{a}$ Reaction conditions: 1a ($0.1 \mathrm{mmol}, 1.0$ equiv.), 2a (1.5 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), Lp Glu-OH ($20 \mathrm{~mol} \%$), oxidant (3.0 equiv.) in solvent (0.4 mL) at $55^{\circ} \mathrm{C}$ under air for 24 h . ${ }^{b}$ Isolated yield.
${ }^{c}$ The $e e$ values were determined by chiral HPLC.

2.3 General Procedures for $\mathbf{P d}(\mathrm{II})$-Catalyted Atroposelective C-H

Olefination

To a 10 mL Schlenk tube was added $\mathbf{1}(0.1 \mathrm{mmol}), \mathbf{2}(0.15 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{L}-$ pGlu-OH ($2.6 \mathrm{mg}, 20 \mathrm{~mol} \%$) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}\left(82.8 \mathrm{mg}, 3.0\right.$ equiv.), HFIP (0.4 mL) stirred at $55^{\circ} \mathrm{C}$ (aluminum heat transfer block) under air at 24 h . After cooling to room temperature, the mixture was diluted with ethyl acetate, the resulting residue was purified by preparative TLC using Hexane/EtOAc as the eluent to afford the desired product.

Ethyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (3a)

A purification by flash chromatography in petroleum ether: ethyl acetate $=2: 1$ to give $\mathbf{3 a}$ as yellow oil (36.3 mg, 78\%, $E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.13(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=$ $14.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=18.3,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.08$, 169.77, 168.34, 166.56, 151.93, 147.76, 146.53, $141.10,140.21,136.26,132.80,128.71,128.68,124.90,124.71,124.41,121.07,60.59,56.64$, 52.31, 41.35, 28.19, 24.88, 22.99, 14.32.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{6} 490.1948$; found: 490.1949.
HPLC: OD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=9.5 \mathrm{~min}$ (minor), 13.7 min (major), 94\% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}} \mathbf{2 0}^{\mathbf{2}}=-117.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)isoquinoline-3carboxamido)phenyl)acrylate(3b)

A purification by flash chromatography in petroleum ether: ethyl acetate $=2: 1$ to give $\mathbf{3 b}$ as yellow oil ($12.8 \mathrm{mg}, 25 \%, E: Z=5: 1)$. (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.39$ (dd, $J=6.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{dd}, J=15.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{dd}, J=18.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), $3.11-3.05(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 170.24,169.59,168.49,166.74,151.09,146.33,141.48$, $136.55,133.01,129.88,128.83,128.69,128.09,127.48,124.77,121.04,120.99,60.68,56.95$, 52.45, 41.51, 28.30, 24.89, 23.37, 14.44.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{NaO}_{6} 540.2103$; found: 540.2105.
HPLC: AD-H column (hexane/isopropanol $=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=19.7 \mathrm{~min}$ (minor), 29.8 min (major), 43% ee.
$[\boldsymbol{\alpha}]_{\mathbf{D}} \underline{\mathbf{2 0}}^{\mathbf{0}}=+53.0\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)pyrimidine-2-

carboxamido)phenyl)acrylate(3c)

A purification by flash chromatography in petroleum ether: ethyl acetate $=1: 2$ to give $\mathbf{3 c}$ as yellow oil (41.8mg, $89 \%, E: Z=8: 1)$. (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{\mathbf{1} H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.53(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}$, $2 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.02,168.23,166.59,160.58,156.72,147.24,141.22$, $138.74,133.88,129.36,128.66,125.07,121.66,121.46,60.78,56.24,52.44,41.52,28.23,25.30$, 23.25, 14.44 .

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{NaO}_{6}$ 491.1901; found: 491.1902.
HPLC: OD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=10.1 \mathrm{~min}$ (minor), 21.7 min (major), $96 \% \mathrm{ee}$.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}}{ }^{\mathbf{2 0}}=-194.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(3-isopropyl-2-(5-methoxy- N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate(3d)

A purification by flash chromatography in petroleum ether: ethyl acetate $=2$: 1 to give $\mathbf{3 d}$ as yellow oil ($50.7 \mathrm{mg}, 41 \%, E: Z=3: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 7.91(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-$ $7.75(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.29(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dd, $J=18.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.99(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathrm{MHz}$, Chloroform- \boldsymbol{d}) $\delta 170.22,169.41,168.67,166.73,156.58,146.46,140.91$, $135.65,132.75,128.82,128.55,126.14,124.84,120.98,119.85,60.67,56.95,55.69,52.40,41.44$, 28.30, 24.86, 23.22, 14.43 .

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{7}$ 520.2054; found: 520.2055.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=20.3 \mathrm{~min}$ (minor), 11.7 min (major), 95% ee.
$\underline{\boldsymbol{\alpha}}]_{\underline{\mathbf{2}}}{ }^{\mathbf{2 0}}=-160.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(2-(4-chloro- N -(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)picolinamido)-3isopropylphenyl)acrylate(3e)

A purification by flash chromatography in petroleum ether: ethyl acetate $=2$: 1 to give $\mathbf{3 e}$ as yellow oil ($40.2 \mathrm{mg}, 80 \%, E: Z=3: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.98(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{dd}, J=5.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=7.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.15,168.60,168.06,166.56,148.64,146.56,144.58$, $141.04,139.90,132.91,128.95,128.83,125.22,125.10,124.79,121.31,60.70,56.68,52.42$, 41.43, 28.31, 23.14, 14.40.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{NaO}_{6} 524.1559$; found: 524.1559.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=10.0 \mathrm{~min}$ (minor), 6.7 min (major), 95% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}}{ }^{\mathbf{2 0}}=-137.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(2-(5-bromo-N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)picolinamido)-3-
isopropylphenyl)acrylate(3f)
A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 f}$ as yellow oil ($35.5 \mathrm{mg}, 65 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1}$ H NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 8.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ $(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=6.9,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{q}, J=7.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ $(\mathrm{d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{td}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=18.3$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.17,168.84,168.10,166.59,148.79,146.58,140.89$, $140.10,139.18,128.93,126.04,124.80,122.75,121.19,60.68,56.70,52.40,41.41,28.28,24.85$, 23.25, 14.38

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{NaO}_{6} 568.1053$; found: 568.1054.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=17.3 \mathrm{~min}$ (minor), $9.9 \min$ (major), 97% ee.
${\underline{\alpha}]_{\mathbf{D}}}^{\mathbf{2 0}}=-173.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (\boldsymbol{E})-3-(2-(6-bromo-N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)picolinamido)-3-

isopropylphenyl)acrylate(3g)

A purification by flash chromatography in petroleum ether : ethyl acetate $=1: 1$ to give $\mathbf{3 g}$ as yellow oil ($2.5 \mathrm{mg}, 5 \%, E: Z=10: 1$). (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{1}$ H NMR (400 MHz, Chloroform- d) $\delta 7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ $(\mathrm{d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{dd}, J=18.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{p}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.24,168.12,167.85,166.70,152.22,140.99,140.00$, $139.86,138.73,132.79,129.91,129.07,129.05,124.88,123.70,121.17,60.69,56.78,52.47$, 41.50, 28.36, 24.96, 23.38, 14.43.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{NaO}_{6} 568.1053$; found: 568.1055.
HPLC: OD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=9.9 \mathrm{~min}$ (minor), 20.5 min (major), 34% ee.
$\underline{\alpha}_{\boldsymbol{\alpha}}^{\mathbf{D}} \underline{\mathbf{2 0}}^{\underline{0}}=-58.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(2-(5-fluoro- N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)picolinamido)-3-

isopropylphenyl)acrylate(3h)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 h}$ as yellow oil ($40.7 \mathrm{mg}, 84 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1}$ H NMR (400 MHz, Chloroform- d) $\delta 7.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=13.1,7.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=13.4,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.04(\mathrm{dd}, J=$ $18.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 170.22,168.67,168.26,166.64,148.15,146.54,141.04$, $140.31,136.32,136.08,128.90,126.62,124.85,123.28,123.09,121.21,60.72,56.81,52.44,41.45$, 28.31, 24.89, 23.22, 14.42 .
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ-122.16.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{NaO}_{6}$ 508.1854; found: 508.1855.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=9.6 \mathrm{~min}$ (minor), 7.5 min (major), $96 \% \mathrm{ee}$.
$[\boldsymbol{\alpha}]_{\underline{\mathbf{D}}} \underline{\mathbf{2 0}}=-123.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-6-((2-(3-ethoxy-3-oxoprop-1-en-1-yl)-6-isopropylphenyl)(2-((2-methoxy-2-
oxoethyl)amino)-2-oxoethyl)carbamoyl)nicotinate (3i)
A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 i}$ as yellow oil ($50.7 \mathrm{mg}, 97 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.69(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=6.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 2 \mathrm{H})$, $6.24(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.16(\mathrm{~m}$, $3 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.04(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 170.16, 169.03, 168.02, 166.56, 148.85, 146.76, 140.85, $139.75,137.55,132.84,129.07,128.94,126.55,124.75,124.06,121.25,60.69,56.56,52.62$, 52.40, 41.42, 28.30, 24.91, 23.21, 14.37.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{8}$ 548.2003; found: 548.2002.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=10.4 \mathrm{~min}$ (minor), 6.5 min (major), 94\% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}}{ }^{\mathbf{2 0}}=-126.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)-5-

nitropicolinamido)phenyl)acrylate(3j)
A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 j}$ as yellow oil (39.1mg, 76\%, $E: Z=7: 1)$. (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.91(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=6.0,3.3$
$\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=18.3,5.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.07(\mathrm{dd}, J=18.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.10$
$(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 167.83, 167.60, 146.91, 144.02, 143.06, 140.49, 139.29, $132.85,131.75,129.47,129.16,125.09,124.86,121.54,60.82,56.54,52.50,41.48,28.39,24.93$, 23.35, 14.40 .

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{NaO}_{8}$ 535.1799; found: 535.1799.
HPLC: AS-H column (hexane $/$ isopropanol $=60 / 40$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=25.2 \mathrm{~min}$ (minor), 12.1 min (major), 98% ee.
$\underline{\alpha}]_{\underline{D}}{ }^{\mathbf{2 0}}=-136.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)-6-

methylpicolinamido)phenyl)acrylate (3k)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{3 k}$ as yellow oil ($36.2 \mathrm{mg}, 75 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) ~ \delta 7.91(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=16.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}$, $J=18.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{hept}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 170.16,169.65,168.57,166.68,156.78,146.25,141.53$, $140.84,136.50,133.02,128.65,128.49,124.62,121.64,120.81,60.60,56.78,52.36,41.42,28.15$, 24.91, 23.58, 23.10, 14.39.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{6} 504.2108$; found: 504.2105.
HPLC: OD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=15.2 \mathrm{~min}$ (minor), 8.0 min (major), $21 \% \mathrm{ee}$.
$\underline{\boldsymbol{\alpha}} \underline{\mathbf{D}}^{\underline{20}}=+33.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-6-((2-((2-ethoxy-2-oxoethyl)amino)-2-oxoethyl)(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-

6-isopropylphenyl)carbamoyl)nicotinate (30)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 o}$ as yellow
oil ($52.8 \mathrm{mg}, 98 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{ddt}, J=$ $9.6,4.1,2.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.16(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{q}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.71,169.04,168.02,165.09,155.46,148.88,146.76$, $140.89,139.78,137.57,129.08,128.95,126.57,124.80,121.30,61.55,60.72,56.63,52.65,41.63$, 28.32, 24.96, 23.23, 14.42, 14.29.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{8}$ 562.216; found: 562.216.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=11.0 \mathrm{~min}$ (minor), 7.4 min (major), 96\% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}}{ }^{\mathbf{2 0}}=-101.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-6-((2-(cyclohexylamino)-2-oxoethyl)(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-6-

isopropylphenyl)carbamoyl)nicotinate (3p)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 p}$ as yellow oil ($51.6 \mathrm{mg}, 96 \%, E: Z=8: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{q}, J=6.8$, $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{tt}, J=7.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11$ $(\mathrm{d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.89(\mathrm{~m}$, $2 \mathrm{H}), 1.79-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform- \boldsymbol{d}) δ 169.11, 166.87, 166.51, 148.94, 146.80, 140.81, 139.91, $137.53,132.80,129.02,128.92,126.53,124.89,123.91,121.50,60.73,57.49,52.66,48.53,32.94$, 32.87, 28.40, 25.69, 25.12, 24.82, 24.81, 23.24, 14.44.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{NaO}_{6} 558.2574$; found: 558.2575.
HPLC: AD-H column (hexane/isopropanol $=80 / 20$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=11.6 \mathrm{~min}$ (minor), 8.4 min (major), 83% ee.
$\underline{\boldsymbol{\alpha}]_{\underline{\mathbf{D}}}{ }^{\mathbf{2 0}}=-165.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .}$

Methyl (E)-6-((2-((2,6-dimethylphenyl)amino)-2-oxoethyl)(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-

6-isopropylphenyl)carbamoyl)nicotinate (3q)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{~} \mathbf{q q}$ as yellow oil $(48.4 \mathrm{mg}, 87 \%, E: Z=10: 1)$. (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.72(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=5.6,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 3 \mathrm{H}), 6.22(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 169.52, 166.41, 165.91, 165.06, 148.91, 147.02, 140.92, $140.34,137.59,135.08,133.93,132.84,129.08,129.04,128.33,127.23,126.60,124.81,123.91$, $121.63,60.78,57.54,52.66,28.49,24.98,23.27,18.68,14.28$.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{6} 580.2418$; found: 580.2418.
HPLC: AD-H column (hexane/isopropanol $=80 / 20$, rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=15.1 \mathrm{~min}$ (minor), $10.9 \min$ (major), 95% ee.
${\underline{\alpha}]_{\mathbf{D}}}^{\mathbf{2 0}}=-125.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E) - N-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-6-isopropylphenyl)- N-(5-

nitropicolinoyl)glycylglycyl-D-valinate (3r)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 r}$ as yellow oil ($43.5 \mathrm{mg}, 71 \%, E: Z=9: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 8.87(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{q}, J=4.2,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=8.6,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=$ $16.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-0.91(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 172.47,168.89,167.76,167.64,166.60,156.89,146.95$, $143.98,142.99,140.70,139.51,132.80,131.73,129.38,129.17,125.13,124.79,121.48,60.90$, $57.54,56.55,52.26,43.44,31.10,28.23,24.91,23.25,19.05,18.07,14.39$.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{NaO}_{9} 634.2483$; found: 634.2483.
HPLC: IE-H column (hexane $/$ isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=23.8 \mathrm{~min}$ (minor), 36.6 min (major), $91 \% \mathrm{de}$.
$\underline{[\boldsymbol{\alpha}} \mathbf{D}^{\mathbf{D} \mathbf{2}}=-105.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (R,E)-3-(3-isopropyl-2-(N-(2-((2-((1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-2-oxoethyl)amino)-2-oxoethyl)-5-nitropicolinamido)phenyl)acrylate (3s)

A purification by flash chromatography in petroleum ether: ethyl acetate $=1: 2$ to give $\mathbf{3 s}$ as yellow oil ($37.1 \mathrm{mg}, 56 \%, E: Z=10: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=16.1$, $7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=$ $16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{p}, J=8.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 172.00,168.57,167.67,166.56,142.97,140.66,136.04$, $132.80,131.72,129.38,129.16,128.65,127.17,125.11,124.79,121.49,60.87,56.54,53.56$, 52.44, 37.81, 28.22, 24.93, 23.25, 14.39.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{NaO}_{9} 682.2483$; found: 648.2485.
HPLC: IE-H column (hexane/isopropanol $=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=68.7 \mathrm{~min}$ (minor), 84.6 min (major), $93 \% \mathrm{de}$.
$\underline{[\boldsymbol{\alpha}} \underline{\mathbf{D}}^{\underline{20}}=-86.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-6-((2-(3-ethoxy-3-oxoprop-1-en-1-yl)-6-ethylphenyl)(2-((2-methoxy-2-

oxoethyl)amino)-2-oxoethyl)carbamoyl)nicotinate (3t)
A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{3 t}$ as yellow oil ($50.5 \mathrm{mg}, 99 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.85(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{p}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}$, $4 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.16,169.08,168.05,166.55,155.71,149.00,142.03$, $140.50,140.45,137.53,132.79,130.54,128.86,126.49,124.71,123.55,121.29,60.73,55.88$, 52.63, 52.43, 41.45, 23.53, 14.39, 13.87.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{8} 512.2028$; found: 512.2030
HPLC: AS-H column (hexane $/$ isopropanol $=60 / 40$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=38.4 \mathrm{~min}$ (minor), 14.5 min (major), 94\% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}}{ }^{\mathbf{2 0}}=-126.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-6-((2-(3-ethoxy-3-oxoprop-1-en-1-yl)-5,6,7,8-tetrahydronaphthalen-1-yl)(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)carbamoyl)nicotinate (3u)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{3 u}$ as yellow oil ($46.1 \mathrm{mg}, 86 \%, E: Z=5: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.17(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 4 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 170.12, 169.11, 168.18, 166.68, 155.94, 149.08, 141.67, $140.01,137.46,136.14,129.93,129.80,126.41,123.65,123.16,120.01,60.59,55.19,52.60$, 52.37, 41.44, 29.70, 25.67, 22.58, 22.35.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{8}$ 560.2003; found: 560.2003.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=37.6 \mathrm{~min}$ (minor), 15.6 min (major), $>99 \%$ ee.
$\underline{\alpha}_{\boldsymbol{\alpha}}^{\mathbf{D}} \underline{\underline{\mathbf{2 0}}}^{\underline{0}}=-61.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-(5-methoxy-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-oxoethyl)-5-

nitropicolinamido)-3-methylphenyl)acrylate (3v)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{3 v}$ as yellow oil ($23.6 \mathrm{mg}, 46 \%, E: Z=11: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) ~ \delta 8.98(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}$, $3 \mathrm{H}), 4.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 170.17, 168.16, 167.79, 166.40, 159.18, 157.76, 143.87, $143.43,139.86,138.40,133.80,133.70,131.73,124.11,121.62,118.57,109.20,60.87,55.47$, 52.50, 41.45, 18.76, 14.39 .

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{NaO}_{9} 537.1592$; found: 537.1591.
HPLC: OD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=17.9 \mathrm{~min}$ (minor), 31.0 min (major), $98 \% \mathrm{ee}$.

Butyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (4b)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{4 b}$ as yellow
oil ($36.3 \mathrm{mg}, 73 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.13(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{dd}, J=18.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.18,168.46,166.76,147.87,146.60,141.14,136.36$, $132.82,128.82,128.77,125.02,124.80,124.51,121.13,64.61,56.72,52.43,41.42,30.82,28.28$, 24.98, 23.10, 19.28, 13.87.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{6} 518.2261$; found: 518.2264.
HPLC: AD-H column (hexane/isopropanol $=80 / 20$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=42.1 \mathrm{~min}$ (minor), $29.0 \min$ (major), 94\% ee.
$\underline{\boldsymbol{\alpha}]_{\underline{\mathbf{D}}}{ }^{\mathbf{2 0}}=-110.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) . ~}$

Tert-butyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (4c)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{4 c}$ as yellow oil ($20.8 \mathrm{mg}, 42 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{1}$ H NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.14(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=7.7,4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ $-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=18.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.18,168.52,165.94,147.92,146.52,140.12,139.38$, $136.32,132.99,128.73,128.57,124.99,124.80,124.49,123.08,80.73,56.73,52.42,41.46,28.56$, 28.28, 25.01, 23.09.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{6} 518.2261$; found: 518.2662.
HPLC: AD-H column (hexane/isopropanol $=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=16.1 \mathrm{~min}$ (minor), 8.6 min (major), 96% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}} \underline{\mathbf{2 0}}^{\underline{0}}=-94.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Phenyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (4d)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{4 d}$ as yellow oil ($35.9 \mathrm{mg}, 70 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.13(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $7.92(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=3.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ $-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.47(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J$ $=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=18.3,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.08,169.83,168.39,165.09,151.92,150.80,147.81$, $146.66,143.11,140.60,136.45,132.54,129.53,129.34,128.85,125.93,125.09,124.85,124.64$, 121.73, 119.98, 56.80, 52.37, 41.45, 28.34, 24.89, 23.14.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{6}$ 538.1948; found: 538.1950.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=19.7 \mathrm{~min}$ (minor), $9.2 \min$ (major), 95% ee.
$\underline{\boldsymbol{\alpha}}]_{\underline{\mathbf{D}}}{ }^{\mathbf{2 0}}=-164.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Benzyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (4e)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{4 e}$ as yellow oil ($40.2 \mathrm{mg}, 76 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.11(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-$ $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $(\mathrm{s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=12.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ $(\mathrm{dd}, J=18.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 170.16, 169.86, 168.41, 166.43, 151.95, 147.82, 146.60, $141.78,140.37,138.59,136.38,136.08,132.69,128.99,128.74,128.39,128.23,125.02,124.74$, 124.53, 120.61, 66.47, 56.73, 52.42, 41.37, 28.30, 24.91, 23.14.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{6}$ 552.2105; found: 552.2107.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=22.0 \mathrm{~min}$ (minor), $11.2 \min$ (major), 95% ee.
$\underline{\alpha}_{\boldsymbol{\alpha}}^{\mathbf{D}} \underline{\mathbf{2}}^{\mathbf{2 0}}=-87.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

2,4,6-tribromophenyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (4f)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{4 f}$ as yellow oil ($39.1 \mathrm{mg}, 52 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 8.16(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.7,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=18.3,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{dd}, J=18.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.69,170.09,168.37,162.53,151.86,147.74,146.84$, $145.08,140.72,136.47,134.92,132.21,129.82,128.88,125.13,125.00,124.78,119.94,118.76$, 118.17, 56.82, 52.41, 41.44, 28.39, 24.83, 23.21.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} 771.9264$; found: 771.9263.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=19.3 \mathrm{~min}$ (minor), 26.1 min (major), 97% ee.
$\underline{\underline{\alpha}} \underline{\mathbf{D}}^{\underline{\mathbf{2 0}}}=-71.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-
oxoethyl)amino)-2-oxoethyl)picolinamido)phenyl)acrylate (4g)
A purification by flash chromatography in petroleum ether: ethyl acetate $=2$: 1 to give $\mathbf{4 g}$ as yellow
oil ($45.5 \mathrm{mg}, 79 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.13(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{dd}, J=15.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{tt}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35$ (m, 1H), $7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=7.7,4.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dt}, J=7.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=14.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{ddd}, J=18.0,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (d, $J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.17,168.52,166.14,147.89,140.82,136.35,132.77$, $128.74,126.32,125.02,124.78,121.69,121.64,56.72,52.45,48.94,47.12,45.11,41.41,38.96$, $33.80,28.28,27.17,25.03,23.12,20.21,20.10,11.67$.

HRMS (ESI) m/z: [M+Na] Calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{NaO}_{6} 598.2887$; found: 598.2887.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=13.7 \mathrm{~min}$ (minor), $6.3 \min$ (major), 95% ee.
$\underline{\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}=-118.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) . ~ . ~ . ~}$

2-phenoxyethyl (E)-3-(3-isopropyl-2-(N-(2-((2-methoxy-2-oxoethyl)amino)-2-

oxoethyl)picolinamido)phenyl)acrylate (4h)

A purification by flash chromatography in petroleum ether : ethyl acetate $=1: 2$ to give $\mathbf{4 h}$ as yellow oil (44.3 mg, 79\%, $E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\delta 8.11(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=7.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11$ (ddd, J $=7.6,4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.34(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.23(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=18.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.02(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.19,168.42,166.54,158.55,147.83,146.61,141.96$, $140.40,136.39,132.66,129.67,129.02,128.79,125.02,124.79,124.54,121.29,120.38,114.70$, 65.96, 63.04, 56.74, 52.43, 41.42, 28.29, 24.94, 23.11.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{7}$ 582.2211; found: 582.2212.
HPLC: IA column (hexane $/$ isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=21.2 \mathrm{~min}$ (minor), 15.8 min (major), 95% ee.
$\left[\boldsymbol{\alpha}_{\mathbf{D}} \underline{\mathbf{2 0}}^{\mathbf{2 0}}=-92.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right.$.

Methyl (E)-N-(2-isopropyl-6-styrylphenyl)- N-picolinoylglycylglycinate (4i)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{4 i}$ as yellow oil ($26.0 \mathrm{mg}, 55 \%, E: Z=3: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1} H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.24(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=6.9,4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.35,170.12,168.65,152.35,148.21,146.33,138.98$, $137.28,136.15,132.02,128.85,128.77,126.85,126.28,125.27,124.90,124.03,56.41,52.46$, 41.39, 28.32, 25.24, 23.10.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{4} 494.2050$; found: 494.2051.
HPLC: AD-H column (hexane/isopropanol $=80 / 20$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=26.0 \mathrm{~min}$ (minor), 19.2 min (major), 98% ee.
$\underline{\boldsymbol{\alpha}]_{\mathbf{D}}}{ }^{\mathbf{2 0}}=-196.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)- N-(2-(2-chlorostyryl)-6-isopropylphenyl)- N-picolinoylglycylglycinate (4i)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{4} \mathbf{j}$ as yellow oil ($40.6 \mathrm{mg}, 80 \%, E: Z=4: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) ~ \delta 8.23(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-$ $7.50(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H})$, $4.51(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=18.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $18.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 170.36, 170.10, 168.57, 148.16, 146.35, 139.17, 136.21, $135.48,135.40,133.59,129.91,128.99,128.85,128.00,127.93,127.16,126.99,126.68,124.91$, $124.44,124.02,56.40,52.47,41.38,28.33,25.21,23.12$.

HRMS (ESI) m/z: [M + Na] Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{NaO}_{4}$ 528.1660; found: 528.1661.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=11.3 \mathrm{~min}$ (minor), $4.9 \min$ (major), 92% ee.
${\underline{\alpha}]_{\underline{D}}}^{\mathbf{2 0}}=-158.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-N-(2-(4-chlorostyryl)-6-isopropylphenyl)- N-picolinoylglycylglycinate (4k)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{4 k}$ as yellow oil ($46.1 \mathrm{mg}, 91 \%, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{\mathbf{1} H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=$ $8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=$ $7.5,4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=18.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=18.5,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 170.26, 170.14, 168.54, 148.14, 146.30, 139.14, 136.18, $135.88,135.42,133.63,130.51,129.00,128.77,128.06,126.47,126.12,124.94,124.11,123.98$, 56.38, 52.49, 41.41, 28.33, 25.21, 23.10.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{NaO}_{4}$ 528.1660; found: 528.1661.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\operatorname{tr}=12.1 \mathrm{~min}$ (minor), $5.4 \min$ (major), 92% ee.
$\underline{\boldsymbol{\alpha}} \underline{\mathbf{D}}^{\mathbf{2 0}}=-223.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)-N-(2-isopropyl-6-(4-methylstyryl)phenyl)- N-picolinoylglycylglycinate (41)
A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{4 l}$ as yellow oil ($32.3 \mathrm{mg}, 67 \%, E: Z=3: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1}$ H NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.25(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}$, $J=9.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=7.2,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J$ $=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=18.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=18.3,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 170.40,170.12,168.68,148.25,146.32,138.83,138.12$, $136.12,134.50,132.02,129.57,128.76,126.77,126.08,124.88,124.14,124.00,123.95,56.40$, 52.45, 41.40, 28.32, 25.26, 23.10, 21.42.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ 508.2207; found: 508.2205.
HPLC: AD-H column (hexane $/$ isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=8.5 \mathrm{~min}$ (minor), 5.0 min (major), 99% ee.
$\underline{\alpha}]_{\mathbf{D}} \mathbf{2 0}^{\mathbf{2 0}}=-247.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)- N-(2-(4-fluorostyryl)-6-isopropylphenyl)- N-picolinoylglycylglycinate (4m)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2$: 1 to give $\mathbf{4 m}$ as yellow oil ($27.0 \mathrm{mg}, 55 \%, E: Z=3: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)
${ }^{1}$ H NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \delta 8.23(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $7.01(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ $(\mathrm{dd}, J=12.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=18.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.12$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 170.28, 170.12, 168.57, 152.33, 148.17, 146.27, 139.03, $136.14,133.53,130.66,128.76,128.46,128.38,126.27,125.22,124.91,124.06,123.92,115.89$, 115.68, 56.36, 52.46, 41.38, 28.31, 25.23, 23.08.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Chloroform-d) δ-113.62.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{NaO}_{4}$ 512.1956; found: 512.1958.
HPLC: AD-H column (hexane $/$ isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=5.5 \mathrm{~min}$ (minor), 11.3 min (major), 97% ee.
$\underline{\boldsymbol{\alpha}]_{\underline{D}}}{ }^{\mathbf{2 0}}=-196.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)- N-(2-(3,3-dimethylbut-1-en-1-yl)-6-isopropylphenyl)- N-picolinoylglycylglycinate

(4n)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{4 n}$ as yellow oil (20.8 mg, 43\%, $E: Z=5: 1)$. (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{\mathbf{1} H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) ~ \delta 8.27(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=18.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.12,168.99,148.31,146.27,145.77,138.38,136.18$, $135.97,128.68,125.52,124.80,124.30,123.86,121.28,56.35,52.46,45.77,41.46,33.79,29.57$, 28.32, 25.32, 23.11, 8.74.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{4} 474.2361$; found: 474.2363.
HPLC: AD-H column (hexane/isopropanol $=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{tr}=7.0 \mathrm{~min}$ (minor), $4.3 \min$ (major), 98% ee.
$\underline{\boldsymbol{\alpha}}]_{\mathbf{D}} \underline{\mathbf{2 0}}^{\underline{0}}=-92.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Methyl (E)- N-(2-isopropyl-6-(2-(trimethylsilyl)vinyl)phenyl)- N-picolinoylglycylglycinate (4o)

A purification by flash chromatography in petroleum ether : ethyl acetate $=2: 1$ to give $\mathbf{4 0}$ as yellow oil ($17.7 \mathrm{mg}, 38 \%, E: Z=3: 1$). (Note! The structure and NMR data of major E-rotamer were shown.) ${ }^{1}$ H NMR (400 MHz, Chloroform-d) $\delta 8.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=6.7,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, $J=18.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- \boldsymbol{d}) $\delta 170.36,170.12,168.82,148.22,146.32,139.92,138.52$,
$136.58,136.03,134.44,128.68,126.53,124.83,124.22,124.01,56.56,52.47,45.79,41.47,28.29$, 25.26, 23.14, 8.82, -1.19.

HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{4} \mathrm{Si} 490.2134$; found: 490.2133.
HPLC: AD-H column (hexane/isopropanol $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tr}=7.0 \mathrm{~min}$ (minor), 4.0 min (major), $96 \% \mathrm{ee}$.
$\underline{\boldsymbol{\alpha}} \underline{\mathbf{D}}^{\mathbf{2 0}}=-136.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

2.4 Gram-Scale Synthesis

To a 50 mL Schlenk tube was added $\mathbf{1 a}(5.0 \mathrm{mmol}), \mathbf{2 a}(7.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(112.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, L-pGlu-OH (129.1 mg, $20 \mathrm{~mol} \%$) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(4.1 \mathrm{~g}, 3.0$ equiv. $)$, HFIP (20.0 mL) stirred at $55^{\circ} \mathrm{C}$ (aluminum heat transfer block) under air for 24 h . After cooling to room temperature, the mixture was diluted with ethyl acetate, the crude mixture was purified by flash column chromatography on silica gel (hexanes/ethyl acetate $=2: 1$ to $1: 1$) affording the desired product $\mathbf{3 a}$ as yellow oil (3a, 1.0 $\mathrm{g}, 44 \%$ yield, $95 \% \mathrm{ee}, E: Z=2: 1$). (Note! The structure and NMR data of major E-rotamer were shown.)

3. References

[1] Y.J. Wu, P.P. Xie, G. Zhou, Q.J. Yao, X. Hong, B.F. Shi, Chem. Sci. 12 (2021) 9391-9397.

4. NMR Spectra

1k-1 ${ }^{1}$ NMR

$1 k-{ }^{13}$ C NMR

$\stackrel{\text { io }}{\sim}$

$11-{ }^{1} \mathrm{H}$ NMR

11- ${ }^{13}$ C NMR

$\stackrel{9}{\circ}$	¢
¢	$\stackrel{\text { ¢ }}{ }$
11	+

[^0]$11-{ }^{19} \mathrm{~F}$
$\stackrel{N}{\stackrel{N}{\circ}}$

3a- ${ }^{1} H$ NMR

3a- ${ }^{13}$ C NMR

\qquad

16	15	14	13	12	11	10	1	1			5	4	1	2	1	0	-1	-	-3

3b- ${ }^{13}$ C NMR

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

3c- ${ }^{1}$ H NMR

3c- ${ }^{13}$ C NMR

$\stackrel{\text { No }}{\sim}$

\qquad

3d- ${ }^{1}$ H NMR

3d- ${ }^{13}$ C NMR

3e- ${ }^{1}$ H NMR

3e- ${ }^{13}$ C NMR

\qquad

3f- ${ }^{\mathbf{1}} \mathrm{H}$ NMR

3f- ${ }^{13}$ C NMR

3g- ${ }^{1}$ H NMR

3g- ${ }^{13}$ C NMR

3h- ${ }^{1}$ H NMR

3h- ${ }^{13}$ C NMR

3h- ${ }^{19}$ F
 -
\qquad

3i- ${ }^{1} \mathbf{H}$ NMR

○

3i- ${ }^{13}$ C NMR

$\mathbf{3 j}{ }^{-1} \mathbf{H}$ NMR

3j- ${ }^{13}$ C NMR

\qquad

3k-1H NMR

3k- ${ }^{13}$ C NMR

30- ${ }^{1} \mathbf{H}$ NMR

「

3o- ${ }^{13} \mathrm{C}$ NMR
「

3p- ${ }^{\mathbf{1}} \mathbf{H}$ NMR

3p- ${ }^{13}$ C NMR
₹

[^1]3q- ${ }^{1} \mathbf{H}$ NMR

3q- ${ }^{13}$ C NMR

[^2]
3r- ${ }^{1}$ H NMR

3r- ${ }^{13}$ C NMR

\qquad

3s- ${ }^{1} \mathrm{H}$ NMR

3s- ${ }^{13}$ C NMR

3t- ${ }^{1}$ H NMR

3t- ${ }^{13}$ C NMR

3u- ${ }^{\mathbf{1}} \mathrm{H}$ NMR

$3 \mathrm{u}-{ }^{13} \mathrm{C}$ NMR

3v-1 H NMR

3v- ${ }^{13}$ C NMR

-60.87
-55.47
-52.50
-41.45

-18.76
-14.39

4b- ${ }^{1} H$ NMR

4b- ${ }^{13}$ C NMR

4c- ${ }^{1} \mathrm{H}$ NMR

$4 \mathrm{c}-{ }^{13} \mathrm{C}$ NMR

\qquad

4d- ${ }^{1} \mathrm{H}$ NMR

4d- ${ }^{13}$ C NMR

\qquad

4e- ${ }^{1} H$ NMR

$4 \mathrm{e}-{ }^{13} \mathrm{C}$ NMR

[^3]
4f- ${ }^{\mathbf{1}} \mathrm{H}$ NMR

4f- ${ }^{13}$ C NMR

¢	F	®®®
¢ ¢	F	へ ${ }_{\sim}^{\text {® }}$
1 \|	\|	\1/

4g－${ }^{1} \mathbf{H}$ NMR

4g－${ }^{13}$ C NMR

デテ

$\underbrace{}_{-}$

4h－${ }^{1}$ H NMR

4h－${ }^{13}$ C NMR

¢ ¢ 才	フ	へัせ
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	$\dot{\square}$	N
$1 / 11$	｜	\1／

\qquad

4i- ${ }^{1} \mathbf{H}$ NMR

4i- ${ }^{13}$ C NMR

\qquad

$\mathbf{4 j - 1} \mathbf{H}$ NMR

$4 \mathrm{j}-{ }^{13} \mathrm{C}$ NMR

Of	$\stackrel{\infty}{\oplus}$	m
¢ ¢	广	
11	\|	\1

\qquad

4k- ${ }^{1} \mathrm{H}$ NMR

$4 k-{ }^{13} \mathbf{C}$ NMR

\qquad

4l- ${ }^{1} \mathrm{H}$ NMR

4I- ${ }^{13}$ C NMR

\qquad

4m- ${ }^{1} \mathbf{H}$ NMR

4m- ${ }^{13}$ C NMR

$4 m-{ }^{19}$ F

4n- ${ }^{\mathbf{1}} \mathrm{H}$ NMR

4n- ${ }^{13}$ C NMR

$\stackrel{ \pm}{\substack{\infty \\ 1}}$

40- ${ }^{1} \mathrm{H}$ NMR

40- ${ }^{13}$ C NMR

\qquad

5. Copies of HPLC Analysis

3a: OD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Peak Table>

Detect	4 nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.724	480798	7211	2.910			
2	14.056	16043337	245651	97.090			
Total		16524135	252862				

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3b: AD-H, Hexane $/ \mathbf{i}-\mathrm{PrOH}=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.391	84906185	312881	50.490			
2	29.329	83259028	192168	49.510		V	
Total		168165213	505049				

3c: OD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>
 mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.072	364067	7315	1.815			
2	21.650	19696748	159009	98.185			
Total		20060815	166324				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.076	2973468	62025	50.530			
2	22.420	2911075	23307	49.470			
Total		5884543	85332				

3d: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.696	31023116	483938	96.507		
2	20.285	1123004	8333	3.493		
Total		32146119	492271			

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	11.724	11249201	173962	52.519		
2	20.115	10170144	76119	47.481		
Total		21419345	250081			

3e: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.701	52205981	1210256	97.348			
2	10.016	1422402	12880	2.652		V	
Total		53628383	1223136				

<Chromatogram>
mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark 1 6.687 4796728 111928 50.365 2 10.427 4727147 48478 49.635 V
Total

3f: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.899	62511770	873095	98.700			
2	17.301	823567	4862	1.300			
Total		63335337	877957				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.851	29475479	427512	51.505			
2	16.911	27753083	168757	48.495			
Total		57228562	596269				

$3 \mathrm{~g}: \mathrm{OD}-\mathrm{H}$, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.851	739522	8153	49.109			
2	20.513	766343	7810	50.891			
Total		1505865	15963				

3h: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\# Ret. Time Area Height Conc. Unit	Mark	Name				
1	7.454	30525005	1054641	50.411		
2	9.565	30027309	559249	49.589		V

3i: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3j: AS-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=60 / 40$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.077	78721814	700921	99.012			
2	25.225	785833	3199	0.988			
Total		79507647	704120				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3k: OD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.978	8178884	111277	60.399		S	
2	15.301	5362641	72238	39.601		S	
Total		13541525	183515				

<Chromatogram>
mV

<Peak Table>

Detector A 254nm						
Peak\# Ret. Time Area Height Conc.	Unit	Mark	Name			
1	8.018	11172428	152560	49.723		
2	15.218	11296749	156385	50.277		
Total		22469178	308945			

30: $\mathrm{AD}-\mathrm{H}$, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark Name
1

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.463	8920890	353079	55.758			
2	10.882	7078421	78036	44.242		V	
Total		15999311	431115				

3p: AD-H, Hexane $/ \mathbf{i}-\mathrm{PrOH}=\mathbf{8 0} / 20$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.362	25926268	1037920	91.327			
2	11.606	2462179	39936	8.673		V	
Total		28388447	1077856				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark 1 8.356 21077246 859986 55.874 2 11.547 16645603 408171 44.126 V
Total

3q: AD-H, Hexane $/ \mathbf{i}-\mathrm{PrOH}=80 / 20$, rate $=0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detector	R A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.900	44463553	1036891	97.538			
2	15.105	1122194	13141	2.462		V	
Total		45585747	1050032				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark 1 10.958 31007674 702700 53.317 2 15.010 27149199 323363 46.683 V
Total

3r: IE , Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	23.820	2428993	6171	4.553			
2	36.571	50923729	145463	95.447			
Total		53352722	151634				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	23.891	6339477	30890	26.641			
2	37.122	17456044	48033	73.359		M	
Total		23795521	78923				

3s: IE, Hexane $/ \mathbf{i}-\mathrm{PrOH}=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3t: AS-H, Hexane $/ \mathbf{i}-\mathrm{PrOH}=60 / 40$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>
Detector A 254nm

Petector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>
mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3u: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.554	68358932	1085210	99.760			
2	37.621	164646	2431	0.240		M	
Total		68523578	1087641				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3v: OD-H, Hexane/i-PrOH $=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.899	342933	3340	1.048			
2	30.975	32376453	119386	98.952			
Total		32719387	122726				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\#
Ret. Time
:---
1
2
Total

4b: AD-H, Hexane $/ \mathbf{i}-\mathrm{PrOH}=80 / 20$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

4c: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	8.552	2756081	51787	98.015		
2	16.082	55806	394	1.985		M
Total		2811887	52181			

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark 1 8.517 29797794 566287 58.742 2 15.547 20928339 136212 41.258 V
Total

4d: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark Name
1

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

4e: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.238	20388644	326291	61.647			
2	22.226	12684556	67541	38.353			
Total		33073200	393832				

4f: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.158	10205942	78931	42.178			
2	26.066	13991287	94021	57.822		V	
Total		24197229	172952				

4g: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.259	44194073	1021710	97.329			
2	13.661	1212990	6641	2.671			
Total		45407063	1028351				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.303	39160841	878044	58.871			
2	13.605	27358993	133750	41.129			
Total		66519834	1011794				

4h: IA, Hexane $/ \mathrm{i}-\mathrm{PrOH}=\mathbf{5 0} / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detector A 254nm						
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

4i: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.205	10129060	78159	99.114			
2	26.014	90521	810	0.886			
Total		10219580	78968				

<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.314	51212867	387625	55.292			
2	26.092	41409974	264365	44.708		V	
Total		92622841	651990				

4j: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.923	11643967	634197	96.206			
2	11.341	459202	3244	3.794			
Total		12103169	637441				

<Chromatogram>

mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.893	18190732	660194	67.060		M	
2	11.007	8935149	52028	32.940			
Total		27125881	712222				

4k: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>

Detector A 254 nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

41: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=50 / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.977	8566129	461898	73.862		S	
2	8.297	3031309	52155	26.138			
Total		11597438	514053				

4m: AD-H, Hexane/i-PrOH $=\mathbf{5 0} / 50$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
<Chromatogram>
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.494	11703248	703457	98.237			
2	11.354	210060	1815	1.763			
Total		11913308	705272				

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

4n: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Chromatogram>

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark
1

<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.369	20512248	1714849	50.210		M	
2	7.053	20340919	427368	49.790		M	
Total		40853167	2142217				

40: AD-H, Hexane $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

<Peak Table>

Detect Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.091	13970394	1270390	98.127			
2	7.135	266702	5076	1.873			
Total		14237095	1275466				

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

[^0]:

[^1]:

[^2]:

[^3]:

