Supporting Information for

Tailoring the Subshell and Electronic Structure of Atomically Precise AuAg Alloy Nanocluster

Guocheng Deng,^{a,b, \perp} Taeyoung Ki,^{a,b, \perp} Xiaolin Liu,^{a,b, \perp} Yuping Chen,^{c, \perp} Kangjae Lee,^{a,b} Seungwoo Yoo,^{a,b} Qing Tang,^{c,*} Megalamane S. Bootharaju,^{a,b,*} and Taeghwan Hyeon^{a,b,*}

^{*a*}Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.

^bSchool of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

^cSchool of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.

*Email: qingtang@cqu.edu.cn, msbootharaju@snu.ac.kr, thyeon@snu.ac.kr

^LG.D., T.K., X.L., and Y.C. contributed equally to this work.

EXPERIMENTAL SECTION

Reagents. Hydrogen tetrachloroaurate(III) trihydrate (HAuCl₄·3H₂O) was purchased from Strem. Triethylamine (Et₃N), silver nitrate (AgNO₃), silver acetate (CH₃COOAg), sodium methoxide (CH₃ONa),

trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), and tetraphenylphosphonium tetraphenylborate (PPh₄BPh₄) were purchased from Sigma-Aldrich. 3,4-difluorophenylacetylene (HC=CR), phenylacetylene (HC=CPh), dimethyl sulfide ((CH₃)₂S) and borane *tert*-butylamine complex (BH₃·C₄H₁₁N) were purchased from TCI. Dichloromethane (CH₂Cl₂), methanol (CH₄O), acetonitrile (CH₃CN), acetone (CH₃COCH₃) and *n*-hexane (C₆H₁₄) were purchased from Samchun. AuSMe₂Cl¹ and Au₃₄Ag₂₈(C=CPh)₃₄² were prepared according to literature method. The water used in all experiments was ultrapure. All reagents were used as received without further purification.

Synthesis of AgC=CR: 340 mg of AgNO₃ was dissolved in 20 mL of acetonitrile, followed by the subsequent addition of 242 μ L of 3,4-difluorophenylacetylene. Then, 400 μ L of triethylamine was added to the solution with vigorous stirring. The reaction mixture was left to stir for 4 hours at room temperature in the absence of light. Afterward, the obtained turbid mixture was centrifuged at 8000 rpm for 1 min. The precipitate was washed with 30 mL of methanol and then dried in vacuum at room temperature to give a gray AgC=CR complex. The yield of the complex was ~81% (based on Ag).

Synthesis of AuC=CR: 591 mg of AuSMe₂Cl was dispersed in 30 mL of acetone, to which 242 μ L of 3,4-difluorophenylacetylene was added subsequently. Then, 300 μ L of triethylamine was added to the above solution under vigorous stirring. The reaction mixture was stirred for 1 hour at room temperature in absence of light. The solution was then subjected to evaporation until dryness, resulting in the formation of a yellow solid. This solid was subsequently washed with 30 mL of water and 15 mL of methanol. Then the yellow solid was dried in vacuum at room temperature to give a yellow AuC=CR complex in a yield of ~83% (based on Au).

Synthesis of Au₃₄Ag₂₇ nanocluster: The synthesis of Au₃₄Ag₂₇ was carried in a small vial at 25 °C in ambient air. Specifically, 6.7 mg of AuC≡CR and 4.9 mg of AgC≡CR were dispersed in a mixed solution of CH₂Cl₂ (3 mL) and CH₃OH (1 mL). Subsequently, 1 mg of PPh₄BPh₄ solid was added to the above solution while maintaining vigorous stirring (600 rpm). After stirring for 5 minutes, a solution of 3 mg of borane tert-butylamine complex in 1 mL of CH₂Cl₂ was added dropwise. This led to the dissolution of the suspension and a gradual change in the solution's color to red and then brown. The solution was left to age for 18 hours. The resulting solution was washed once with water by adding 5 mL of water and shaking for 1 minute. The aqueous phase was removed, and the organic phase was centrifuged at 12,000 rpm for 5 minutes. The precipitate was discarded, and the organic solution (2 mL) underwent vapor diffusion of *n*-hexane (15 mL) at 25 °C. After 7 days, black block crystals were obtained with a yield ranging from 4-6% (based on Au). **Physical measurements:** The UV/vis absorption spectra were recorded using a Cary 5000 spectrophotometer (Agilent). The scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS) analysis was performed on a JSM-7800F Prime microscope (JEOL, Japan). Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) of the nanoclusters was performed using AB SCIEX TOF/TOFTM5800 mass spectrometer (AB Sciex, MA, USA) installed at the Korea Basic Science Institute (KBSI), Seoul center.

Single crystal structure analysis. The diffraction data of $Au_{34}Ag_{27}$ were collected by X-ray single crystal diffractometer with Cu K α radiation ($\lambda = 1.54184$ Å) at 100 K on a Rigaku XtaLab Synergy R system. The data were processed using CrysAlis^{Pro.3} The structure was solved and refined using Full-matrix least-squares based on F² with program ShelXT and ShelXL within Olex2.⁴⁻⁶ SQUEEZE tool of PLATON was applied, due to large solvent (*n*-hexane and DCM) voids in the structure. A solvent mask was calculated and 726 electrons were found in a volume of 2791 Å³ in six voids per unit cell. This is consistent with the presence of ten CH₂Cl₂ and six C₆H₁₄, per asymmetric unit which account for 720 electrons per unit cell. More refined data are provided in Table S1.

Computational details. To simplify the calculation, all $C \equiv C-R$ (HC $\equiv CR$ is 3,4-difluorophenylacetylene) ligands are replaced with $C \equiv C-CH_3$ groups. As for optical-absorption spectrum and orbital information, the density functional theory (DFT) calculations were performed by employing the CP2K package.⁷ The electronic structure calculations are described by DFT with the spin-polarized Perdew–Burke–Ernzerhof (PBE) functional and mixed double- ζ Gaussian and plane-wave (GPW) basis sets with an energy cutoff of 350 Ry.⁸ Core electrons have been modeled by Goedecker–Teter–Hutter (GTH) pseudopotentials with 11, 11, 4 and 1 valence electrons for Au, Ag, C and H, respectively. The DFT-D3 method proposed by Grimme et al. was adopted to better describe the noncovalent interactions.^{9,10} Then, the time-dependent DFT (TDDFT) computation of optical absorption spectrum was performed at the PBE level with the DZVP-MOLOPT-SR-GTH basis sets. Based on the above results, the Multiwfn program can be used to process and plot UV-Vis spectrum.¹¹

Figure S1. A photograph of the single crystal of the $Au_{34}Ag_{27}$ nanocluster.

Figure S2. The packing diagram of $Au_{34}Ag_{27}$. Color legend: magenta, Au; turquoise, Ag; green, P; pale blue, F; gray, C. All hydrogen atoms are omitted for clarity.

Figure S3. (a) SEM image of a crystal of $Au_{34}Ag_{27}$. (b-e) EDS mapping images of Au, Ag, F and P, respectively, of the $Au_{34}Ag_{27}$ crystals. The background signal in the elemental map b is originated from Pt, which was coated to avoid sample charging during SEM-EDS measurement.

Figure S4. Experimental and Simulated mass spectra of Au₃₄Ag₂₇.

Figure S5. Each of the faces of the third shell of $Au_{34}Ag_{27}$ covers a gold atom from the second shell. Color legend: orange and magenta, Au; turquoise and blue, Ag.

Figure S6. Structural comparison of the first and second shells $(Ag_1@Au_{17})$ of $Au_{34}Ag_{27}(a)$ and $Au_{34}Ag_{28}(b)$ nanoclusters. Color legend: orange, Au; turquoise, Ag.

Figure S7. Structural comparison of the fourth shell (Au_{17}) of $Au_{34}Ag_{27}(a)$ and $Au_{34}Ag_{28}$ (b) nanoclusters.

Figure S8. Each gold atom of the fourth shell of $Au_{34}Ag_{27}$ caps one face of the third shell. Color legend: magenta, Au; turquoise, Ag.

Figure S9. Top view of the third shell of the $Au_{34}Ag_{27}(a)$ and $Au_{34}Ag_{28}(b)$ nanoclusters. Color legend: turquoise, blue, and yellow, Ag.

Au ₃₄ Ag ₂₇
$C_{296}H_{122}Ag_{27}Au_{34}F_{68}P$
14610.25
100(2)
triclinic
<i>P</i> -1
21.0215(2)
22.1806(2)
35.4832(3)
88.1010(2)
74.9280(3)
87.3240(2)
15945.4(3)
2
3.041
42.251
12960.0
$0.532 \times 0.187 \times 0.152$
Cu Ka ($\lambda = 1.54184$)
5.824 to 133.196
$-25 \le h \le 16, -26 \le k \le 26, -42 \le l \le 42$
156980
55473 [$R_{int} = 0.1144, R_{sigma} = 0.1066$]
55473/2578/3151
1.120
$R_1 = 0.1081, wR_2 = 0.2649$
$R_1 = 0.1213, wR_2 = 0.2746$
7.73/-6.18

Table S1. The crystal data and structure refinement for the $Au_{34}Ag_{27}$ nanocluster.

References

- 1) N. Nishina and Y. Yamamoto, *Synlett.* 2007, **11**, 1767-1770.
- Y. Wang, X. Wan, L. Ren, H. Su, G. Li, S. Malola, S. Lin, Z. Tang, H. Häkkinen, B. K. Teo, Q. Wang and N. Zheng, *J. Am. Chem. Soc.* 2016, **138**, 3278-3281.
- 3) CrysAlisPro, version 1.171.135.119; Agilent Technologies Inc.: Santa Clara, CA, 2011.
- 4) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339-341.
- 5) G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112-122.
- 6) G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2015, A71, 3-8.
- 7) J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.* 2005, **167**, 103–128.
- 8) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865–3868.
- 9) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 10) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 11) T. Lu and F. Chen, J. Comput. Chem. 2012, **33**, 580-592.