SO₂ capture and detection with carbon microfibers (CMFs) synthesised from polyacrylonitrile

Ana Yañez-Aulestia,^a Valeria B. López-Cervantes,^b J. Marcos Esparza-Schulz,^a Diego Solis-Ibarra,^b Ilich A. Ibarra,^{b,c} Salomón Cordero-Sánchez,^{*a} Elí Sánchez-González^{*b} and Reyna Ojeda-López^{*a}

^a Laboratorio de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico City, CDMX 09310, Mexico. *email: scs@xanum.uam.mx, rol@xanum.uam.mx

^b Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510, Ciudad de México, Mexico. *email: elisg@materiales.unam.mx

^c On sabbatical as "Catedra Dr. Douglas Hugh Everett" at Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09310, Ciudad de México, Mexico.

Materials and Methods

CMFs synthesis

The polymer precursor, polyacrylonitrile (PAN), was acquired from Sigma-Aldrich, with a molecular mass average of 150,000 amu, and it was used as received without additional purification. The solvent *N*,*N*-dimethylformamide (DMF) grade anhydrous (99.8%) was also acquired from Sigma-Aldrich. PANMFs were synthesised with a concentration of 10wt% of PAN and 90wt% of DMF, and the mixture was stirred for 6 h at 343 K. The electrospinning apparatus was set at a flow rate of 0.5 mL h⁻¹, a voltage of 15 kV, and a 10 cm distance between the syringe tip and the collector.^{1, 2} CMFs were obtained by calcination of PANMFs in two stages: i) stabilisation at 353 K (air atmosphere) for 30 min and ii) carbonisation at 1173 K for 90 min (nitrogen atmosphere).

Characterisation

IR spectra were obtained in the 4000-450 cm⁻¹ range on a spectrometer (Thermo-Scientific, iS5) with a diamond window ATR attachment. SEM Micrographs were collected on a scanning electron microscope (JEOL, JMS-7600 F) to characterise the microstructure of the samples, the morphology, surface features and EDX analysis and mapping.

SO₂ adsorption experiments

Isotherms were measured on a gravimetric sorption analyser (Surface Measurement Systems, DVS Vacuum) using SO₂ (99.95%). Samples were degassed in a dynamic vacuum (1 x 10^{-6} Torr) at 453 K for 4 h. After cooling to the desired temperature, the isotherms at 298, 303 and 308 K and cyclic experiments at 298 K were measured from 0 to 1 bar.

N_2 and CO_2 adsorption experiment

Isotherms were measured on Autosorb 1 instrument (Quantachrome) using high-purity gases N_2 (99.995%) and CO_2 (99.8%). Before the measurements, samples were outgassed at 453 K for 4 h with a heating ramp of 1 K min⁻¹ under a dynamic vacuum.

Ex-situ gas-saturated samples

Saturated samples were prepared by exposing a vial with a previously activated sample to a saturated atmosphere of the desired gas. Samples were activated in a small vial with a dynamic vacuum at 453 K for 2 h. Then, once the samples were cooled to room temperature, the vials were exposed for 2 h to a saturated atmosphere of the selected gas. The CO₂-saturated atmosphere was achieved with a CO₂-filled balloon. The H₂O-saturated atmosphere was achieved by placing the vial in a closed container with water, keeping the water from entering the vial. The SO₂ atmosphere required an ex-situ SO₂ saturator (see below).

Ex-situ SO₂ saturator system

Caution! The SO_2 generation process was carried out inside a fume hood and in small volumes to avoid over-pressure.

The system contains two principal parts: SO_2 gas generator (A), an addition funnel with H_2SO_4 connected to a Schlenk flask with Na_2SO_3 under stirring, and the saturation chamber (B), constructed from a round flask connected to a vacuum line. First, around 20 mg of the sample was placed in a 1.5 mL glass vial and activated (see above). Second, the vial was quickly put in the saturation chamber, and the system was evacuated. Finally, SO_2 gas was generated by dripping concentrated sulfuric acid over Na_2SO_3 , filling the system's volume and letting it stand for 2 h. Carefully, the vial was removed from the saturation chamber, quickly closed and taken to the required measurement.

The fluorescence experiments

They were carried out in an Edinburgh Instruments FS5 spectrofluorometer coupled with the SC-10 solid-state sample holder. The samples were packed into quartz sample holders and positioned into the instrument. The samples were packed right after being removed from the activation and saturation processes.

Fig. S1 Chemical and textural characterisation of CMFs a) PXRD pattern, b) FTIR spectrum, c) XPS spectrum, and d) N_2 adsorption isotherm at 77K (inset: relevant surface parameters).

Calculation of isosteric enthalpy of adsorption

Isosteric enthalpy of adsorption was calculated using the Calusius-Clapeyron (eq. S1) approach from the adsorption branch of three isotherms collected a t 298, 303 and 308 K.³ The SO₂ isotherms were fitted to a Freundlich-Langmuir isotherm (eq. S2). Then, a Van't Hoff type plot (isosteric ln(p) vs 1/T for different n loadings, Fig. S2a) was used to obtain the Δ Hads at low loadings (eq. S3, Fig. S3b).

$$\Delta H_{ads}(n) = -R \cdot \ln\left(\frac{p_2}{p_1}\right) \frac{T_1 T_2}{T_2 - T_1}$$
 eq. S1

 $n = \frac{a \cdot b \cdot p^c}{1 + b \cdot p^c}$ eq. S2

$$\Delta H_{ads}(n) = R \cdot slope$$

eq. S3

Fig. S2 a) Freundlich-Langmuir fits for the MCFs SO₂ adsorption isotherms at 298, 303 and 308 K.

Table S1 Freundlich-Lan	gmuir fitting para	meters for the fitted	d MCFs SO ₂ adsorp	otion isotherms.
-------------------------	--------------------	-----------------------	-------------------------------	------------------

т [К]	а	b	C	R ²
298	7.343	2.356	0.398	0.9993
303	6.890	2.435	0.406	0.9997
308	6.508	2.485	0.407	0.9997

Fig. S3 a) Plot of isosteric ln(p) vs 1/T for different *n* loadings (mmol g⁻¹) and b) Isosteric enthalpy of adsorption of SO₂ for the MCFs.

Fig. S4. Comparison of SO_2 uptake at 1 bar and 298 K vs surface area BET of representative inorganic adsorbents.⁴⁻¹⁰

Calculation of IAST selectivity

The binary mixture SO_2/CO_2 selectivity was estimated using the pyIAST package.¹¹ First, the adsorption branch for the single-component isotherms of SO_2 and CO_2 collected at 298 K were fitted using the dual-site Langmuir equation (eq. S4).

$$n = M_1 \frac{K_1 p}{1 + K_1 p} + M_2 \frac{K_2 p}{1 + K_2 p}$$
 eq. 54

IAST selectivity was calculated using the following formula:

$$S = \frac{\frac{q_1}{q_2}}{\frac{y_1}{y_2}}$$
 eq. S5

where q_i is the adsorption loading and y_i the molar fraction of each gas.

Fig. S5. Dual-Site Langmuir fits of the SO₂ and CO₂ adsorption isotherms of CMFs at 298 K.

Table S2. Dual-Site Langmuir fitting parameters of the SO_2 and CO_2 adsorption isotherms of CMFs at 298 K.

Fitting parameters	SO ₂	CO ₂	
M ₁	0.821672	0.855777	
Kı	161.930246	1.960471	
M ₂	5.943032	0.057985	

K ₂	0.867382	547.869866
RMSE	0.033557	0.005885

Additional photoluminescence experiments

Fig. S6 Photoluminescence spectra (λ_{ex} =370 nm) as synthesised sample activated sample and after the exposure to several small gas/vapour molecules.

Fig. S7 Photoluminescence spectra (λ_{ex} =370 nm) as synthesised sample activated sample and after

the exposure to CO₂.

References

- 1. R. Ojeda-López, J. M. Esparza-Schulz, I. J. Pérez-Hermosillo, A. Hernández-Gordillo and A. Domínguez-Ortiz, *Fibers*, 2019, **7**, 81.
- 2. R. Ojeda-López, E. Vilarrasa-García, D. C. Azevedo, C. Felipe, J. A. Cecilia and E. Rodríguez-Castellón, *Fuel*, 2022, **324**, 124242.
- 3. A. Nuhnen and C. Janiak, *Dalton Transactions*, 2020, **49**, 10295-10307.
- 4. A. J. Richard, Z. Chen, T. Islamoglu, O. K. Farha and H. M. El-Kaderi, ACS Applied Materials & Interfaces, 2022, 14, 33173-33180.
- 5. P. Brandt, A. Nuhnen, S. Öztürk, G. Kurt, J. Liang and C. Janiak, Advanced Sustainable Systems, 2021, 5, 2000285.
- 6. M. A. Hanif, N. Ibrahim, K. M. Isa and A. A. Jalil, 2020.
- 7. J. Zhang, P. Zhang, M. Li, Z. Shan, J. Wang, Q. Deng, Z. Zeng and S. Deng, *Industrial & Engineering Chemistry Research*, 2019, **58**, 14929-14937.
- 8. H. Yi, Z. Wang, H. Liu, X. Tang, D. Ma, S. Zhao, B. Zhang, F. Gao and Y. Zuo, *Journal of Chemical & Engineering Data*, 2014, **59**, 1556-1563.
- 9. P. K. Thallapally, R. K. Motkuri, C. A. Fernandez, B. P. McGrail and G. S. Behrooz, *Inorganic chemistry*, 2010, **49**, 4909-4915.
- 10. R. Tailor, A. Ahmadalinezhad and A. Sayari, *Chemical engineering journal*, 2014, **240**, 462-468.
- 11. C. M. Simon, B. Smit and M. Haranczyk, Computer Physics Communications, 2016, 200, 364-380.