Supporting Information

Electrolyte-assisted low-voltage decomposition of Li₂C₂O₄ for efficient cathode pre-lithiation in lithium-ion batteries

Experimental Section:

Synthesis of re-Li₂C₂O₄:

3.0g of commercial lithium oxalate ($Li_2C_2O_4$, Macklin, \geq 98.0%) was added in 150 mL deionized water. After slowly stirring for 30 min with ultrasound, the mixture was slowly poured into 150 mL anhydrous ethanol (99.5%) and the white power was obtained by filtration and vacuum drying.

Preparation of commercial $Li_2C_2O_4$ and re- $Li_2C_2O_4$ electrodes

Commercial $Li_2C_2O_4$ (or re- $Li_2C_2O_4$), SP (super p carbon) and PVDF (polyvinylidene fluoride) were mixed in NMP with the mass ratio of 6: 3: 1. Then the slurry was casted onto the aluminum foil and dried at 120°C for 10 h under vacuum. The electrodes were cut to Φ 14 mm sheets and pressed at the pressure of 10 MPa. The $Li_2C_2O_4$ loading in electrodes was 0.3~0.45mg cm⁻².

Preparation of cathode and anode electrodes

For NCM electrode, the electrode composites of 80 wt.% NCM, 10 wt.% SP and 10 wt.% PVDF. For NCM(re-Li₂C₂O₄) electrode, the electrode composites of 76 wt.% NCM, 4 wt.% re-Li₂C₂O₄, 10 wt.% SP and 10 wt.% PVDF. For anode electrode, the mass ratio of silicon-graphite, CMC-SBR and SP is 80:10:10.

All the electrode was made in the laboratory environment.

Electrochemical measurements

The CR2025 coin-type cells were assembled in a glove box under Ar atmosphere with celgard-2500 film as the separator and Li foil as the counter electrode. The baseline electrolyte was 1 M LiPF₆ dissolved in a mixture of ethylene carbonate (EC)/diethyl dimethyl carbonate (DMC) (3/7 in volume ratio). The NO electrolyte was prepared by

adding 0.06M NaNO₂ to the baseline electrolyte. The Neware Battery Testing System (BST-5V20mA, China) was used to test the electrochemical performance for all cells and the test temperature was 28°C. The N/P ratio of full cells was controlled at 1.02-1.2. A CHI720 electrochemical workstation was used for the cyclic voltammetry (CV) measurement. The CV measurements for Si-G||Li half-cells in different electrolytes were measured on at a scan rate of 0.2 mV s⁻¹ from 0.01 ~ 2.5 V.

For both NCM||Li half-cells, NCM(re-Li₂C₂O₄)||Li half-cells and full-cells, the initial cycle is 0.05 C and the following two cycles is 0.1 C, where 1 C=200 mA g⁻¹. After activation process, the current for following cycles is 0.5 C.

As for Si-G anode, the charge/discharge procedure for the initial 3 cycles is 0.1 C and 0.2 C for the following cycles in Si-G||Li half-cells (1 C=1000 mA g^{-1}).

Physical characterization

Scanning electron microscopy (SEM, Carl Zeiss MERLIN Compact, 10-20 kV) was performed to analyze the morphology and particle size of the materials and electrodes. diffraction collected X-ray (XRD) patterns were by а BPUKER/D2PHASER X-ray diffractometer (Germany) with Cu K α radiation (λ = 0.15406 nm). The X-ray photoelectron spectroscopy (XPS) was conducted for electrodes using a TESCALAB 250Xi instrument. The decomposition product of Li₂C₂O₄ were collected by Raman spectrometer (Renishaw) and Bruker Vertex 70 FT-IR spectrometer (Germany).

DFT computation

The Gaussian 09 software were used for DFT computation. In this article, the hybrid B3LYP functional ¹ with 6–311G++ basis set ^{2,3} was used to optimize and calculate The LUMO and HOMO orbital energy levels.

Figure S1 Voltage profile of commercial $Li_2C_2O_4$ and in-situ gaseous evolution manners of NO₂ and CO₂ measured by DEMS as a function of time for commercial $Li_2C_2O_4$ in NO electrolyte.

Figure S2 The reaction products between commercial $Li_2C_2O_4$ and NO_2 . (a) FTIR spectra and (b) Raman spectra. (c) experimental equipment for the reaction between commercial $Li_2C_2O_4$ and NO_2 .

Figure S3 Comparison of the decomposition potential of $Li_2C_2O_4$ in reported articles⁴⁻⁹.

Figure S4 SEM images (a) commercial Li₂C₂O₄. (b) re-Li₂C₂O₄.

Figure S5 the 1st cycle voltage profile of different electrode in baseline electrolyte

with the mass ratio of NCM and Li₂C₂O₄ of (a) 1:9 and (b) 19:1

Note

The initial charge capacity in (a) is 112.5 mAg⁻¹, which is 5 times larger than the initial discharge capacity (20.3 mAg⁻¹). The extra charge capacity could be ascribed to the decomposition of $Li_2C_2O_4$. Assuming that the charge capacity provided by NCM is 25 mAg⁻¹, the decomposition percentage of re- $Li_2C_2O_4$ is 16.7%. And for (b), according to the theoretical compensation capacity provided by $Li_2C_2O_4$ is 27.6 mAh g⁻¹(while the weight ratio of NCM and $Li_2C_2O_4$ is 76 wt.% and 4wt.% in cathode electrode), the decomposition percentage of re- $Li_2C_2O_4$ is 32.5%.

Figure S6 Electrochemical cycling performance of different electrode using NO electrolyte in half-cell. (1 C =200 mA g⁻¹)

Figure S7 SEM images of Si-G (a) Pristine. (b) cycled in NO electrolyte. (c) cycled in baseline electrolyte.

Figure S8 Initial three cycles of full cells. (a) NCM||Si-G, and (b) NCM(re- $Li_2C_2O_4$)||Si-G. The charge/discharge procedure for the initial 3 cycles is 0.05 C for the 1st cycle and 0.1 C for the following two cycles, where 1 C=200 mA g⁻¹.

Figure S9 Electrochemical cycling performance of different electrodes using baseline electrolyte in full cells. Charge and discharge curves of the full cells. (a) NCM||Si-G and (b) NCM (re-Li₂C₂O₄)||Si-G.(c) The specific capacity of the NCM (re-Li₂C₂O₄)||Si-G and NCM||Si-G full-cells.

Table S1. Comparison of the Electrochemical properties between our work anddifferent pre-lithiation methods.

Cathode	Prelithiation additive	Addition amount (wt%)	Charge Cut-off voltage (V)	Increased 1st charge capacity (mAh g ⁻¹)	Residue	Ref
LiNi _{0.83} Co _{0.07} Mn _{0.1} O ₂	Li ₂ C ₂ O ₄	4	4.3	28.4	No left	This work
LiCoO ₂	0.55Li ₂ O: 0.45Li _{2/3-} _x Mn _{1/3} O _{5/6}	2	4.5	17.3	Unreacted Li ₂ O	10
LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	Li ₂ C ₄ O ₄	2.5 5 10	4.5	2.7 18.1 32.7	Unreacted Li ₂ C ₂ O ₄	11
$LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$	Fe/LiF/Li ₂ O	4.8	4.4	31	Fe ₃ O ₄ & unreacted additives	12
LiCoO ₂	Mo ₂ C/nano- Li ₂ C ₂ O ₄	10	4.4	52	Mo ₂ C	9
LiNi _{0.33} Co _{0.33} Mn _{0.33} O ₂	Li_2O_2	2	4.6	28	1%NCM & impurities	13
LiCoO ₂	Li ₃ N	2.5	4.5	51	Unreacted Li ₃ N	14
$Li_{1.15}Ni_{0.17}Co_{0.11}Mn_{0.57}O_2$	Li ₂ O	3 6 9	4.8	8.2 24.6 5.3	Unreacted Li ₂ O	15
LiNi _{0.5} Mn _{1.5} O ₄	$Li_2C_2O_4$	2.5 5	4.7	15 29	Unreacted Li ₂ C ₂ O ₄	5
LiCoO ₂	Li ₅ FeO ₄	7	4.3	68	LiFeO ₂	16
LiFePO ₄	NiO/Li ₂ C ₂ O ₄	20	4.5	107	NiO	7

References

- 1 A. D. Becke, The Journal of Chemical Physics, 1993, 98, 5648–5652.
- 2 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *The Journal of Chemical Physics*, 1980, **72**, 650–654.
- 3 M. J. Frisch, J. A. Pople and J. S. Binkley, *The Journal of Chemical Physics*, 1984, **80**, 3265–3269.
- 4 C.-J. Huang, Y.-C. Hsu, K. N. Shitaw, Y.-J. Siao, S.-H. Wu, C.-H. Wang, W.-N. Su and B. J. Hwang, *ACS Appl. Mater. Interfaces*, 2022, **14**, 26724–26732.
- 5 S. Solchenbach, M. Wetjen, D. Pritzl, K. U. Schwenke and H. A. Gasteiger, J. *Electrochem. Soc.*, 2018, **165**, A512–A524.
- 6 D. Shanmukaraj, S. Grugeon, S. Laruelle, G. Douglade, J.-M. Tarascon and M.

Armand, *Electrochemistry Communications*, 2010, **12**, 1344–1347.

- 7 G. Huang, J. Liang, X. Zhong, H. Liang, C. Cui, C. Zeng, S. Wang, M. Liao, Y. Shen, T. Zhai, Y. Ma and H. Li, *Nano Res.*, 2023, 16, 3872–3878.
- 8 M. Fan, Q. Meng, X. Chang, C. Gu, X. Meng, Y. Yin, H. Li, L. Wan and Y. Guo, *Advanced Energy Materials*, 2022, **12**, 2103630.
- 9 W. Zhong, C. Zhang, S. Li, W. Zhang, Z. Zeng, S. Cheng and J. Xie, *Sci. Sci. China Mater.*, 2023, 66, 903–912.
- 10M. Diaz-Lopez, P. A. Chater, P. Bordet, M. Freire, C. Jordy, O. I. Lebedev and V. Pralong, *Adv. Energy Mater.*, 2020, **10**, 1902788.
- 11A. Gomez-Martin, M. M. Gnutzmann, E. Adhitama, L. Frankenstein, B. Heidrich, M. Winter and T. Placke, *Advanced Science*, 2022, 9, 2201742.
- 12J. Du, W. Wang, A. Y. Sheng Eng, X. Liu, M. Wan, Z. W. Seh and Y. Sun, *Nano Lett.*, 2020, **20**, 546–552.
- 13 Y. Bie, J. Yang, J. Wang, J. Zhou and Y. Nuli, *Chem. Commun.*, 2017, **53**, 8324–8327.
- 14 Y. Sun, Y. Li, J. Sun, Y. Li, A. Pei and Y. Cui, *Energy Storage Materials*, 2017, 6, 119–124.
- 15X. Hou, Y. Yang, Y. Mao, J. Song, J. Yang, G. Li, Y. Pan, Y. Wang and J. Xie, J. *Electrochem. Soc.*, 2019, **166**, A3387–A3390.
- 16X. Su, C. Lin, X. Wang, V. A. Maroni, Y. Ren, C. S. Johnson and W. Lu, *Journal of Power Sources*, 2016, **324**, 150–157.