Supplementary Information

Trace Sc³⁺-electrolyte additive enabling stable Zn metal anodes for aqueous zinc-ion batteries

Chun Chen,^{a,b,c} Liansheng Li^{b,c} Zuxin Long,^{b,c} and Qinghua Liang^{a,b,c,*}

- a. School of Rare Earth, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- b. Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P. R. China
 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P. R. China

*Corresponding authors.

E-mail: qhliang@gia.cas.cn

Experimental Section

Preparation of Electrolytes. Deionized water (DI) obtained from an ultrapure water system was used to prepare all aqueous electrolytes. $ZnSO_4 \cdot 7H_2O$ purchased from Aladdin Ltd., Shanghai was dissolved in deionized water to prepare the pristine 2.0 M ZnSO₄ electrolyte. A stoichiometric amount of scandium sulfate (Sc₂(SO₄)₃) (0.005 M, 0.01 M, 0.02 M) purchased from Aladdin Ltd., Shanghai was dissolved into 2.0 M ZnSO₄ electrolytes to prepare Sc³⁺-containing electrolytes. The V₂O₅ nanobelt was prepared according to the method reported in the previous report.¹ The V₂O₅ nanobelt cathode was prepared by grinding and mixing V₂O₅ nanobelt, Super-P, and carboxy methyl cellulose (CMC) at a weight ratio of 7:2:1 for 10 mins. The mixture was dispersed with a quantity of deionized water to prepare the slurry under stirring at room temperature for 12 h. The prepared slurry was cast onto graphite paper and then dried in a vacuum oven at 90 °C for 12 h. The active carbon (AC) cathodes for Zn-ions hybrid capacitors (ZHCs) consisting of commercial AC, Super P, and CMC with a mass ratio of 7: 2: 1, were prepared by a similar procedure of V₂O₅ cathode preparation. The stainless-steel foil was used as the current collector for the AC cathode.

Material Characterizations. The phase structures of Zn electrodes were characterized by a Bruker D8 Advance X-ray diffractometer (Cu-K α , $\lambda = 1.5418$ Å). The morphology of the plated Zn cycled under different test conditions was observed by scanning electron microscopy (SEM).

Electrochemical measurements. Cyclic voltammetry (CV) measurement of Zn plating/stripping was measured in a two-electrode cell, where Ti foil serves as the working electrode, and Zn plane acts as the counter electrode. Electrochemical impedance spectroscopy (EIS) of the Zn||Zn symmetric cell was recorded by a CHI660E electrochemical workstation from 100 kHz to 0.01 Hz at open-circuit voltage with an amplitude voltage of 5 mV under different temperatures. The nucleation overpotential was tested by Zn||Cu asymmetric cell at a current density of 2.0 mA cm⁻². The Zn||Zn symmetric cells were assembled by sandwiching the glass fibre (Whatman GF/A) between two commercial Zn foil (100 µm, 12 mm in diameter) in CR2032 cointype cells filled with 60 µL ZnSO₄ or ZnSO₄/Sc electrolytes. Zn||Cu asymmetric cells

were assembled by Zn foil (100 μ m,12 mm in diameter), Cu foil (12 mm in diameter), and glass fibre. Zn||V₂O₅ full cells filled with 70 μ L electrolytes were assembled using Zn foil (10 μ m, 10 mm in diameter) as the anode, V₂O₅ nanobelt paper as the cathode, and glass fibre as the separator.

Fig. S1 (a) The schematic illustration of an accurate method for testing the CE of Zn||Cu cell.¹ The Cu substrate is applied with one single Zn plating/stripping cycle at a current density of 1.0 mA cm⁻², where the cycle is done by plating 5.0 mA h cm⁻² of Zn and then fully stripping the Zn to 0.4 V. Subsequently, 5.0 mA h cm⁻² charges of Zn were plated on Cu substrate again at a current density of 1.0 mA cm⁻² then stripping/plating cycling ($Q_{\rm C}$ =1.0 mA h cm⁻²) for 30 cycles at 1.0 mA cm⁻². During the final stripping process, the deposited Zn was stripped until the voltage exceeded 0.4 V. (b) The corresponding current density and (c) voltage-time plot.

Fig.S2 The long-term galvanostatic cycle performances of the Zn||Zn symmetric cells using different electrolytes at 0.5 mA cm⁻² and 1.0 mA h cm⁻².

Fig. S3 The nucleation overpotentials of Zn deposition on the Zn plate in the ZSO and ZSO/Sc-1.0 electrolytes at a current density of 2.0 mA cm⁻².

Fig. S4 EIS results of the Zn||Zn symmetrical cells assembled by ZSO (a) and ZSO/Sc-1.0 electrolytes (b) at different temperatures recorded from 100 kHz to 0.01 Hz at the open-circuit voltage. (c) The temperature-dependent reciprocal resistances in ZSO and ZSO/Sc-1.0 electrolyte. Arrhenius equation $(\ln(R_{ct}^{-1}) = \ln A - E_a/RT)$ was used to calculate E_a , where R_{ct} is the charge transfer resistance, E_a is the activation energy, *T* is the absolute temperature, and *R* is the gas constant. The R_{ct} is obtained from the semicircle of the Nyquist plots of Zn||Zn symmetric cells tested at different temperatures. The E_a is calculated by linearly fitting $\ln(1/R_{ct})$ versus 1000/*T*.

Fig. S5 The pH values of the ZSO and ZSO/Sc-1.0 electrolytes tested at 24.8 °C.

Fig. S6 The long-term galvanostatic Zn stripping/plating of the Zn||Zn symmetric cells using ZnSO₄ electrolytes with different pH values. The ZSO-2.3 electrolyte was prepared by adding a certain amount of 0.1M H₂SO₄ solution.

Fig. S7 The LSV curve of ZnSO₄ electrolytes with/without Sc^{3+} additive at a scan rate of 1.0 mV s⁻¹.

Fig. S8 The charging and discharging curves of Zn||Zn cells with and without Sc^{3+} -electrolyte additive at a current density of 2.0 mA cm⁻² and an areal capacity of 1.0 mA h cm⁻².

Fig. S9 The charging and discharging curve of Zn||Zn cells with and without Sc^{3+} at a current density of 5.0 mA cm⁻² and an areal capacity of 5.0 mA h cm⁻²

Fig. S10 The CE of Zn||Cu cell with and without Sc^{3+} at a current density of 1.0 mA cm^{-2} and an areal capacity of 1.0 mA h cm^{-2} .

Fig. S11 The voltage profile of Zn $\|$ Cu asymmetrical battery tested at a current density of 5.0 mA cm⁻² and a areal capacity of 1.0 mA h cm⁻².

Fig. S12 The structural analysis of plated Zn. (a, b) The XRD patterns of ZMAs disassembled from the Zn||Zn cells with ZSO and ZSO/Sc-1.0 electrolytes after 30 cycles at 1.0 mA cm⁻² under 1.0 mA h cm⁻². The SEM images of Zn foils after plating Zn of 2.0 mA h cm⁻² in the Zn||Zn cells with (c-e) ZSO and (f-h) ZSO/Sc-1.0 electrolyte at 1.0, 2.0, and 5.0 mA cm⁻².

Fig. S13 The XRD pattern of Zn metal anodes disassembled from the Zn||Zn cells with ZSO and ZSO/Sc-1.0 electrolytes after 50 cycles at a current density of 5.0 mA cm⁻² with an areal capacity of 1.0 mA h cm⁻².

Fig. S14 (a) EDX mapping image of the Zn disassembled from the Zn||Zn symmetrical cell assembled by ZSO/Sc-1.0 electrolyte and (b) the corresponding spectrum.

Fig. S15 The long-term galvanostatic Zn stripping/plating of the Zn||Zn symmetric cells using ZSO electrolyte with different rare earth ions (1 mol%) at 5.0 mA cm⁻² under 1.0 mA h cm⁻².

Fig. S16 Rate performance of $Zn||V_2O_5$ full cells with ZSO and ZSO/Sc-1.0 electrolytes.

Fig. S17 The cycle stability of $Zn ||V_2O_5$ full cells with ZSO and ZSO/Sc-1.0 electrolytes.

3. Reference

 B. D. Adams, J. Zheng, X. Ren, W. Xu and J.-G. Zhang, *Adv. Energy Mater.*, 2018, 8, 1702097.