Supplementary Information

Isolation of an Organometallic Yttrium Bismuth Cluster and Elucidation of its Electronic Structure

Elizabeth R. Pugliese, Florian Benner, Selvan Demir*

Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
*Correspondence to: sdemir@chemistry.msu.edu (S.D.)

Table of Contents

1.1 Experimental Methods S3
1.2 X-ray Crystallography S6
Table S1. Crystal data and structural refinement of $\left[\mathrm{K}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]$ (1) S6
and $\mathrm{Cp}{ }^{*} 2 \mathrm{YPh}(\mathrm{THF})$ (2).
Figure S1. Structure of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ in a crystal of 1, with thermal ellipsoids S7
drawn at 50\% probability level.
Figure S2. Space filling model of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ in a crystal of 1. S8
Figure S3. Structure of $\mathrm{Cp}^{*}{ }_{2} \mathrm{YPh}(\mathrm{THF}), 2$. S9
Figure S4. Crystal packing diagram of $\left[\mathrm{K}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]$ (1). S10
1.3 DFT Calculations S11
Figure S5. Plots of the calculated mean deviation (MD), mean square error S11
(MSE), root mean square error (RMSE) and mean absolute percentage error(MAPE).Figure S6. Plots of the calculated set of highest occupied molecular orbitalsS12
($\mathrm{HOMO}-4$ to $\mathrm{HOMO}+5$) of the $\left[\mathrm{Cp}^{*} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.Table S2. Results of the hybridisation/polarisation analysis of NLMOs as theS13
\% contributions of parent NBOs of 1.Table S3. Results of the hybridisation/polarisation analysis of NLMOs as theS14\% orbital contributions of 1.Table S4. Results of the hybridisation/polarisation analysis of NLMOs for theS14
Bi lone electron pairs as the \% orbital contributions of 1.Table S5. Results of the second order perturbation analysis of the optimisedS15structure of the $\left[\mathrm{Cp}^{*} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.
Table S6. Real space values of critical points as obtained from QTAIMS18analysis on the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.
Figure S7. Plot of the electron localisation function (ELF) of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ S19
anion.
Figure S8. Calculated nuclear-independent chemical shift (NICS) values of S20the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion with printed ghost atoms.
Figure S9. Distance-dependent plots of the calculated NICS values for the S21
Bi^{6-} core without capping (Cp*Y) ${ }^{2+}$ units.
1.4 UV-Vis spectroscopy and TDDFT calculations S22
Figure S10. UV-Vis absorption spectra of 1 recorded at $100 \mu \mathrm{~mol} / \mathrm{L}, 50 \mu \mathrm{~mol} / \mathrm{L}$ and S22$20 \mu \mathrm{~mol} / \mathrm{L}$ concentrations in THF at room temperature.
Table S7. TDDFT-calculated transitions for the $\left[\mathrm{Cp}_{2}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.S23
1.5 References S26

1.1 Experimental Methods

General Information

The manipulations described herein were performed under an inert argon atmosphere with rigorous exclusion of air and water using Schlenk line and glovebox techniques. N-Hexane was dried over calcium hydride. Diethyl ether and THF were dried over a Na / K alloy. Toluene was distilled over potassium. Potassium bis(trimethylsilylamide) $\left(\mathrm{KN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right)$ was purchased from Sigma-Aldrich, dissolved in toluene, centrifuged, filtered, and recrystallised at $-35{ }^{\circ} \mathrm{C}$. Triphenylbismuth $\left(\mathrm{BiPh}_{3}\right)$ was purchased from Sigma-Aldrich and recrystallised from hexane at $-35{ }^{\circ} \mathrm{C} .1,2,3,4,5-$ Pentamethylcyclopentadiene (HCp^{*}) was purchased from Sigma-Aldrich and dried over $4 \AA$ sieves. Anhydrous yttrium chloride $\left(\mathrm{YCl}_{3}\right)$ and allylmagnesium chloride (2.0 M in THF) were purchased from Sigma-Aldrich and used as received. KCp* was synthesised by deprotonation of $\mathrm{HCp}{ }^{*}$ with $\mathrm{K}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right] .{ }^{1} \mathrm{KC}_{8},{ }^{2}\left(\mathrm{HNEt}_{3}\right)\left(\mathrm{BPh}_{4}\right)$, ${ }^{3}$ and $\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}\left(\mathrm{BPh}_{4}\right),{ }^{4}$ were prepared according to literature procedures. A PerkinElmer 2400 Series II CHNS/O analyser was used for CHN elemental analyses.
$\left[\mathrm{K}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}_{2}{ }_{2} \mathbf{Y}_{2} \mathrm{Bi}_{6}\right]$ (1). In an argon filled glovebox, $\mathrm{BiPh}_{3}(19.9 \mathrm{mg}, 0.0451 \mathrm{mmol})$ was dissolved in 2 mL of THF and added to a 5 mL colorless solution of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}\left(\mathrm{BPh}_{4}\right)(102.0 \mathrm{mg}$, $0.1503 \mathrm{mmol})$ in THF. Subsequently, $\mathrm{KC}_{8}(22.6 \mathrm{mg}, 0.165 \mathrm{mmol})$ was added at once to the reaction mixture and stirred for 15 minutes at room temperature. The dark red solution was filtered to remove the black and colorless insoluble material, presumably graphite and KBPh_{4}. The solvent was removed in vacuo to afford a dark solid which was washed three times with 5 mL of hexane and twice with 5 mL of toluene to remove the byproduct $\mathrm{Cp}^{*}{ }_{2} \mathrm{YPh}$ (THF) (2). The remaining black solid was dissolved in 5 mL of THF and filtered to obtain a dark brown solution, which was evaporated to dryness. The solids were dissolved in 1 mL of THF. Black, block-shaped crystals, suitable for single crystal X-ray diffraction analysis were crystallised from the THF solution via vapor diffusion of hexane at $-35{ }^{\circ} \mathrm{C}$ in 12% yield, based on BiPh_{3}. Anal. Calc. for $\mathrm{Y}_{2} \mathrm{Bi}_{6} \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~K}_{2} \cdot 0.5 \mathrm{THF}: \mathrm{C}, 14.55 ; \mathrm{H}, 1.89 ; \mathrm{N}, 0.0$. Found. C, $14.53 ; \mathrm{H}, 1.42 ; \mathrm{N}, 0.36$. Anal Calc. for $\mathrm{YC}_{30} \mathrm{H}_{43} \mathrm{O}: \mathrm{C}, 70.85 ; \mathrm{H}, 8.52 ; \mathrm{N}, 0.0$. Found. C, $70.24 ; \mathrm{H}, 9.10 ; \mathrm{N}, 0.14$.

X-ray Crystallography.

A black block-shaped crystal of $1,0.20 \times 0.149 \times 0.077 \mathrm{~mm}^{3}$, was mounted on a nylon loop with Paratone oil. Data were collected using a XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at $\mathrm{T}=100.0(1) \mathrm{K}$.

Data were measured using ω scans using Mo Ka radiation (microfocus sealed X-ray tube, 50 kV , 1 mA). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.41.90a, 2020). Cell parameters were retrieved using CrysAlisPro (Rigaku, V1.171.41.90a, 2020) software and refined using CrysAlisPro (Rigaku, V1.171.41.90a, 2020). Data reduction was performed using the CrysAlisPro (Rigaku, V1.171.41.90a, 2020) software, which corrects for Lorentz-polarisation. A numerical absorption correction based on Gaussian integration over a multifaceted crystal model empirical absorption
correction using spherical harmonics was implemented in the SCALE3 ABSPACK scaling algorithm.

The structure was solved in the space group $P 2_{1} / n$ by using dual methods with the ShelXT (Sheldrick, 2015) structure solution program. ${ }^{5}$ The structure was refined by least squares using version 20189/2 of XL^{6} incorporated in Olex2. ${ }^{7}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

A colorless block-shaped crystal of 2, $0.48 \times 0.4 \times 0.17 \mathrm{~mm}^{3}$, was mounted on a nylon loop with Paratone oil. Data were collected using a XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at $T=100.0(1) \mathrm{K}$.

Data were measured using ω scans using Mo Ka radiation (microfocus sealed X-ray tube, 50 kV , 1 mA). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.41.90a, 2020). Cell parameters were retrieved using CrysAlisPro (Rigaku, V1.171.41.90a, 2020) software and refined using CrysAlisPro (Rigaku, V1.171.41.90a, 2020). Data reduction was performed using the CrysAlisPro (Rigaku, V1.171.41.90a, 2020) software, which corrects for Lorentz-polarisation. A numerical absorption correction based on Gaussian integration over a multifaceted crystal model empirical absorption correction using spherical harmonics was implemented in the SCALE3 ABSPACK scaling algorithm.

The structure was solved in the space group $P 2_{1} / c$ by using dual methods with the ShelXT (Sheldrick, 2015) structure solution program. ${ }^{5}$ The structure was refined by least squares using version 20189/2 of XL 6 incorporated in Olex2. ${ }^{7}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

UV-Vis Spectroscopy.

UV-vis spectra were collected with an Agilent Cary 60 spectrophotometer at ambient temperature from 200 to 1100 nm . Samples were prepared in an argon-filled glovebox and measured in a 1 cm quartz cuvette. The spectrum is baseline corrected from a sample of dry and filtered THF.

Computational Methods

Density functional theory (DFT) calculations were carried out using the program Gaussian V16 (Rev. B01) ${ }^{8}$ on the coordinates of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion as obtained from single-crystal X-ray analysis in singlet state. The geometry was successively optimised with a three step strategy: 1) $321 \mathrm{G}(\mathrm{C}, \mathrm{H}, \mathrm{Y}) /$ def2-SVP(Bi); ${ }^{9,10} \quad$ 2) $631+\mathrm{G}^{*}(\mathrm{C}, \mathrm{H}) / \mathrm{SVPD}(\mathrm{Y}, \mathrm{Bi}) ;{ }^{; 11-15}$
$631+\mathrm{G}^{*}(\mathrm{C}, \mathrm{H}) / E C P 60 M D F _V D Z(\mathrm{Bi}) / E C P 28 M D F _V D Z(Y) .{ }^{11-14,16,17}$ The optimisations were carried out with the functionals TPSSTPSS, ${ }^{18}$ TPSSh, ${ }^{18,19}$ B3LYP, ${ }^{20-23}$ CAM-B3LYP, ${ }^{24}$ BP86, ${ }^{25,26}$ $\omega 97 x D,{ }^{27}$ PBEPBE,,${ }^{28,29}$ and PBEO ${ }^{28-30}$ with the fully relativistic pseudopotentials ECP28MDF and ECP60MDF on the Y^{17} and Bi^{31} atoms, respectively, and under consideration of the empirical dispersion correction GD3 by Grimme. ${ }^{32,33}$ After all optimisations converged on level 3) of theory
and were confirmed to be minimum structures via frequency calculations (one imaginary frequency at $\sim 10 \mathrm{~cm}^{-1}$, associated with an in-plane rotation of the Cp^{*} rings was returned in all cases and could not be eliminated through additional optimisations) the metrical parameters of the obtained structures were compared with the coordinates obtained from single-crystal X-ray diffraction analysis in order to find the exchange correlation functional best-suited to describe the bonding situation in the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion. Here, the PBE0 functional proved to be best-suited, as deduced by the mean deviation (MD), mean square error (MSE), root mean square error (RMSE) and mean absolute percentage error (MAPE), Figure S5. As a general note, all DFT functionals predict longer $\mathrm{Bi}-\mathrm{Bi}$ and $\mathrm{Y}-\mathrm{Bi}$ bonds, thereby underestimating the covalent character and/or aromatic stabilization of these bonds to some extent. Subsequently, the negative charge of the cluster was compensated by employing the polarisable conductor calculation model (CPCM, with parameters chosen for tetrahydrofuran) ${ }^{34,35}$ in an additional optimisation step on the PBE0/6311+G*(C,H)/ECP_AVTZ(Bi,Y) level of theory. Single point calculations were carried out on the obtained structure for natural localised molecular orbital (NLMO) ${ }^{36}$ with NBO6, ${ }^{36}$ nucleus independent chemical shift (NICS), ${ }^{32}$ quantum theory of atoms in molecules (QTAIM) ${ }^{37,38}$ and electron localisation function (ELF) calculations. The latter two analyses were conducted using the program MultiWfn. ${ }^{39}$ TDDFT calculations were carried out on the CPCM-optimised structure for 75 excited states for the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion on the $6311+\mathrm{G}^{*}(\mathrm{C}, \mathrm{H}) / E C P _A V T Z(\mathrm{Bi}, \mathrm{Y})$ level using the PBE0 functional with dispersion correction GD3 and implicit solvent model CPCM for THF. UV-vis spectra were simulated via application of a 0.1 eV Gaussian broadening using the MultiWfn program. The transitions were empirically shifted by 0.4 eV .

1.2 X-ray Crystallography

Table S1. Crystal data and structural refinement of $\left[\mathrm{K}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]$ (1) and $\mathrm{Cp}^{*} \mathrm{YPh}(\mathrm{THF})$ (2).

Compound	1	2
Empirical formula	$\mathrm{C}_{52} \mathrm{H}_{94} \mathrm{Bi}_{6} \mathrm{~K}_{2} \mathrm{O}_{8} \mathrm{Y}_{2}$	$\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{OY}$
CCDC number	2292178	2292179
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	2357.17	508.55
Temperature (K)	100.0(1)	100.0(1)
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / \mathrm{c}$
Unit Cell Dimensions	$a=13.3252(3) \AA$	$a=9.4266(2) \AA$
	$b=16.7323(5) \AA$	$b=17.1628(3) \AA$
	$c=15.4540$ (5) \AA	$c=16.8285(3) \AA$
	$\alpha=90^{\circ}$	$\alpha=90^{\circ}$
	$\beta=100.961(3)^{\circ}$	$\beta=102.699(2)^{\circ}$
	$\gamma=90^{\circ}$	$\gamma=90^{\circ}$
Volume (${ }^{\text {® }}$)	3382.79(17)	2656.03(9)
Z	2	4
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.314	1.272
$\mu\left(\mathrm{mm}^{-1}\right)$	17.407	2.214
$F(000)$	2168.0	1080.0
Crystal size (mm^{3})	$0.20 \times 0.149 \times 0.077$	$0.48 \times 0.4 \times 0.17$
Radiation	Mo Ka $(\lambda=0.71073)$	Mo $\mathrm{K}_{\alpha}(\lambda=0.71073)$
2Θ range for data collection (${ }^{\circ}$)	4.432 to 50.498	5.882 to 61.684
Reflections collected	32621	32939
Independent reflections	$6102 R_{\text {int }}=0.0575$	$6862 R_{\text {int }}=0.0304$
Data/restraints/parameters	6102/1107/611	6862/0/299
Goodness-of-fit on F^{2}	1.015	1.053
Final R indexes [$1>=2 \sigma(\Lambda)$]	$R_{1}=0.0440, \mathrm{w} R_{2}=0.1190$	$R_{1}=0.0344, \mathrm{w} R_{2}=0.0674$
Final R indexes [all data]	$R_{1}=0.0593, \mathrm{w} R_{2}=0.1281$	$R_{1}=0.0444, \mathrm{w} R_{2}=0.0699$
Largest diff. peak/hole (e \AA^{-3})	1.75/-1.11	0.49/-0.29

Figure S1. Structure of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ in a crystal of 1, with thermal ellipsoids drawn at 50% probability levels, shown in three different orientations. Pink, purple, and grey spheres represent Y, Bi, and C atoms, respectively. Hydrogen atoms and the $\left[\mathrm{K}(\mathrm{THF})_{4}\right]^{+}$cations have been removed for clarity.

Figure S2. Space filling model of $\left[\mathrm{Cp}_{2}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ in a crystal of 1. Pink, purple, grey, and white spheres represent $\mathrm{Y}, \mathrm{Bi}, \mathrm{C}$, and H atoms, respectively. The $\left[\mathrm{K}(\mathrm{THF})_{4}\right]^{+}$cations have been omitted for clarity.

Figure S3. Structure of $\mathrm{Cp}^{*}{ }_{2} \mathrm{YPh}(\mathrm{THF})$, 2. Pink, red, and grey spheres represent Y , O , and C atoms, respectively. The H atoms have been omitted for clarity.

Figure S4. Crystal packing diagram of $\left[\mathrm{K}(\mathrm{THF})_{4}\right]_{2}\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]$, 1, with the ball-and-stick (top) and space filling model (bottom) representations. Pink, purple, orange, red, grey, and white spheres represent $\mathrm{Y}, \mathrm{Bi}, \mathrm{K}, \mathrm{O}, \mathrm{C}$, and H atoms, respectively.

1.3 DFT Calculations

Figure S5. Plots of the calculated mean deviation (MD), mean square error (MSE), root mean square error (RMSE) (left) and mean absolute percentage error (MAPE, right) obtained from the optimised molecular geometries of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion in comparison to its structural parameters obtained from single crystal X-ray diffraction analysis.

Figure S6. Plots of the calculated set of highest occupied molecular orbitals (HOMO-4 to $\mathrm{HOMO}+5)$ of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion, calculated on the rPBEO-GD3 6311+G* (C,H)/ECP60MDF_AVTZ (Y,Bi) level of theory. The isovalue was set to 0.03 .

Table S2. Results of the hybridisation/polarisation analysis of NLMOs under consideration of a CPCM solvent model for THF, given as the \% contributions of parent NBOs from rPBEO calculations on the optimised structure of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.

	NLMO contributions					
Orbital No.	Description	Occupancy		Bi	Y	Bi
91	$\mathrm{BD} \mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	2.00	42.9	6.4	42.9	6.2
92	$\mathrm{BD} \mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	2.00	43.4	5.9	43.5	5.8
93	$\mathrm{BD} \mathrm{Bi}^{1}-\mathrm{Y}^{4}$	2.00	77.8	18.1	-	-
94	$\mathrm{BD} \mathrm{Bi}^{2}-\mathrm{Y}^{5}$	2.00	77.8	18.1	-	-
95	$\mathrm{BD} \mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	2.00	43.2	5.7	43.5	6.2
96	$\mathrm{BD} \mathrm{Bi}^{3}-\mathrm{Y}^{5}$	2.00	77.9	18.1	-	-
97	$\mathrm{BD} \mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	2.00	43.4	6.2	43.2	5.9
98	$\mathrm{BD} \mathrm{Y}^{4}-\mathrm{Bi}^{6}$	2.00	77.8	18.0	-	-
99	$\mathrm{BD} \mathrm{Y}^{4}-\mathrm{Bi}^{7}$	2.00	77.9	18.1	-	-
100	$\mathrm{BD} \mathrm{Y}^{5}-\mathrm{Bi}^{8}$	2.00	77.7	18.1	-	-
101	$\mathrm{BD} \mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	2.00	43.3	6.0	43.2	6.2
102	$\mathrm{BD} \mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	2.00	42.7	6.9	42.9	6.5

Table S3. Results of the hybridisation/polarisation analysis of NLMOs under consideration of a CPCM solvent model for THF, as the \% orbital contributions from rPBEO calculations on the optimised structure of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.

Orbital No.	Description	Orbital contributions Atom 1 (\%)			Orbital contributions Atom 2 (\%)		
		s	p	d	s	p	d
91	BD $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	3.9	95.5	0.6	4.1	95.2	0.6
92	$B D B i^{1}-\mathrm{Bi}^{3}$	3.5	95.9	0.7	3.5	95.8	0.7
93	BD $\mathrm{Bi}^{1}-\mathrm{Y}^{4}$	16.2	83.4	0.5	36.9	0.3	62.3
94	$B D B i^{2}-Y^{5}$	15.9	83.6	0.5	35.3	0.3	63.9
95	BD $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	3.3	96.0	0.6	3.8	95.5	0.6
96	$B D B i^{3}-Y^{5}$	16.4	83.1	0.5	36.3	0.3	62.9
97	$B D B i^{3}-\mathrm{Bi}^{7}$	3.6	95.7	0.7	3.6	95.8	0.7
98	BD $\mathrm{Y}^{4}-\mathrm{Bi}^{6}$	35.1	0.3	64.0	15.8	83.7	0.5
99	$B D Y^{4}-\mathrm{Bi}^{7}$	36.1	0.3	63.1	16.3	83.2	0.5
100	$B D Y^{5}-\mathrm{Bi}^{8}$	36.2	0.3	63.0	15.8	83.7	0.5
101	$B D B i^{6}-\mathrm{Bi}^{8}$	3.5	95.8	0.7	3.3	96.0	0.7
102	BD Bi ${ }^{7}-\mathrm{Bi}^{8}$	3.7	95.6	0.6	4.0	95.3	0.6

Table S4. Results of the hybridisation/polarisation analysis of NLMOs under consideration of a CPCM solvent model for THF, given for the Bi lone electron pairs as the \% orbital contributions as obtained from rPBEO calculations on the optimised structure of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion.

NLMO No.	NLMO contributions				
	$\mathrm{LP}^{2} \mathrm{Di}^{1}$	2.00	75.8	24.1	-
	$\mathrm{LP}^{2} \mathrm{Bi}^{2}$	2.00	76.0	23.9	-
85	$\mathrm{LP}^{2} \mathrm{Bi}^{3}$	2.00	75.7	24.3	-
86	$\mathrm{LP}^{2} \mathrm{Bi}^{6}$	2.00	76.0	23.9	-
87	$\mathrm{LP}^{2} \mathrm{Bi}^{7}$	2.00	75.8	24.2	-
88	$\mathrm{LP}^{2} \mathrm{Bi}^{8}$	2.00	76.1	23.9	-

Table S5.Results of the second order perturbation analysis of the optimised structure of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion under consideration of a CPCM solvent model from rPBE0. Only strongest interactions within the $\mathrm{Y}_{2} \mathrm{Bi}_{6}$ are shown ($>2 \mathrm{kcal} / \mathrm{mol}$).

Donor	Acceptor	E (kcal/mol)
LP1 Bi ${ }^{1}$	LV1 Y ${ }^{4}$	2.07
LP1 Bi ${ }^{1}$	LV1 ${ }^{5}$	4.04
LP1 ${ }^{1}$	LV2 ${ }^{5}$	5.42
LP1 Bi ${ }^{1}$	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Y}^{4}$	3.71
LP1 Bi ${ }^{1}$	$B D^{*} 1 \mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	2.56
LP1 Bi ${ }^{1}$	$B D^{*} 1 \mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	2.50
LP1 Bi ${ }^{2}$	LV1 Y ${ }^{4}$	6.47
LP1 Bi ${ }^{2}$	LV2 Y^{4}	3.22
LP1 Bi ${ }^{2}$	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	2.60
LP1 Bi ${ }^{2}$	$B D^{*} 1 \mathrm{Bi}^{2}-\mathrm{Y}^{5}$	4.09
LP1 Bi ${ }^{2}$	$B D^{*} 1 \mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	2.63
LP1 Bi ${ }^{3}$	LV2 Y^{4}	8.30
LP1 Bi ${ }^{3}$	LV1 Y^{5}	2.49
LP1 Bi^{3}	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	2.55
LP1 Bi ${ }^{3}$	$B D^{*} 1 \mathrm{Bi}^{3}-\mathrm{Y}^{5}$	3.55
LP1 Bi ${ }^{3}$	$B D^{*} 1 \mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	2.52
LP1 Bi ${ }^{6}$	LV2 Y^{4}	2.02
LP1 Bi ${ }^{6}$	LV1 Y^{5}	10.05
LP1 Bi ${ }^{6}$	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	2.61
LP1 Bi ${ }^{6}$	$B D^{*} 1 \mathrm{Y}^{4}-\mathrm{Bi}^{6}$	4.27
LP1 Bi ${ }^{6}$	$B D^{*} 1 \mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	2.64
LP1 Bi ${ }^{7}$	LV2 ${ }^{5}$	7.92
LP1 Bi ${ }^{7}$	BD*1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	2.52
LP1 Bi^{7}	$B D^{*} 1 \mathrm{Y}^{4}-\mathrm{Bi}^{7}$	3.71
LP1 Bi ${ }^{7}$	$B D^{*} 1 \mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	2.59
LP1 Bi ${ }^{8}$	LV1 Y^{4}	8.68
LP1 Bi ${ }^{8}$	LV2 Y^{4}	2.07
LP1 Bi ${ }^{8}$	$B D^{*} 1 \mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	2.62
LP1 Bi ${ }^{8}$	$B D^{*} 1 \mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	2.54
LP1 Bi ${ }^{8}$	$B D^{*} 1 \mathrm{Y}^{5}-\mathrm{Bi}^{8}$	3.96
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	LV1 Y ${ }^{4}$	31.49

BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	LV2 Y ${ }^{4}$	4.14
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	LV3 ${ }^{4}$	3.99
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	LV1 Y^{5}	6.15
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	LV2 Y ${ }^{5}$	32.49
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	LV3 ${ }^{5}$	3.45
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Y}^{4}$	8.50
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{2}$	$B D^{*} 1 B^{2}-Y^{5}$	9.70
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	LV1 Y^{4}	4.39
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	LV2 Y^{4}	28.46
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	LV3 Y ${ }^{4}$	3.86
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	LV1 Y^{5}	27.77
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	LV2 ${ }^{5}$	10.76
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	LV3 ${ }^{5}$	3.88
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Y}^{4}$	8.57
BD1 $\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	$B D^{*} 1 B^{3}-Y^{5}$	8.74
BD1 $\mathrm{Bi}^{1}-\mathrm{Y}^{4}$	LV2 ${ }^{5}$	2.26
BD1 $\mathrm{Bi}^{1}-\mathrm{Y}^{4}$	LV3 ${ }^{5}$	2.63
BD1 $\mathrm{Bi}^{2}-\mathrm{Y}^{5}$	LV1 Y ${ }^{4}$	2.15
BD1 $\mathrm{Bi}^{2}-\mathrm{Y}^{5}$	LV3 Y ${ }^{4}$	2.23
BD1 $\mathrm{Bi}^{2}-\mathrm{Y}^{5}$	$B D^{*} 1 \mathrm{Bi}^{3}-\mathrm{Y}^{5}$	2.09
BD1 $\mathrm{Bi}^{2}-\mathrm{Y}^{5}$	$B D^{*} 1 Y^{5}-\mathrm{Bi}^{8}$	2.09
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	LV1 Y ${ }^{4}$	12.91
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	LV2 Y^{4}	24.58
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	LV3 Y ${ }^{4}$	3.70
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	LV1 ${ }^{5}$	29.12
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	LV2 ${ }^{5}$	10.43
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	LV3 ${ }^{5}$	3.65
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	$B D^{* 1} \mathrm{Bi}^{2}-\mathrm{Y}^{5}$	9.63
BD1 $\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	$B D^{* 1} \mathrm{Y}^{4}-\mathrm{Bi}^{6}$	9.81
BD1 $\mathrm{Bi}^{3}-\mathrm{Y}^{5}$	LV2 Y ${ }^{4}$	2.80
BD1 $\mathrm{Bi}^{3}-\mathrm{Y}^{5}$	LV3 Y ${ }^{4}$	2.66
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	LV1 Y^{4}	2.37
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	LV2 Y^{4}	31.62
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	LV3 Y ${ }^{4}$	3.91
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	LV1 Y^{5}	11.96

BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	LV2 ${ }^{5}$	22.55
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	LV3 ${ }^{5}$	3.99
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	$B D^{* 1} \mathrm{Bi}^{3}-\mathrm{Y}^{5}$	8.43
BD1 $\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	$B D^{*} 1 \mathrm{Y}^{4}-\mathrm{Bi}^{7}$	8.75
BD1 Y^{4} - Bi^{6}	LV1 ${ }^{5}$	3.51
BD1 Y^{4} - Bi^{6}	$B D^{*} 1 \mathrm{Bi}^{1}-\mathrm{Y}^{4}$	2.32
BD1 $\mathrm{Y}^{4}-\mathrm{Bi}^{6}$	$B D^{*} 1 \mathrm{Y}^{4}-\mathrm{Bi}^{7}$	2.37
BD1 $\mathrm{Y}^{4}-\mathrm{Bi}^{7}$	LV2 Y^{5}	2.52
BD1 $\mathrm{Y}^{4}-\mathrm{Bi}^{7}$	LV3 ${ }^{5}$	2.28
BD1 $\mathrm{Y}^{5}-\mathrm{Bi}^{8}$	LV1 Y ${ }^{4}$	3.66
BD1 $\mathrm{Y}^{5}-\mathrm{Bi}^{8}$	LV3 Y ${ }^{4}$	2.42
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	LV1 Y ${ }^{4}$	22.08
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	LV2 Y ${ }^{4}$	19.13
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	LV3 Y ${ }^{4}$	3.39
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	LV1 Y^{5}	38.56
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	LV3 ${ }^{5}$	3.67
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	$\mathrm{BD}^{*} 1 \mathrm{Y}^{4}-\mathrm{Bi}^{6}$	10.06
BD1 $\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	$B D^{* 1} \mathrm{Y}^{5}-\mathrm{Bi}^{8}$	9.19
BD1 $\mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	LV1 Y ${ }^{4}$	39.35
BD1 $\mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	LV3 Y ${ }^{4}$	3.77
BD1 $\mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	LV2 ${ }^{5}$	34.02
BD1 $\mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	LV3 Y ${ }^{5}$	3.59
BD1 $\mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	$B D^{*} 1 Y^{4}-\mathrm{Bi}^{7}$	8.94
BD1 $\mathrm{Bi}^{7}-\mathrm{Bi}^{8}$	$B D^{*} 1 Y^{5}-\mathrm{Bi}^{8}$	9.05

Table S6. Real space values of critical points as obtained from QTAIM analysis on the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion along the $\mathrm{Y}^{4}, \mathrm{Bi}^{6}, \mathrm{Bi}^{7}$ and Bi^{8} plane.

Bond Critical Points (BCP, (3,-1))										
No	A-B	$\begin{gathered} \rho(\mathrm{r}) \\ (\mathrm{E}-02 \\) \end{gathered}$	$\begin{gathered} G(r) \\ (E-02) \end{gathered}$	$\begin{gathered} K(r) \\ (E-03) \end{gathered}$	$\begin{gathered} V(r) \\ (\mathrm{E}-02) \end{gathered}$	$\begin{gathered} H(r) \\ (\mathrm{E}-03) \end{gathered}$	$\begin{gathered} \nabla^{2} \\ (\mathrm{E}-02) \end{gathered}$	$\begin{gathered} H / \rho \\ (E-01) \end{gathered}$	$\begin{gathered} \varepsilon(\mathrm{r}) \\ (\mathrm{E}-02 \end{gathered}$	MBO
66	$\mathrm{Bi}^{2}-\mathrm{Bi}^{6}$	4.35	1.56	8.97	-2.46	-8.97	2.65	-2.06	1.55	0.973
69	$\mathrm{Bi}^{2}-\mathrm{Bi}^{1}$	4.36	1.56	9.00	-2.46	-9.00	2.65	-2.06	0.972	0.994
79	$\mathrm{Bi}^{2}-\mathrm{Y}^{5}$	3.38	1.44	6.00	-2.04	-6.00	3.37	-1.77	1.11	0.465
82	$B^{16}-Y^{4}$	3.41	1.46	6.09	-2.07	-6.09	3.40	-1.79	0.581	0.506
85	$B^{1}{ }^{1}-Y^{4}$	3.36	1.43	5.95	-2.02	-5.95	3.33	-1.77	1.78	0.457
95	$\mathrm{Bi}^{6}-\mathrm{Bi}^{8}$	4.35	1.56	8.96	-2.46	-8.96	2.67	-2.06	1.43	0.969
$\begin{gathered} 10 \\ 5 \end{gathered}$	$\mathrm{Bi}^{1}-\mathrm{Bi}^{3}$	4.35	1.55	8.95	-2.44	-8.95	2.62	-2.06	0.724	1.030
$\begin{gathered} \hline 11 \\ 6 \end{gathered}$	$Y^{5}-\mathrm{Bi}^{8}$	3.37	1.44	5.96	-2.03	-5.96	3.36	-1.77	1.87	0.403
$\begin{gathered} \hline 11 \\ 9 \end{gathered}$	$Y^{5}-\mathrm{Bi}^{3}$	3.39	1.44	6.05	-2.05	-6.05	3.35	-1.78	1.20	0.576
$\begin{gathered} 12 \\ 1 \end{gathered}$	$\mathrm{Y}^{4}-\mathrm{Bi}^{7}$	3.40	1.45	6.05	-2.05	-6.05	3.37	-1.78	2.09	0.481
$\begin{array}{\|c\|} \hline 13 \\ 5 \\ \hline \end{array}$	$\mathrm{Bi}^{3}-\mathrm{Bi}^{7}$	4.36	1.55	9.02	-2.45	-9.02	2.61	-2.07	0.457	1.051

Ring Critical Points (RCP, (3,+1))											
	A-B	$\begin{gathered} \rho(r) \\ (\mathrm{E}-02) \end{gathered}$	$\begin{gathered} G(r) \\ (E-03) \end{gathered}$	$\begin{gathered} K(r) \\ (E-04) \end{gathered}$	$\begin{gathered} V(r) \\ (E-03) \end{gathered}$	$\begin{gathered} H(\mathrm{r}) \\ (\mathrm{E}-04) \end{gathered}$	$\begin{gathered} \nabla^{2} \\ (E-02) \end{gathered}$	$\begin{gathered} H / \rho \\ (E-02) \end{gathered}$	$\varepsilon(r)$	$\begin{gathered} \lambda_{\pi 3} \\ (\mathrm{E}-03) \end{gathered}$	$\begin{gathered} \hline S A \\ (E-03) \end{gathered}$
75	$\begin{aligned} & \hline \mathrm{Y}^{4}, \mathrm{Bi}^{1}, \\ & \mathrm{Bi}^{2}, \mathrm{Bi}^{6} \end{aligned}$	1.14	5.29	4.01	-5.69	-4.01	1.96	-3.53	-1.49	-4.70	7.92
88	$\begin{aligned} & \mathrm{Y}^{5}, \mathrm{Bi}^{2}, \\ & \mathrm{Bi}^{6}, \mathrm{Bi}^{8} \end{aligned}$	1.15	5.36	4.16	-5.78	-4.16	1.98	-3.61	-1.52	-4.80	8.01
94	$\begin{gathered} \mathrm{Bi}^{1}, \mathrm{Bi}^{2}, \\ \mathrm{Bi}^{3}, \mathrm{y}^{5} \end{gathered}$	1.13	5.26	3.97	-5.66	-3.97	1.95	-3.51	-1.49	-4.65	7.81
107	$\begin{aligned} & \mathrm{Y}^{4}, \mathrm{Bi}^{6}, \\ & \mathrm{Bi}^{7}, \mathrm{Bi}^{8} \end{aligned}$	1.15	5.38	4.16	-5.79	-4.16	1.98	-3.61	-1.52	-4.83	7.45
113	$\begin{aligned} & \mathrm{Y}^{4}, \mathrm{Bi}^{1}, \\ & \mathrm{Bi}^{3}, \mathrm{Bi}^{7} \end{aligned}$	1.11	5.14	3.76	-5.52	-3.76	1.91	-3.39	-1.45	-4.50	7.97
125	$\begin{aligned} & \mathrm{Y}^{5}, \mathrm{Bi}^{3}, \\ & \mathrm{Bi}^{7}, \mathrm{Bi}^{8} \end{aligned}$	1.12	5.17	3.80	-5.55	-3.80	1.92	-3.40	-1.46	-4.54	7.84

Cage Critical Points (CCP, (3,+3))

Cage Critical Points (CCP, (3,+3))										
101	$\mathrm{Bi}^{1}, \mathrm{Bi}^{2}$, $\mathrm{Bi}^{3}, \mathrm{Bi}^{6}$, $\mathrm{Bi}^{7}, \mathrm{Bi}^{8}$	0.555	2.13	-0.0526	-2.13	0.0526	0.855	0.0948	-0.809	-

$\rho(\mathrm{r})$: Density of all electrons; $G(r)$: Lagrangian kinetic energy; $K(r)$: Hamiltonian kinetic energy; $V(\mathrm{r})$: Potential energy;
$H(r)$: Energy density; ∇^{2} : Laplacian of electron density; ε : Ellipticity of electron density; MBO: Mayer Bond Order; $\lambda_{\pi 3}$: Curvature of the electron density perpendicular to RCP; SA: Shannon aromaticity index.

Figure S7. Plot of the electron localisation function (ELF) of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion along the plane spanned by the $\mathrm{Y}^{4}, \mathrm{Bi}^{6}, \mathrm{Bi}^{7}$ and Bi^{8} atoms. Values close to 1 refer to ideal localisation while values below 0.5 indicate strong delocalisation. Alternating local maxima and minima around the heavy atoms can be attributed to the electronic (shell) structure of these atoms, which is reliably reproduced through the ELF. ${ }^{42}$ Most prominently, the local maxima on the Bi atoms facing outside the cluster core represent their lone electron pairs. Data of the $\mathrm{C}-\mathrm{H}$ interaction occurring in this plane were omitted for clarity.

Figure S8. Top: Plot of the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion with printed ghost atoms used for the calculation of the nuclear-independent chemical shift (NICS). Small green spheres, large pink and purple spheres represent ghost, Y and Bi atoms, respectively. Bottom: Distance-dependent plots of the calculated NICS values. Pink dotted lines represent positions of equatorial Bi atoms (left), green and purple dotted lines represent positions of Y atoms and Cp^{*} centroids (right), respectively. The more negative the NICS values, the stronger the deshielding of the respective ghost atoms.

Figure S9. Distance-dependent plots of the calculated NICS values for the $\mathrm{Bi}_{6}{ }^{6-}$ core without capping ($\left.C p^{*} Y\right)^{2+}$ units. Green and purple dotted lines represent positions of Y atoms and $C p^{*}$ centroids. The more negative the NICS values, the stronger the deshielding of the respective ghost atoms.

1.4 UV-Vis spectroscopy and TDDFT calculations

Figure S10. UV-Vis absorption spectra of 1 recorded at $100 \mu \mathrm{~mol} / \mathrm{L}, 50 \mu \mathrm{~mol} / \mathrm{L}$ and $20 \mu \mathrm{~mol} / \mathrm{L}$ concentrations in THF at room temperature (left). Comparison of the experimental UV-Vis spectrum of 1 ($100 \mu \mathrm{~mol} / \mathrm{L}$) with Gaussian-broadened calculated spectrum (dashed red) and calculated transitions (black bars). Extinction coefficients represent y-dimension of experimental and calculated spectra, while the oscillator strength represents the y-dimension for the experimental and calculated spectra.

Several strong absorptions are predicted in the visible region that were deconvoluted to identify major transitions involved within these bands. The first calculated absorption is found at 681.2 nm and involves a $\mathrm{HOMO} \rightarrow \mathrm{HOMO}+3$ transition. The HOMO here can be described as a $\mathrm{Bi}_{6}{ }^{6-} \pi-$ type orbital. Towards smaller wavelengths, two sets of double absorptions are predicted at $593.8 / 592.6 \mathrm{~nm}$ and $553.3 / 551.4 \mathrm{~nm}$, which comprise dominant HOMO-1 $\rightarrow \mathrm{HOMO}+3$ transitions for the higher wavelengths, and $\mathrm{HOMO}-2 \rightarrow \mathrm{HOMO}+3$ transitions for the lower wavelengths. The occupied orbitals involved are primarily σ-bonding $\mathrm{Bi}_{6}{ }^{6-}$ featuring considerable overlap with the yttrium atoms, while the virtual orbital $\mathrm{HOMO}+3$ is composed of $\mathrm{Bi}_{6}{ }^{6-} \sigma^{*}$ orbitals. A third set of double excitations is predicted at $526.2 / 524.6 \mathrm{~nm}$, comprising $\mathrm{HOMO} \rightarrow \mathrm{HOMO}+5$ and $\mathrm{HOMO} \rightarrow$ $\mathrm{HOMO}+6$ transitions, where both virtual orbitals are best described as $\mathrm{Bi}_{6}{ }^{6-} \pi^{*}$ orbitals. At 446.4 nm , a HOMO $\rightarrow \mathrm{HOMO}+7$ transition is calculated, where the virtual orbital exhibits π^{*} characteristics encompassing both the $\mathrm{Bi}_{6}{ }^{6-}$ and Cp^{*} moieties.

Table S7. TDDFT-calculated transitions for the $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}_{2} \mathrm{Bi}_{6}\right]^{2-}$ anion on the $6311+\mathrm{G}^{*}(\mathrm{C}, \mathrm{H}) / E C P _A V T Z(\mathrm{Bi}, \mathrm{Y})$ level using the PBEO functional with dispersion correction GD3 and implicit solvent model CPCM for THF. The calculated excitation energies were empirically red shifted by 0.4 eV . HOMO: 156, LUMO: 157. Oscillator strength cutoff value: 0.07. Print threshold for individual transitions: 10\%. Donor/acceptor orbitals are visualized for the dominant transitions with weights $>40 \%$. Isovalue for orbital depictions: 0.015 .

$\lambda(\mathrm{nm})$	$\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)$	Oscillator strength	Dominant Contributions (>10\%)		Weight
			Occupied	Virtual	
681.2	14679.5	0.0829			89.8
593.8	16840.7	0.0930			50.7
			156	162	13.3
592.6	16874.6	0.0789	153	157	10.5
					45.4
			156	161	15.2
553.3	18072.1	0.0993	152	157	16.4
			152	158	12.1
					39.5
			156	162	12.1
551.4	18136.2	0.1211	152	158	15.0
					44.2

			156	161	11.8
526.2	19004.3	0.0963	152	158	10.6
					49.7
524.6	19063.8	0.0975	153	158	10.5
					52.8
446.4	22400.9	0.0725		年会	93.3
413.6	24177.0	0.3251	150	158	16.8
			152	162	10.9
			151	157	26.8
413.4	24190.5	0.2461	150	157	14.7
			151	158	19.1
412.7	24228.9	0.1548	151	157	11.3
			155	172	12.1
			156	168	10.9
412.6	24238.7	0.1974	151	158	18.3
402.1	24871.5	0.1709			45.8
			151	157	38.4
386.6	25864.6	0.2686			44.7
			153	164	13.4
			153	169	10.9

385.5	25940.1	0.1941		5ex	40.4
			152	164	10.7
			152	169	13.0
376.8	26542.7	0.1304			57.2
376.3	26572.0	0.0159	155	167	12.8
			155	168	19.6
375.4	26637.8	0.0709	149	158	29.6
			154	168	16.3

1.5 References

1 W. J. Evans, S. A. Kozimor, J. W. Ziller and N. Kaltsoyannis, J. Am. Chem. Soc., 2004, 126, 14533-14547.

2 D. E. Bergbreiter and J. M. Killough, J. Am. Chem. Soc., 1978, 100, 2126-2134.
3 B. J. Barker, H. L. Huffman and P. G. Sears, J. Phys. Chem., 1974, 78, 2689-2693.
4 S. Demir, J. M. Zadrozny, M. Nippe and J. R. Long, J. Am. Chem. Soc., 2012, 134, 18546-18549.

5 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
6 G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3-8.
$7 \quad$ O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.

8 D.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox. Gaussian G16 B01. Gaussian, Inc.: Wallingford CT 2016.

9 J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939-947.
10 K. D. Dobbs and W. J. Hehre, J. Comput. Chem., 1987, 8, 880-893.
11 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 720-723.
12 T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 294-301.

13 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213-222.
14 W. J. Hehre, K. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
15 D. Rappoport and F. Furche, J. Chem. Phys., 2010, 133, 134105-1-11.
16 K. A. Peterson, D. Figgen, M. Dolg and H. Stoll, J. Chem. Phys., 2007, 126, 124101.
17 K. A. Peterson, J. Chem. Phys., 2003, 119, 11099-11112.
18 J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 36.

19 V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2004, 121, 11507.
R. F. W. Bader, Atoms in Molecules, Clarendon Press, 1st edn., 1994.
S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627.
T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
L. S. Kassel, J. Chem. Phys., 1936, 4, 276-282.
J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824.
J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396-1396.
C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563-2569.
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. von R. Schleyer, Chem. Rev., 2005, 105, 3842-88.
S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-2001.
M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83, 1736-1740.
W. Moffitt, J. Am. Chem. Soc., 1954, 76, 3386-3392.
F. Cortés-Guzmán and R. F. W. Bader, Coord. Chem. Rev., 2005, 249, 633-662.
T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
X. Yang, C. P. Burns, M. Nippe and M. B. Hall, Inorg. Chem., 2021, 60, 9394-9401.
A. R. Eulenstein, Y. J. Franzke, N. Lichtenberger, R. J. Wilson, H. L. Deubner, F. Kraus, R. Clérac, F. Weigend and S. Dehnen, Nat. Chem., 2021, 13, 149-155.
A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397-5403.

