Electronic Supplementary Information

Direct annulation between glycine derivatives and thiiranes through photoredox/iron cooperative catalysis

 Yuan Zhang*a
${ }^{a}$ State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China
${ }^{b}$ First Hospital of Lanzhou University
*E-mail: zhangyuan@lzu.edu.cn

Table of Contents

1. Experiment Information S2
2. Optimization of Reaction Conditions S8
3. Mechanistic Investigation S13
4. Computational Study S18
5. X-ray Crystal Structure for Compound 3m and 8a S23
6. Product Data. S25
7. References S49
8. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S50

1. Experiment Information

1.1 General information

Unless otherwise noted, all reagents were purchased from commercial sources and used as received without further purification. N -arylglycine derivatives ${ }^{1}$ and thiirane derivatives ${ }^{2}$ were prepared according to literature procedures. Unless otherwise indicated, all experiments were carried out under air atmosphere. Irradiation of photochemical reactions was carried out using 18 W blue LED bulb or 5 W LED waveband light source. The LED bulb was purchased from Taobao store (Tai Di lighting, model number: YFGS-9). The silica gel (200-300 meshes) was used for column chromatography and TLC inspections were taken on silica gel GF254 plates. Liquid ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. High resolution mass spectra (HRMS) were obtained on a mass spectrometer by using electrospray ionization (ESI) analyzed by quadrupole time-offlight (QTof).

1.2 General procedure for the visible-light-induced aerobic oxidative [2 + 3] cycloaddition between glycine derivatives and thiiranes.

To a solution of N-arylglycine derivative ($0.2 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{Rh}-6 \mathrm{G}(2 \mathrm{~mol} \%)$ in dry $\mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}(25 / 1,2 \mathrm{~mL})$ was added $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$. The mixed solution was irradiated with 18 W blue LEDs under air atmosphere at room temperature, until the glycine derivatives were gone (monitored by TLC), then $2(0.15 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{HI}(0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ were added and stirred at room temperature (without the irradiation of blue LEDs). After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was purified by silica gel column chromatography (with $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent) to afford the products.

1.3 General procedure for the visible-light-induced aerobic oxidative [2 + 3] cycloaddition between glycine derived peptides and thiiranes.

To a solution of glycine derived peptide ($0.2 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{Rh}-6 \mathrm{G}(2 \mathrm{~mol} \%)$ in dry $\mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}(25 / 1,2 \mathrm{~mL})$ was added $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$. The mixed solution was irradiated with 18 W blue LEDs under O_{2} atmosphere at room temperature, until the glycine dipeptides were gone (monitored by TLC), then $2(0.15 \mathrm{mmol}, 1.5 \mathrm{eq})$ and HI ($0.12 \mathrm{mmol}, 30 \mathrm{~mol} \%$) were added and stirred at room temperature (without the irradiation of blue LEDs). After completion of the reaction as monitored by TLC, the
solvent was removed under vacuo, and the residue was purified by silica gel column chromatography (with PE/EA $=32 / 1$ to $8 / 1$ as eluent) to afford the products. Note: The reaction can also be carried out under air atmosphere, but the reaction rate is slow.

Fig. S1 Picture of photoreaction device.

1.4 Gram Scale Experiment

To a solution of 1 a ($5 \mathrm{mmol}, 1.05 \mathrm{~g}, 1 \mathrm{eq}$) and Rh-6G ($0.1 \mathrm{mmol}, 48 \mathrm{mg}, 2 \mathrm{~mol} \%$) in dry $\mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}(25 / 1,50 \mathrm{~mL})$ was added $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 278 \mathrm{mg}, 20 \mathrm{~mol} \%)$. The mixed solution was irradiated with 18 W blue LEDs under air atmosphere at room temperature for 24 h , then $\mathbf{2 a}$ ($7.5 \mathrm{mmol}, 1.02 \mathrm{~g}, 1.5 \mathrm{eq}$) and $\mathrm{HI}(0.75 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ were added and stirred for another 6 h at room temperature (without the irradiation of blue LEDs). After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was purified by silica gel column chromatography (with $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent) to afford 3a (yellow oil, 78% yield, > 20:1 dr).

To a solution of $\mathbf{1 x}(5 \mathrm{mmol}, 1.05 \mathrm{~g}, 1 \mathrm{eq})$ and Rh-6G ($0.1 \mathrm{mmol}, 48 \mathrm{mg}, 2 \mathrm{~mol} \%$) in dry $\mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}(25 / 1,50 \mathrm{~mL})$ was added $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 278 \mathrm{mg}, 20 \mathrm{~mol} \%)$.

The mixed solution was irradiated with 18 W blue LEDs under air atmosphere at room temperature for 36 h , then $\mathbf{2 a}(7.5 \mathrm{mmol}, 1.02 \mathrm{~g}, 1.5 \mathrm{eq})$ and $\mathrm{HI}(1.5 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ was added and stirred at room temperature for another 15 h (without the irradiation of blue LEDs). After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was purified by silica gel column chromatography (with PE/EA $=32 / 1$ to $8 / 1$ as eluent) to afford 4 (white solid, 58% yield, > 20:1 dr).

Fig. S2 Picture of set-up for the gram scale reaction.

1.5 Synthesis of compound 8a

3a ($0.2 \mathrm{mmol}, 68.6 \mathrm{mg}$) was dissolved in DCM (4 mL), then m-CPBA ($0.4 \mathrm{mmol}, 70$ mg) was added and stirred at room temperature. After completion of the reaction as monitored by TLC, the solvent was removed under vacuo, and the residue was purified by silica gel column chromatography to afford $\mathbf{8 a}$.

1.6 Synthesis of compound 8 b

To the suspension of $\mathrm{LiAlH}_{4}(0.12 \mathrm{~g}, 3.2 \mathrm{mmol})$ in dry ether $(25 \mathrm{~mL})$ was added the solution of $\mathbf{3 a}(1.1 \mathrm{~g}, 3.2 \mathrm{mmol})$ in dry ether $(25 \mathrm{~mL})$ over a period of 10 minutes at 0 ${ }^{\circ} \mathrm{C}$ and let stir at the same temperature for another 1 h . The reaction mixture was then diluted with ether $(50 \mathrm{~mL})$ and small ice pieces were added carefully. The solid formed was filtered and the filtrate was evaporated to afford $\mathbf{8 b}$ as a colorless liquid, which was taken ahead to the next step without further purification.

1.7 Synthesis of compound 8c

$\mathbf{8 b}(0.2 \mathrm{mmol}, 60.2 \mathrm{mg})$ was dissolved in $\mathrm{DCM}(4 \mathrm{~mL})$ and placed in an ice bath, then $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{mmol}, 30.4 \mathrm{mg})$, DMAP ($0.3 \mathrm{mmol}, 37 \mathrm{mg}$), EDCI ($0.4 \mathrm{mmol}, 79.6 \mathrm{mg}$) and 4 -(bis(2-chloroethyl)amino)benzoic acid ($0.4 \mathrm{mmol}, 104.4 \mathrm{mg}$) were added respectively. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then allowed to react at room temperature. After completion of the reaction as monitored by TLC, the reaction was quenched by adding water, and then extracted with DCM and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuo, and the residue was purified by silica gel column chromatography to afford $\mathbf{8 c}$.

1.8 Synthesis of compound 8d

$\mathbf{8 b}(0.2 \mathrm{mmol}, 60.2 \mathrm{mg})$ was dissolved in DCM (4 mL) and placed in an ice bath, then $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{mmol}, 30.4 \mathrm{mg})$, DMAP ($0.3 \mathrm{mmol}, 37 \mathrm{mg}$), EDCI ($0.4 \mathrm{mmol}, 79.6 \mathrm{mg}$) and Cbz-Glu-Bn ($0.4 \mathrm{mmol}, 104.4 \mathrm{mg}$) were added respectively. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then allowed to react at room temperature. After completion of the reaction as monitored by TLC, the reaction was quenched by adding water, and then extracted with DCM and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuo, and the residue was purified by silica gel column chromatography to afford $\mathbf{8 d}$.

1.9 Substrate limitation

NR

NR

trace

NR

NR

NR

NR

NR

Scheme S1 Unsuccessful glycine derivatives and thiiranes (NR means no reaction).

1.10 Gram-scale reaction and synthetic application of the product

a) Gram-scale synthesis

b) Synthesis of sulfoxide-proline

c) Synthesis of unnatural amino alcohol

d) Modification of 4-(bis(2-chloroethyl)amino)benzoic acid with unnatural amino alcohol 8b

e) Modification of Cbz-Glu-Bn with unnatural amino alcohol 8b

Scheme S2 Gram-scale reaction and synthetic application of the product.

2. Optimization of Reaction Conditions

Table S1. Screening of light source ${ }^{a}$

Entry	Light Source	Yield (\%) $^{\boldsymbol{b}}$	dr^{c}
1	$450-470 \mathrm{~nm}$	66	$1: 1$
2	Blue LED	68	$5: 1$
3	Purple LED	58	$2: 1$
4	Green LED	62	$5: 1$
5	White LED	55	$2: 1$

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), Rh-6G ($2 \mathrm{~mol} \%$), $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mol} \%)$, DCE $(1.0 \mathrm{~mL})$, LED light irradiation under air at room temperature for 16 h , then $\mathbf{2 a}(0.15 \mathrm{mmol})$ and $\mathrm{HI}(15 \mathrm{~mol} \%)$ were added and stirred under air at room temperature. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S2. Screening of photocatalyst ${ }^{a}$

Entry	Photocatalyst	Yield (\%) ${ }^{\text {b }}$	$\mathrm{dr}^{\text {c }}$
$1^{\text {d }}$	Rh-6G	57	4:1
2^{e}	Rh-6G	55	3:1
3	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	31	5.3:1
4	Eosin Y	trace	-
5	Victoria blue B	63	3:1
6	Eosin B	trace	-
7	Malachite Green	trace	-
8	Rhodamine B	35	5.3:1

[^0]Table S3. Screening of solvents ${ }^{a}$

	 2a Solvent	tocatalyst RT, air	
		Yield (\%) ${ }^{\text {b }}$	
1	$\mathrm{CH}_{3} \mathrm{CN}$	68	$>20: 1$
2	DCE/ $/ \mathrm{CH}_{3} \mathrm{CN}(10 / 1)$	70	$>20: 1$
3	DCE/ $/ \mathrm{CH}_{3} \mathrm{CN}(15 / 1)$	78	$>20: 1$
4	DCE/ $/ \mathrm{CH}_{3} \mathrm{CN}(20 / 1)$	71	$>20: 1$
5	DCE/ $/ \mathrm{CH}_{3} \mathrm{CN}(25 / 1)$	82	$>20: 1$
6	DCE/CH3CN (30/1)	65	$>20: 1$
7	Toluene	ND	-
8	$\mathrm{CH}_{3} \mathrm{OH}$	trace	-
9	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	trace	-
10	DMF	trace	-
11	DMAc	trace	-
12	DMSO	ND	-
13	THF	ND	-
14	Diethyl ether	ND	-
15	DCM	ND	-
16	1,4-dioxane	trace	-
17	CHCl_{3}	58	$>20: 1$
18	TFA	ND	-
19	EtOAc	35	1.7:1
20^{d}	DCE/ $\mathrm{CH}_{3} \mathrm{CN}(25 / 1)$	44	$>20: 1$
21^{e}	DCE/ $/ \mathrm{CH}_{3} \mathrm{CN}(25 / 1)$	65	> 20:1
22^{f}	DCE/CH3CN (25/1)	70	9:1

[^1]Table S4. Screening of Lewis acid ${ }^{a}$

	$+$ 2a		
Entry	Lewis acid	Yield (\%) ${ }^{\text {b }}$	$\mathrm{dr}^{\text {c }}$
$1^{\text {d }}$	$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	79	> 20:1
$2{ }^{e}$	FeSO $\mathbf{4}^{\mathbf{7}} \mathbf{7} \mathbf{2} \mathbf{O}$	86	$>20: 1$
$3 f$	FeSO ${ }_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	67	$>20: 1$
4	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	trace	-
5	$\mathrm{Cu}(\mathrm{OTf})_{2}$	39	$>20: 1$
6	$\mathrm{Fe}(\mathrm{OTf})_{2}$	48	$>20: 1$
7	$\mathrm{Ce}(\mathrm{OTf})_{3}$	53	$>20: 1$

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), Rh-6G ($2 \mathrm{~mol} \%$), Lewis acid (3 mol\%), DCE/ $\mathrm{CH}_{3} \mathrm{CN}(25 / 1)$
$(1.0 \mathrm{~mL}), 18 \mathrm{~W}$ blue LED light irradiation under air at room temperature for 16 h , then $\mathbf{2 a}(0.15$ $\mathrm{mmol})$ and $\mathrm{HI}(15 \mathrm{~mol} \%)$ were added and stirred under air at room temperature. ${ }^{\boldsymbol{b}}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} 10 \mathrm{~mol} \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was used. ${ }^{e} 20 \mathrm{~mol} \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was used. ${ }^{f} 30$ $\mathrm{mol} \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was used.

Table S5. Screening the equivalent of $\mathbf{2 a}{ }^{\text {a }}$

Entry	Equivalent	Yield (\%) $^{\mathbf{b}}$	$\mathrm{dr}^{\boldsymbol{c}}$
1	1.0	43	$60: 40$
2	1.2	48	$63: 37$
$\mathbf{3}$	$\mathbf{1 . 5}$	$\mathbf{8 6}$	$\mathbf{8 2 0 : 1}$

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), Rh-6G ($2 \mathrm{~mol} \%$), $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%), \mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}$ (25/1), 18 W blue LED light irradiation under air at room temperature for 16 h , then 2a and $\mathrm{HI}(15$ $\mathrm{mol} \%$) were added and stirred under air at room temperature. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S6. Screening the equivalent of $\mathrm{HI}{ }^{\text {a }}$

Entry	Equivalent	Yield (\%) $^{\mathbf{b}}$	$\mathrm{dr}^{\boldsymbol{c}}$
1	0.05	44	$89: 11$
2	0.1	55	$95: 5$
$\mathbf{3}$	$\mathbf{0 . 1 5}$	$\mathbf{8 6}$	$\mathbf{8 2 0 : 1}$
4	0.25	66	$92: 8$

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), Rh-6G ($2 \mathrm{~mol} \%$), $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%), \mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}$ $(25 / 1)(1 \mathrm{~mL}), 18 \mathrm{~W}$ blue LED light irradiation under air at room temperature for 16 h , then $\mathbf{2 a}(0.15$ mmol) and HI were added and stirred under air at room temperature. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

3. Mechanistic Investigation

3.1 Control experiments

a)

1a
b)

1a

1a

 TEMPO (5 eq)
 DABCO (2 eq)

6a, 92%

6a, NR
c)

6a, 38 \%
d)

1a

benzoquinone (2 eq)

6a, NR
e)

1a

6b, 55 \%

6a

3a, 91\%

Scheme S3 Control experiment.

3.2 Cyclic voltammetry experiments

Cyclic Voltammetry was performed on a CH Instruments Electrochemical Workstation model CHI760E. A solution of $\mathbf{1 a}$ or $\mathbf{1 a - F e S O} \mathbf{4}_{4} \cdot \mathbf{7 \mathbf { H } _ { 2 }} \mathbf{O}$ in $\operatorname{DCE}\left(2 \times 10^{-7} \mathrm{M}\right)$ was tested with $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a saturated calomel electrode reference electrode. Scan rate $=0.05 \mathrm{~V} / \mathrm{s}, 1$ sweep segments, a sample interval of 0.001 V.

Fig. S3 Cyclic Voltammetry of $\mathbf{1 a}$ and $\mathbf{1 a - F e S O} \mathbf{4}_{\mathbf{4}} \cdot \mathbf{7 \mathbf { H } _ { \mathbf { 2 } } \mathrm { O }}$ in DCE

3.3 UV/Vis absorption spectra

The UV/Vis absorption spectra were recorded in 1 cm path quartz cuvettes by using a Varian Cary 300 Conc UV/Vis spectrometer. Sample preparation method: 1a (0.125 mmol) was dissolved in 10 mL DCE, then the solution was divided into two parts, $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$ was added to one of them and ultrasonic treatment was performed for 60 min .

Fig. S4 The UV-Vis spectra of $\mathbf{1 a}$ and $\mathbf{1 a}+\mathbf{F e S O}_{4} \cdot \mathbf{7 \mathbf { H } _ { 2 }} \mathbf{O}$

3.4 EPR spectra

Fig. S5 EPR spectra of $\mathbf{1 a}(0.1 \mathrm{M})$, $\mathrm{Rh}-6 \mathrm{G}\left(1 \times 10^{-3} \mathrm{M}\right)$ and DMPO $(0.05 \mathrm{M})$ or TEMP $(0.5 \mathrm{M})$ in air-saturated DCE upon irradiation with blue LED for 100 s . These results illustrate that $\mathrm{O}_{2}{ }^{-}$generated from molecular oxygen is the primary active species in this photocatalytic oxidative reaction.

3.5 Stern-Volmer fluorescence quenching study

DCE was degassed with a stream of argon for 30 min . Rh-6G was dissolved in 10.0 mL DCE to prepare a $1.0 \times 10^{-7} \mathrm{M}$ solution. 0.1 mL of this solution was added to each of a set of 6 volumetric flasks (10 mL). Subsequently, the solution of quencher $\mathbf{1 a}$ in DCE ($1.0 \mathrm{~mL}, 2 \times 10^{-3} \mathrm{M}$) was added in increasing amounts to the volumetric flasks, emission intensities were recorded.

Fig. S6 Changes in the fluorescence spectra

Fig. S7 Stern-Volmer Plot

4. Computational Study

4.1 Computational methods

All calculations were carried out with the Gaussian 09 D. 01 programs. ${ }^{3}$ Ground state geometry were fully optimized by using density functional theory (DFT) ${ }^{4}$ and the B3LYP5-D3 method with the 6-31G(d,p) basis set for C, H, O, N, S atoms and Lan12DZ for Fe atom. Frequency calculations have been performed. The 3D molecular structures were generated using the CYL-view. ${ }^{6}$ Using this geometry (singlet and triplet), single point time dependent density functional theory (TD-DFT) calculation was then performed using the CAM-B3LYP-D3/6-31G(d,p)/Lan12DZ level of theory. The effect of solvent is considered from Truhlar and co-workers' universal solvation model (SMD$\left.{ }^{7}-\mathrm{DCE}\right)$.

4.2 Optimized structure of $\mathbf{1 a}+\mathbf{F e S O}_{4}$

$$
\text { Optimized structure of 1a and } 1 \mathrm{a}+\mathrm{FeSO}_{4}
$$

	$\mathbf{1 a}$	$\mathbf{F e S O}_{\mathbf{4}}$	$\mathbf{1 a}+\mathbf{F e S O}_{\mathbf{4}}$	$\Delta \mathbf{E}$	$\Delta \mathbf{E} /$ kcal mol $^{\mathbf{1}}$
ZPE	-708.19	-822.16	-1530.46	-0.11	-69.03
Enthalpy	-708.17	-822.15	-1530.44	-0.12	-75.30
Gibbs	-708.24	-822.19	-1530.52	-0.09	-56.48

* Unmarked energies in the table are given in Hartree.
4.3 Theory predicts UV-Vis spectrum of $\mathbf{1 a}$ and $1 \mathrm{a}+\mathrm{FeSO}_{4}$

Fig. S8 Theory predicts UV/Vis absorption spectra
4.4 The relative energies of the cis- and trans-products

trans ($0.0 \mathrm{kcal} / \mathrm{mol}$)

cis ($4.0 \mathrm{kcal} / \mathrm{mol}$)

4.5 The Cartesian Coordinates

1a
01
C
-3.66387600
0.15410200
0.06597200

C
-3.08731000 $1.43408700 \quad 0.07533000$
C
-1.70875800
$1.58472400 \quad 0.01303900$
C
$-0.85608100 \quad 0.45661700 \quad-0.06072800$
C
$-1.44624900 \quad-0.82086400 \quad-0.06985900$
C
$-2.84008100 \quad-0.97090400 \quad-0.00686800$
H
-3.74322400
$2.29510400 \quad 0.13194900$

H	-1.27449300	2.58051000	0.02084500
H	-0.82962700	-1.71078000	-0.12524100
H	-3.25663600	-1.97088700	-0.01602000
O	-5.06197100	0.12069800	0.13277100
C	-5.71372200	-1.17210200	0.12935000
H	-5.40980200	-1.77755700	0.99358700
H	-6.78103400	-0.95912700	0.18909600
H	-5.49995400	-1.72754800	-0.79348800
C	2.86859800	0.09777100	-0.25005500
O	3.16605400	1.29857100	-0.21559000
O	3.78120400	-0.91395200	-0.33827000
C	5.22128100	-0.53976400	-0.37540100
H	5.33049400	0.33280000	-1.02514900
H	5.69389700	-1.40997600	-0.83233300
C	5.73648800	-0.26384900	1.02952100
H	5.55948700	-1.12475100	1.68152400
H	6.81445900	-0.06764800	0.99972100
H	5.23873900	0.61295600	1.45294300
N	0.51986500	0.63691900	-0.12095500
H	0.90906900	1.56794900	-0.10912000
C	1.46074000	-0.44890400	-0.20277800
H	1.30803800	-1.07451900	-1.09793400
H	1.39306200	-1.13297100	0.65987300
1a $+\mathrm{FeSO}_{4}$			
05			
C	4.01031600	-0.44021500	-0.05643900
C	3.18058200	-1.57362800	0.01259600
C	1.83889600	-1.44090000	0.34105400
		S20	

C	1.30610600	-0.16408100	0.61300800
C	2.12635900	0.96402000	0.53589300
C	3.48330800	0.82915700	0.20162100
H	3.61241500	-2.54414300	-0.19840500
H	1.18250000	-2.30372100	0.37368300
H	1.73953000	1.95732800	0.73892100
H	4.10335000	1.71519100	0.15301200
O	5.33498500	-0.69102700	-0.39114000
C	6.25669300	0.42739800	-0.48021300
H	6.34356800	0.94874700	0.48124100
H	7.21618900	-0.01343200	-0.74741800
H	5.94646900	1.13768200	-1.25677500
C	-0.96078200	2.13304500	0.39727600
O	-1.15525800	1.75870900	-0.79407800
O	-1.04992800	3.40020200	0.78258500
C	-1.49545400	4.44140700	-0.21573100
H	-0.96882000	4.24218300	-1.15162000
H	-1.13847900	5.36526500	0.23728900
C	-3.00532700	4.39457600	-0.37259100
H	-3.50181800	4.52830400	0.59264000
H	-3.32527800	5.20325800	-1.03902900
H	-3.32452500	3.44514700	-0.81136600
N	-0.10767200	-0.08543500	0.90702100
H	-0.45996400	-0.94351900	1.37706700
Fe	-1.24541400	-0.31260000	-0.99211500
S	-2.23017300	-2.54039800	0.16083600
O	-1.34311400	-2.57710400	1.55743900
O	-1.07380300	-2.24528000	-1.16087400
O	-2.89693700	-0.92042600	0.00359600

C	-0.64675600	1.14353100	1.50063700
H	0.00714300	1.60362100	2.24837700
H	-1.59918600	0.88482200	1.98012000
O	-3.26338100	-3.74264700	-0.11851900

5. X-ray Crystal Structure for Compound $\mathbf{3 m}$ and 8 a

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{INO}_{2} \mathrm{~S}$
Formula weight	439.29
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P2 1_{1} c
a/ $/ \AA$	8.96313(11)
b/Å	6.06546(8)
c/Å	32.0458(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	91.1858(10)
$\gamma{ }^{\circ}$	90
Volume/ $\mathbf{A}^{\mathbf{3}}$	1741.81(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.675
μ / mm^{-1}	15.635
F(000)	872.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.08 \times 0.07$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	5.516 to 154.948
Index ranges	$-11 \leq \mathrm{h} \leq 11,-7 \leq \mathrm{k} \leq 7,-24 \leq 1 \leq 40$
Reflections collected	10301
Independent reflections	$3442\left[\mathrm{R}_{\text {int }}=0.0471, \mathrm{R}_{\text {sigma }}=0.0401\right]$
Data/restraints/parameters	3442/0/209
Goodness-of-fit on \mathbf{F}^{2}	1.064
Final R indexes [$\mathrm{I}>=\mathbf{2} \boldsymbol{\sigma}$ (I)]	$\mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.1161$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0421, \mathrm{wR}_{2}=0.1172$
Largest diff. peak/hole / e \AA^{-3}	1.12/-1.38

Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	338.51
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P21/n
a / \AA	6.61353(9)
b/Å	27.3767(4)
c/Å	10.14913(14)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	104.4142(14)
$\gamma 1^{\circ}$	90
Volume/ $\mathbf{A}^{\mathbf{3}}$	1779.73(4)
Z	4
ρ calcg/ $/ \mathrm{cm}^{3}$	1.263
μ / mm^{-1}	1.813
F(000)	677.0
Crystal size/mm ${ }^{3}$	$0.18 \times 0.16 \times 0.12$
Radiation	$\mathrm{CuK} a(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	6.458 to 155.174
	$-6 \leqslant \mathrm{~h} \leqslant 8,-33 \leqslant \mathrm{k} \leqslant 31,-12 \leqslant 1$
Index ranges	
	$\leqslant 12$
Reflections collected	11436

Independent reflections
Data/restraints/parameters
Goodness-of-fit on \mathbf{F}^{2}
Final R indexes $[I>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole /e \AA^{-3}
$3576[$ Rint $=0.0424$, Rsigma $=$ 0.0420]

3576/0/229
1.068
$\mathrm{R} 1=0.0406, \mathrm{wR} 2=0.1101$
$\mathrm{R} 1=0.0437, w R 2=0.1125$
0.41/-0.51

6. Product Data

Ethyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3a). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Colorless oily liquid, 83 \% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.30-4.17 (m, 2H), $3.98(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=11.2,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,152.3,142.6$, 138.8, 128.7, 127.6, 126.5, 115.0, 114.9, 66.0, 64.1, 61.7, 55.7, 39.3, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$344.1315, found 344.1316.

3b
Ethyl 3,4-diphenylthiazolidine-2-carboxylate (3b). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Light red oily liquid, 58% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H})$, 6.72-6.68 (m, 1H), 6.50-6.45 (m, 2H), $5.39(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.16$ $(\mathrm{m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=11.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=11.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.7, 144.4, 142.3, 129.4, 128.7, 127.7, 126.4, 118.1, 113.6, 65.9, 63.6, 61.8, 39.3, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}$
$\left(\mathrm{M}+\mathrm{H}^{+}\right) 314.1209$, found 314.1210.

Ethyl 4-phenyl-3-(p-tolyl)thiazolidine-2-carboxylate (3c). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 62% yield, $>$ 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.19$ (m, 5H), 6.90-6.82 (m, 2H), 6.37-6.29 (m, 2H), $5.31(\mathrm{~s}, 1 \mathrm{H}), 5.22$ (dd, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.93$ (dd, $J=$ $11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,142.5,142.2,129.9,128.7,127.6,127.1,126.4$, 113.7, 65.8, 63.7, 61.7, 39.3, 20.3, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 328.1366, found 328.1365 .

3d
Ethyl 3-(4-ethylphenyl)-4-phenylthiazolidine-2-carboxylate (3d). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 71% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=11.3,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,142.6,142.4,133.6,128.74,128.69,127.6,126.5,113.6$, 65.9, 63.7, 61.7, 39.3, 27.8, 15.7, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 342.1522 , found 342.1524 .

$3 e$
Ethyl 3-(4-isopropylphenyl)-4-phenylthiazolidine-2-carboxylate (3e). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 72% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.93-6.86(\mathrm{~m}$, $2 \mathrm{H}), 6.36-6.30(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.92$ (dd, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=11.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.9, 142.7, 142.4, 138.2, 128.7, 127.6, 127.3, 126.5, 113.5, 66.0, 63.7, 61.7, 39.3, 33.1, 24.2, 24.8, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 356.1679$, found 356.1680 .

3f
Ethyl 3-(4-butylphenyl)-4-phenylthiazolidine-2-carboxylate (3f). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 48% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H})$, 6.43-6.36 (m, 2H), $5.37(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}$, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=11.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 5 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.7,142.5,142.2,132.2,129.1,128.5,127.4,126.3,113.4,65.8,63.6,61.6,39.2$, 34.5, 33.7, 22.3, 14.1, 13.9. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 370.1835$, found 370.1830 .

3 g
Ethyl 3-(4-(tert-butyl)phenyl)-4-phenylthiazolidine-2-carboxylate (3g). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 30% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.11(\mathrm{~m}$, $2 \mathrm{H}), ~ 6.45-6.39(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.01$ (dd, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=11.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,142.6,141.9,140.4,128.6,127.5,126.3$, 126.1, 113.1, 65.9, 63.6, 61.6, 39.2, 33.6, 31.4, 14.1. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 370.1835$, found 370.1832 .

3h
Ethyl 3-(4-ethoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3h). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 81% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 2 \mathrm{H})$, 6.69-6.59 (m, 2H), 6.43-6.33 (m, 2H), $5.31(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-$ 4.07 (m, 2H), $3.91(\mathrm{dd}, J=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=$ $11.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,151.6,142.6,138.7,128.7,127.6,126.5,115.7,115.0,66.0$, 64.1, 63.9, 61.7, 39.3, 15.1, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 358.1471, found 358.1474 .

Ethyl 3-(4-phenoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3i). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 73% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18$ (d, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H})$, 6.79-6.73 (m, 2H), 6.42-6.37 (m, 2H), $5.31(\mathrm{~s}, 1 \mathrm{H}), 5.25-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m}$, $2 \mathrm{H}), 3.94(\mathrm{dd}, J=11.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,158.5,148.3,142.2,140.9,129.5,128.7$, 127.6, 126.3, 122.3, 120.8, 117.6, 114.5, 66.1, 63.8, 61.7, 39.2, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$406.1393, found 406.1388.

3j
Ethyl 3-(4-fluorophenyl)-4-phenylthiazolidine-2-carboxylate (3j). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 91% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), ~ 6.87-6.79(\mathrm{~m}, 2 \mathrm{H})$, 6.45-6.38 (m, 2H), 5.36 (s, 1H), $5.26(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.99$ (dd, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=11.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,156.1(\mathrm{~d}, J=237.8 \mathrm{~Hz}), 142.1,140.9(\mathrm{~d}, J=1.9 \mathrm{~Hz})$, $128.8,127.8,126.4,115.9(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 66.2,64.0,61.9,39.3$, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 332.1115$, found 332.1116 .

Ethyl 3-(4-chlorophenyl)-4-phenylthiazolidine-2-carboxylate (3k). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 66% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.31-7.19 (m, 5H), 7.18-7.12 (m, 2H), 6.33-6.27 (m, 2H), $5.29(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}$,
$J=11.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=11.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,143.4,141.7,132.1,128.8,127.8,126.3,115.2,110.3,66.0$, 63.6, 62.0, 39.2, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 348.0820$, found 348.0821 .

Ethyl 3-(4-bromophenyl)-4-phenylthiazolidine-2-carboxylate (3i). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 43% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H})$, 6.38-6.32 (m, 2H), $5.30(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}$, $J=11.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,143.0,141.8,129.3,128.8,127.8,126.4,123.1,114.7,66.0$, 63.6, 61.9, 39.2, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$392.0314, found 392.0318 .

3m
Ethyl 3-(4-iodophenyl)-4-phenylthiazolidine-2-carboxylate (3m). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 51% yield, $>20: 1 \mathrm{dr} .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H})$, 6.21-6.19 (m, 2H), $5.29(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.12(\mathrm{~m}, 7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.95 (dd, $J=11.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=11.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,144.0,141.6,138.0,128.8,127.9,126.3,115.9$, 79.7, 65.9, 63.4, 62.0, 39.2, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{INO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 440.1076, found 440.1076.

3n
Ethyl 3-(3-fluoro-4-methylphenyl)-4-phenylthiazolidine-2-carboxylate (3n). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 46% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{t}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.11(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.16$ (m, 2H), 4.00 (dd, $J=11.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dd, $J=11.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (d, $J=$ $1.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,161.9$ (d, J $=243.3 \mathrm{~Hz}), 144.0(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 142.0,131.9(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 128.8,127.8,126.4$, 113.7 (d, $J=17.8 \mathrm{~Hz}$), 109.1 (d, $J=2.8 \mathrm{~Hz}$), 101.0 (d, $J=28.0 \mathrm{~Hz}$), 66.0, 63.6, 61.9, 39.2, 14.3, $13.6(\mathrm{~d}, J=3.1 \mathrm{~Hz})$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 346.1272$, found 346.1274.

Benzyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3o). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 73% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.17(\mathrm{~m}, 10 \mathrm{H}), 6.65-6.56(\mathrm{~m}$, $2 \mathrm{H}), ~ 6.44-6.34(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.22-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}$, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{~s}, 3 \mathrm{H}), 2.82$ (dd, $J=11.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,152.3,142.5,138.7,135.6,128.69,128.67,128.4,128.2,127.6$, 126.4, 115.0, 114.9, 67.2, 66.0, 64.2, 55.7, 39.3. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$406.1471, found 406.1474.

Butyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3p). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 77% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.16(\mathrm{~m}, 5 \mathrm{H}), ~ 6.68-6.59(\mathrm{~m}, 2 \mathrm{H})$, 6.44-6.34 (m, 2H), 5.32 (s, 1H), 5.19 (dd, $J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.08$ (m, 2H), 3.91 (dd, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{dd}, J=11.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,152.7$, 142.6, 138.8, 128.7, 127.6, 126.5, 114.93, 114.91, 66.0, 65.5, 64.2, 55.7, 39.3, 30.7, 19.1, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 372.1628$, found 372.1625 .

Cyclopropylmethyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3q). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Yellow solid, 86 \% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.16(\mathrm{~m}, 5 \mathrm{H})$, 6.67-6.60 (m, 2H), 6.43-6.37 (m, 2H), 5.33 (s, 1H), 5.19 (dd, $J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-$ 3.83 (m, 3H), 3.61 (s, 3H), 2.83 (dd, $J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.20(\mathrm{~s}, 1 \mathrm{H}), 1.13-1.01$ (m, $1 \mathrm{H}), 0.53-0.45(\mathrm{~m}, 2 \mathrm{H}), 0.25-0.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0$, $152.2,142.6,138.8,128.7,127.6,126.5,114.94,114.88,70.3,66.0,64.2,55.7,39.3$, 9.9, 3.4, 3.4. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 370.1471$, found 370.1475 .

Cyclobutylmethyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3r). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 72 \% yield, > 20:1 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.27-7.16 (m, 5H),
6.67-6.61 (m, 2H), 6.42-6.36 (m, 2H), $5.33(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-$ $4.02(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=11.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{dd}, J=11.2,1.5 \mathrm{~Hz}$, 1 H), 2.56 (hept, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01-1.89 (m, 2H), 1.88-1.59 (m, 4H), 1.39-1.17 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,152.3,142.6,138.8,128.7,127.6,126.5$, 114.94, 114.90, 69.2, 66.0, 64.2, 55.7, 39.3, 34.2, 24.7, 24.7, 18.5. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 384.1628$, found 384.1627 .

Cyclohexyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3s). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 80 \% yield, $>20: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.75-$ $6.68(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.82$ (m, 1H), 4.00 (dd, $J=11.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=11.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.90-1.82 (m, 1H), 1.81-1.68 (m, 2H), 1.65-1.49 (m, 3H), 1.45-1.28 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,152.2,142.6,138.8,128.6,127.5,126.4,114.89,114.85$, $73.8,66.0,64.4,55.6,39.2,31.5,31.1,25.3,23.5,23.3$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$398.1784, found 398.1790.

Cycloheptyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate (3t). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 78 \% yield, $>20: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.68-$ 6.59 (m, 2H), 6.43-6.34 (m, 2H), 5.28 (s, 1H), 5.16 (dd, $J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88$ (m, 1H), $3.91(\mathrm{dd}, J=11.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=11.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.31(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,152.2$, $142.7,138.9,128.7,127.6,126.4,114.90,114.87,76.6,66.1,64.5,55.7,39.3,33.9$,
33.5, 28.30, 28.29, 23.0, 22.8. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$412.1941, found 412.1946.

$3 u$
N-cyclohexyl-3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxamide
(3u).
Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 60% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.16-7.10 (m, 2H), 6.72-6.66 (m, 2H), 6.52-6.46 (m, 2H), 6.17 (d, J=8.7 Hz, 1H), 5.44 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{dd}, J=11.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=12.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.43-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.5,152.8,140.4,138.0,128.5,127.7,126.9,116.2,114.8,66.8,66.7,55.6,48.3$, 38.5, 33.1, 32.8, 25.5, 24.9, 24.7. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 397.1944, found 397.1949.

2-(((E)-3,7-dimethylocta-2,6-dien-1-yl)oxy)-1-((2R,4S)-3-(4-methoxyphenyl)-4-phenylthiazolidin-2-yl)ethan-1-one (3v). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 78% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.74-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.48-6.42(\mathrm{~m}, 2 \mathrm{H}), 5.40-$ $5.29(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.59(\mathrm{~m}, 2 \mathrm{H}), 3.98$ (dd, $J=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}$, $4 \mathrm{H}), 1.70(\mathrm{dd}, J=3.6,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.62(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,152.3,143.4,142.6,138.8,132.0,128.7,127.6,126.5,123.8,117.8$, $115.0,114.9,66.0,64.1,62.5,55.7,39.6,39.3,26.4,25.8,17.8,16.7$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 452.2254$, found 452.2255.

3w
((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5' -dIpyran-3a-yl)methyl
(2R,4S)-3-(4-methoxyphenyl)-4-phenylthiazolidine-2carboxylate (3w). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 56% yield, $14: 11 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-$ $7.10(\mathrm{~m}, 5 \mathrm{H}), 6.75-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.35(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.20$ $(\mathrm{m}, 2 \mathrm{H}), 4.33-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=13.0$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (s, 3H), 2.85 (dd, $J=11.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.51 (d, $J=10.9 \mathrm{~Hz}, 3 \mathrm{H}$), $1.46-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,152.5$, 142.3, 138.5, 128.7, 127.6, 126.5, 115.4, 115.1, 115.0, 114.9, 109.3, 109.0, 101.5, 70.9, $70.6,70.2,66.7,66.0,63.9,61.5,55.7,39.3,26.7,26.1,25.6,24.3$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{8} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$558.2156, found 558.2158.

3x
Ethyl 4-phenyl-3-(o-tolyl)thiazolidine-2-carboxylate (3x). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 40% yield, $>$ $20: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.27-7.06 (m, 5H), 6.96 (dtd, $J=18.4,7.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.52$ (dd, $J=8.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 ($\mathrm{s}, 1 \mathrm{H}$), 4.21-3.99 (m, 2H), $3.58(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dd, $J=10.0,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4$, $142.2,140.0,134.3,130.7,128.4,127.6,127.5,125.8,125.0,124.6,66.5,64.3,61.0$, 38.9, 18.2, 14.0. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 350.1185$, found 350.1184 .

4a
Ethyl (3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carbonyl)glycinate (4a). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=16 / 1$ to $6 / 1$ as eluent). White solid, 70% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21$ (m, 1H), 7.17-7.12 (m, 2H), 6.88 (dd, $J=6.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.54-$ 6.48 (m, 2H), 5.47 (dd, $J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.82$ (m, 2H), $2.95(\mathrm{dd}, J=11.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,169.7,152.9,140.4,137.9,128.5,127.7,127.0,116.2,114.8,66.9$, 66.4, 61.7, 55.6, 41.4, 38.6, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 401.1530, found 401.1531.

4b
Methyl (3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carbonyl)-L-alaninate (4b). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=16 / 1$ to $6 / 1$ as eluent). White solid, 50% yield, $5: 3 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.64(\mathrm{~m}, 2 \mathrm{H})$, 6.56-6.46 (m, 2H), $5.50-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.88-$ 3.77 (m, 1H), 3.76 (s, 2H), $3.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=11.3,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,170.9,153.0,140.4,137.9,128.5,127.7,126.3,116.3,114.8,66.9,66.6,55.6$, 52.7, 48.1, 38.5, 18.5. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 401.1530$, found 401.1526.

4c
Methyl (3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carbonyl)-L-valinate (4c). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=16 / 1$ to $6 / 1$ as eluent). White solid, 70% yield, $1: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.27-7.22 (m, 2H), 7.26$7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.45(\mathrm{~m}, 1 \mathrm{H}), ~ 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), ~ 6.57-6.49(\mathrm{~m}$, $2 \mathrm{H}), 5.54-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.76(\mathrm{~m}$, $1 \mathrm{H}), 3.75$ (s, 2H), 3.68 (d, $J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.59$ (s, 1H), 2.97-2.93 (m, 1H), 2.27-2.17 $(\mathrm{m}, 1 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.80-0.61(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$, $171.9,171.8,171.0,153.02,152.98,140.5,137.9,137.8,128.5,127.7,126.96,126.95$, $116.5,116.2,114.9,114.8,66.9,66.7,66.5,57.1,57.0,55.7,55.6,52.4,52.2,38.7$, 38.4, 31.7, 31.6, 29.8, 19.2, 19.1, 17.9, 17.3. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 429.1843$, found 429.1840 .

Methyl (3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carbonyl)-L-leucinate (4d). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=16 / 1$ to $6 / 1$ as eluent). White solid, 58% yield, $1: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H})$, 4.71-4.60 (m, 1H), 3.90-3.68 (m, 3H), 3.66 (s, 3H), 3.58 ($\mathrm{s}, 2 \mathrm{H}), 2.95-2.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{dd}, J=6.0$, $1.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.4,172.7,171.6,171.0,152.88,152.86,140.4,140.3,137.8,137.7,128.4$, $127.60,127.57,126.9,116.4,116.1,114.7,114.6,66.8,66.7,66.42,66.37,55.6,55.5$, $52.4,52.2,50.7,50.5,41.6,41.5,38.6,38.4,25.0,24.6,22.9,22.8,21.9,21.6$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 443.1999$, found 443.2004.

4e
Methyl ((2R,4R)-3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carbonyl)-Lmethioninate (4e). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). White solid, 68% yield, $1: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-$ 7.22 (m, 3H), 7.17-7.14 (m, 2H), 6.75-6.66 (m, 2H), 6.56-6.47 (m, 2H), 5.49 (t, $J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H})$, 2.14-1.98 (m, 3H), 1.97-1.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,171.9$, $171.8,171.2,153.0,140.5,140.4,137.9,137.8,128.5,127.73,127.70,126.93,126.92$, $116.5,116.0,114.9,114.8,66.8,66.7,66.44,66.35,55.7,55.6,52.8,52.6,51.8,51.6$, 38.7, 38.5, 31.3, 31.0, 30.1, 29.7, 15.7, 15.2. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 461.1563$, found 461.1568 .

4f
Ethyl 3-(4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl)-4-phenylthiazolidine-2-carboxylate (4f). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32$ to $8 / 1$ as eluent). White solid, 40% yield, $>20: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{dd}, J=8.3,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{dd}, J=$ 8.8, 2.2 Hz, 2H), 5.35 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46$ (p, $J=6.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.16$ (m, 2H), 3.99 (dd, $J=11.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (d, $J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.29(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.8,172.6,171.7,143.4,142.3,130.3,128.7,127.7$, 126.4, 125.0, 113.7, 80.0, 65.9, 63.6, 61.8, 54.6, 52.3, 39.3, 29.8, 28.4, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 515.2210$, found 515.2206.

Ethyl 4-(4-chlorophenyl)-3-(4-methoxyphenyl)thiazolidine-2-carboxylate
Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Yellow solid, 70% yield, $>20: 1 \mathrm{dr} .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), 7.28 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.75-6.68 (m, 2H), 6.52-6.44 (m, 2H), 5.12 (s, 1H), 5.00 (dd, $J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.43$ (dd, $J=11.7$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=11.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,153.0,140.1,139.8,133.5,129.2,128.2,116.0,114.6,69.1$, 67.3, 62.0, 55.7, 40.1, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 378.0925$, found 378.0922.

Ethyl (4-(4-chlorophenyl)-3-(4-methoxyphenyl)thiazolidine-2-carbonyl)glycinate (5b). Purified by flash column chromatography (silica gel, PE/EA $=32 / 1$ to $8 / 1$ as eluent). Yellow solid, 57% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.48$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.82$ (m, 2H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=11.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.7,169.8,153.0,139.0,137.6,133.5,128.7,128.4$, 116.2, 114.9, 66.20, 66.19, 61.8, 55.6, 41.5, 38.5, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 457.0959$, found 457.0960.

5c Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). Yellow solid, 69% yield, $>20: 1 \mathrm{dr} .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.17 (m, 2H), 6.76-6.68 (m, 2H), 6.48-6.39 (m, 2H), $5.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=11.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.30(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,152.4,141.7,138.4,131.8,128.2,121.4,114.9,65.4,64.0,61.8,55.7$, 39.1, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$422.0420, found 422.0423.

5d
Ethyl (4-(4-bromophenyl)-3-(4-methoxyphenyl)thiazolidine-2-carbonyl)glycinate ($\mathbf{5 d}$). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). Yellow solid, 53% yield, $>20: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.38$ (m, 2H), 7.06-6.99 (m, 2H), 6.81 (dd, $J=6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.52-$ $6.44(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.14(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.81(\mathrm{~m}$, $2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=11.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.6,169.7,153.0,139.5,137.6,131.7,128.7,121.6,116.2$, $114.9,66.24,66.19,61.8,55.6,41.4,38.4,14.2$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 479.0635$, found 479.0636 .

5 e
Ethyl 4-([1,1'-biphenyl]-4-yl)-3-(4-methoxyphenyl)thiazolidine-2-carboxylate (5e). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Yellow solid, 87% yield, $>20: 1 \mathrm{dr}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 4H), 7.45-7.39 (q, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.51$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{dd}$, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,152.3,141.6,140.9,140.5,138.8,128.9$, 127.44, 127.37, 127.2, 126.9, 114.99, 114.96, 65.8, 64.1, 61.7, 55.7, 39.3, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 420.1628$, found 420.1630 .

$5 f$

Ethyl

(4-([1,1'-biphenyl]-4-yl)-3-(4-methoxyphenyl)thiazolidine-2-carbonyl)
glycinate (5f). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). Yellow solid, 52% yield, $>20: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-$ 7.48 (m, 4H), 7.45-7.38 (m, 2H), 7.37-7.29 (m, 1H), 7.21 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (dd, $J=6.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, 3 H), 3.00 (dd, $J=11.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.8,169.8,152.9,140.7,140.6,139.3,137.9,128.9,127.5,127.4,127.24$, $127.15,116.2,114.9,66.6,66.4,61.8,55.6,41.5,38.7,14.3$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 477.1843$, found 477.1848.

Ethyl 3-(4-methoxyphenyl)-4-(p-tolyl)thiazolidine-2-carboxylate (5g). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Colourless oil, 82% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=$ $10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J$ $\left.=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.5,152.9,140.6,138.1,137.5,129.7,126.7,116.0,114.6,69.6,67.4,61.9,55.7$, 40.3, 21.3, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 380.1291$, found 380.1292.

5h
Ethyl (3-(4-methoxyphenyl)-4-(p-tolyl)thiazolidine-2-carbonyl)glycinate
Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). White solid, 66% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.48(\mathrm{~m}, 2 \mathrm{H})$, 5.44 (dd, $J=6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.92-$ 3.81 (m, 2H), 3.68 (s, 3H), 2.92 (dd, $J=11.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,169.7,152.9,138.0,137.4,137.3,129.2$, 126.9, 116.3, 114.8, 66.7, 66.4, 61.7, 55.6, 41.5, 38.7, 21.2, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 415.1686$, found 415.1691.

$5 i$
Ethyl 3-(4-methoxyphenyl)-4-(m-tolyl)thiazolidine-2-carboxylate (5i). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 85% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.26$ (m, 2H), 7.21 (dd, $J=$ $16.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=7.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}$, $J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,152.2,142.6,138.8,138.3,128.5,128.4,127.0,123.6,114.9,66.0$, 64.1, 61.6, 55.6, 39.3, 21.7, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 358.1471, found 358.1472 .

Ethyl (3-(4-methoxyphenyl)-4-(m-tolyl)thiazolidine-2-carbonyl)glycinate

Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). White solid, 61% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=6.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03-6.95 (m, 2H), 6.83-6.76 (m, 2H), $5.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 4.59-4.41$ $(\mathrm{m}, 3 \mathrm{H}), 4.23-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=11.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,169.8,152.8,140.4$, $138.1,138.0,128.5,128.3,127.5,124.1,116.1,114.8,66.8,66.3,61.7,55.6,41.5,38.6$, 21.7, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 415.1686$, found 415.1687 .

5k
Ethyl 4-(4-ethoxyphenyl)-3-(4-methoxyphenyl)thiazolidine-2-carboxylate (5k). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 82% yield, $>20: 1 \mathrm{dr}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.34$ $(\mathrm{s}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 2.86(\mathrm{dd}, J=11.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,158.4,152.2,138.8,134.3,127.5,115.0,114.9$, 114.6, 65.5, 64.0, 63.5, 61.7, 55.7, 39.5, 15.0, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 388.1577$, found 388.1582 .

51
Ethyl 3-(4-methoxyphenyl)-4-(phenoxymethyl)thiazolidine-2-carboxylate (5l).
Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 70% yield, $11: 9 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $6.48(\mathrm{~m}, 7 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.07(\mathrm{~m}, 3 \mathrm{H}), 4.06-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.70-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,158.5,153.9,141.1$,
129.7, 121.3, 116.9, 114.9, 114.7, 70.2, 65.4, 61.7, 55.7, 53.7, 46.0, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 374.1421$, found 374.1420.

Ethyl 4-(methoxymethyl)-3-(4-methoxyphenyl)thiazolidine-2-carboxylate (5m).

Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Colourless oil, 68% yield, $1: 1 \mathrm{dr} .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.87-6.79 (m, 2H), 6.76-6.66 (m, 2H), 5.18 (d, $J=40.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.37$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.27-1.21 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,171.7$, $153.8,153.0,141.2,140.7,117.0,115.3,115.0,114.9,74.6,65.2,63.3,61.7,61.6,59.2$, 59.1, 56.7, 55.8, 55.7, 53.9, 46.5, 45.7, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 312.1264$, found 312.1260 .

5n

Ethyl 4-((4-allyl-2-methoxyphenoxy)methyl)-3-(4-methoxyphenyl)thiazolidine-2-

 carboxylate (5n). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). White solid, 75% yield, $1: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89-$ 6.78 (m, 3H), 6.76-6.67 (m, 4H), 6.02-5.88 (m, 1H), 5.31-5.13 (m, 1H), 5.12-5.04 (m, $2 \mathrm{H}), 4.27-3.90(\mathrm{~m}, 7 \mathrm{H}), 3.85(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J$ $=6.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{dt}, J=17.4,7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.9,171.5,153.8,153.1,149.9,149.8,146.4,146.2,141.2,140.6,137.7,137.6$, 134.3, 134.1, 120.73, 120.68, 116.8, 115.84, 115.80, 115.78, 115.4, 115.1, 114.92, $114.88,112.7,72.1,71.8,65.3,63.1,61.7,61.5,56.9,56.0,55.9,55.7,53.7,45.9,45.4$, 39.9, 14.18, 14.16. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 444.1839$, found 444.1835 .

50
Ethyl 3-(4-methoxyphenyl)thiazolidine-2-carboxylate (5o). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Colourless oil, 78% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.86-6.79 (m, 2H), 6.74-6.67 (m, 2H), 5.13 (s, 1H), 4.26$4.14(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 1 \mathrm{H})$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,153.4,141.0,116.1$, 114.9, 64.9, 61.6, 55.8, 53.7, 30.6, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 268.1002, found 268.1000 .

Ethyl (3-(4-methoxyphenyl)thiazolidine-2-carbonyl)glycinate (5p). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). Yellow oil, 61% yield, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.72(\mathrm{~m}, 4 \mathrm{H}), 4.98(\mathrm{~s}$, $1 \mathrm{H})$, 4.21-4.12 (m, 3H), 3.97 (dd, $J=18.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84-3.78 (m, 1H), 3.77 (d, J $=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,169.7,154.5,141.5,117.4,114.9$, 69.2, 61.7, 55.73, 55.68, 41.4, 30.7, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 325.1217, found 325.1218 .

Methyl (3-(4-methoxyphenyl)thiazolidine-2-carbonyl)-L-leucinate (5q). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=32 / 1$ to $8 / 1$ as eluent). Yellow oil,
57% yield, $1: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (d, $J=15.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.95(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.06(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.43(\mathrm{~m}$, $4 \mathrm{H}), 0.95(\mathrm{dd}, J=6.3,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,173.1,171.8,171.3,154.6,154.4,141.6,141.4$, $117.6,117.2,114.9,114.8,69.4,69.1,55.8,55.74,55.69,55.6,52.5,52.4,50.8,50.6$, 41.7, 41.3, 30.8, 30.6, 25.2, 25.0, 23.03, 22.99, 22.0, 21.8. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$367.1686, found 367.1690.

Ethyl (2R,4S)-3-(4-methoxyphenyl)-4-(o-tolyl)thiazolidine-2-carboxylate. (5r).
Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=64 / 1$ to $16 / 1$ as eluent). Light yellow solid, 75% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.03$ (m, 4H), 6.69 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.34$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.39$ (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.23$ (dd, $J=7.9,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.97 (dd, $J=11.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 3H), 2.81 (dd, $J=$ $11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,152.1,139.6,138.6,133.9,130.7,127.3,126.5,126.1,114.9,114.6,64.1,63.0$, 61.6, 55.6, 37.5, 19.4, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 380.1291$, found 380.1291 .

Ethyl 3-(4-methoxyphenyl)-4-phenylthiazolidine-2-carboxylate 1-oxide (8a). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=8 / 1$ to $4 / 1$ as eluent). White solid, 75% yield, $>20: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 2 \mathrm{H})$, $5.75(\mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.61-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 168.0,154.0,140.3,139.6,129.3,128.2,126.8,117.5,114.7,89.4,65.8,62.8,58.6$, 55.6, 14.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 360.1264$, found 360.1264 .

8b
3-(4-Methoxyphenyl)-4-phenylthiazolidin-2-yl)methanol (8b). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=6 / 1$ to $2 / 1$ as eluent). White solid, 92% yield, $4: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.62-$ 6.57 (m, 2H), 5.22 (dd, $J=7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dd, $J=6.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (dd, J $=11.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,141.0,138.3,128.3,127.4,127.2$, 117.9, 114.6, 69.1, 65.8, 63.2, 55.5, 37.6. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 302.1209 , found 302.1211 .

3-(4-Methoxyphenyl)-4-phenylthiazolidin-2-yl)methyl 4-(bis(2-chloroethyl)amino) benzoate (8c). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=8 / 1$ to $4 / 1$ as eluent). White solid, 82% yield, $4: 1 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.47$ (dd, $J=7.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (dd, $J=6.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.75$ (m, 1H), 4.16 (dd, J $=11.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{dd}, J=11.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.62$ $(\mathrm{m}, 7 \mathrm{H}), 2.94(\mathrm{dd}, J=11.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,152.6$, 149.9, 141.3, 138.4, 132.1, 128.4, 127.2, 126.0, 118.6, 117.9, 114.7, 110.9, 65.5, 65.1, 64.8, 55.6, 53.4, 40.2, 38.1. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$545.1427, found 545.1431.

8d
1-Benzyl 5-((3-(4-methoxyphenyl)-4-phenylthiazolidin-2-yl)methyl) ((benzyloxy) carbonyl)-D-glutamate (8d). Purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=6 / 1$ to $2 / 1$ as eluent). White solid, 76% yield, $4: 1 \mathrm{dr}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.30(\mathrm{~m}, 12 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.63$ (m, 3H), $5.56(\mathrm{dd}, J=22.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H})$, 5.13 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (s, 3H), 2.88-2.93 (m, 1H), 2.52-2.20 (m, 3H), 2.05-1.91 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,171.7,156.0,152.6,141.1,138.2,136.2,135.2,128.7,128.59,128.57$, $128.5,128.3,128.24,128.17,127.4,127.1,125.9,117.8,114.6,67.4,67.2,65.5,65.0$, 64.6, 55.5, 53.4, 37.9, 30.1, 27.6. HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 655.2472 , found 655.2468 .

7. References

1. a) J. Xie and Z.-Z. Huang, Angew. Chem., Int. Ed., 2010, 49, 10181-10185. b) R. Martín-Rapún, S. Sayalero and M. A. Pericàs, Green Chem., 2013, 15, 3295-3301.
2. J. S. Yadav, B. V. S. Reddy, G. Baishya, Synlett., 2003, 396-398.
3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,and D. J. Fox, Gaussian 09, D.01, Gaussian, Inc., Wallingford CT, 2013.
4. Parr, R. G.; Yang, W. Density-functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
5. a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr Phys. Rev. B, 1988, 37, 785-789.
6. C. Y. Legault, CYLView, 1.0b, Université de Sherbrooke, 2009; http://www.cylview.org.
7. a) Y. Zhao, D. G. Truhlar, J. Phys. Chem. Lett., 2008, 112, 1095-1099; b) D. Jacquemin, E. A. Perpète, I. Ciofini, C. Adamo, R. Valero, Y. Zhao, D. Truhlar, J. Chem. Theory Comput. 2010, 6, 2071-2085.

8. Copies of ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR Spectra

[^2]
3c

3c

180	

-171.8478
$\int_{128.7353}^{133.627}$
-128.6876
$\bigcirc_{-126.4521}^{127.5808}$
-113.6310
-39.2871
-27.8150
$\begin{array}{r} -15.6951 \\ \underbrace{}_{14.2795} \end{array}$

$80 \begin{array}{llllllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 10\end{array}$

3h

[^3]

	$\begin{aligned} & o \\ & \stackrel{O}{5} \\ & \stackrel{0}{\infty} \\ & \stackrel{e}{1} \end{aligned}$	¢		స్ర్ర గ్ర స్ No 	Nㅜㅇ얏웃 ஃ\% ¢	®

	-

$\begin{array}{lllllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

hys－19F－0825－2－22．12．fid

3n

-77.1600 CDCl 3
-67.2208
-65.9786
-64.1513
-55.6537

-39.2890

-172.0235
-152.2709
-142.5742
-138.7609
$\begin{array}{r}128.6883 \\ -127.5877 \\ \hline 126.4547\end{array}$
$<_{114.9118}^{114.9260}$
-77.1600 CDCl3
$\begin{gathered} 5_{66.0012}^{65.4682} \\ -_{64.1670} \end{gathered}$
-39.2939
-30.7061
-19.1313
-13.7683

$\stackrel{\text { © }}{\stackrel{\text { N }}{+}}$	ल్ల్ N N	N Nî	気管志 		$\begin{aligned} & \text { M } \\ & 0 \\ & 0 \\ & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{7} \\ & \hline \end{aligned}$			® Nos ¢	

-172.1773
-142.6183
-138.7918
$\begin{array}{r} 128.7136 \\ -\quad 127.6126 \end{array}$
$\downarrow_{126.4610}$
$<_{114.8999}^{114.9369}$

-77.1600 CDCI3
-69.2320
-66.0406
-64.2399
-55.7160

-39.3201
-34.1723

<24.7126
24.6989
-18.4934

Hys-0829-1. 13. fid

∞ $\stackrel{\infty}{\infty}$ $\underset{\sim}{\top}$	$\stackrel{0}{2}$ $\stackrel{N}{N}$ $\stackrel{N}{1}$				$\begin{aligned} & \text { ৪ } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{m}{\mid} \end{aligned}$		O 0 0 0 0	$\stackrel{\sim}{\infty}$

3s
\qquad

3t

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$3 x$

4b

| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 1 |
| :--- |

M, M_Imal MW
 1

		$\begin{aligned} & \text { TH } \\ & \text { Ne } \\ & \text { N } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { T } \\ & \hline \mathbf{~} \\ & \hline \end{aligned}$					$\begin{gathered} \text { TT } \\ \underset{\sim}{2} \\ \hline \end{gathered}$						
. 5	7.0	6.5	6. 0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2. 0	1.5	1.0	0.5	0.0

4d

hys-0825-n5-p. 14. fid
পoñ

hys-0825-n5-p. 15. fid

		 	※ $\stackrel{0}{0}$ $\stackrel{0}{\Gamma}$	¢ ¢ ¢		욱䒬商 पֹN		¢0000

$\begin{gathered} \text { No } \\ \text { Nָ } \end{gathered}$		 ल్లึํㅜํ					-	-

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

응

5b

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

5c

5c
$-77.1600 \mathrm{CDCL} 3$

$\overline{0}$
©
ì

5d

5 e

5g

5 g

5h

5k

5k

51

$$
\begin{aligned}
& -171.8363 \\
& -158.4839 \\
& -153.8980 \\
& -141.1166 \\
& \\
& -129.6546 \\
& \mathcal{S}^{1121.2629} \\
& \mathcal{S}_{114.9237}^{114.9033}
\end{aligned}
$$

 ๗ $\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$

51

 -

5m

5n

5n

50

HYS-0827-2-J. 15. fid

cesers)

[^4]

흥

8d

8d

[^0]: ${ }^{a}$ Reaction conditions: 1a (0.1 mmol), photocatalyst ($2 \mathrm{~mol} \%$), $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mol} \%)$, DCE (1.0 mL), 18 W blue LED light irradiation under air at room temperature for 16 h , then $\mathbf{2 a}(0.15 \mathrm{mmol})$ and $\mathrm{HI}(15 \mathrm{~mol} \%)$ were added and stirred under air at room temperature. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using $1,3,5$-trimethoxybenzene as an internal standard. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} 5 \mathrm{~mol} \% \mathrm{Rh}-6 \mathrm{G}$ was used. ${ }^{e} 10 \mathrm{~mol} \% \mathrm{Rh}-6 \mathrm{G}$ was used.

[^1]: ${ }^{a}$ Reaction conditions: $1 \mathbf{a}(0.1 \mathrm{mmol}), \mathrm{Rh}-6 \mathrm{G}(2 \mathrm{~mol} \%), \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mol} \%)$, solvent $(1.0 \mathrm{~mL})$, 18 W blue LED light irradiation under air at room temperature for 16 h , then $\mathbf{2 a}(0.15 \mathrm{mmol})$ and $\mathrm{HI}(15 \mathrm{~mol} \%)$ were added and stirred under air at room temperature. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} 3 \mathrm{~mL} \mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}(25 / 1)$ was used. ${ }^{e} 2 \mathrm{~mL} \mathrm{DCE} / \mathrm{CH}_{3} \mathrm{CN}(25 / 1)$ was used. ${ }^{f} 0.5 \mathrm{mLDCE} / \mathrm{CH}_{3} \mathrm{CN}$ (25/1) was used.

[^2]: $\begin{array}{llllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10 & 10 & 1\end{array}$

[^3]:

[^4]:

