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EXPERIMENTAL SECTION 

1. General Considerations 

Unless otherwise specified, all manipulations were performed under an inert atmosphere using standard 

Schlenk or glove-box techniques. Glassware was oven-dried before use. Pentane, hexane, toluene, diethyl 

ether (Et2O), tetrahydrofuran (THF), benzene (C6H6) were dried using a GlassContour drying column and 

stored over 3 Å molecular sieves. Benzene-d6 (Cambridge Isotopes) was dried over sodium benzophenone 

distilled, and stored over 3 Å molecular sieves. The tungsten-alkylidyne [tBuOCO]W≡CtBu(THF)2 (1)1 was 

prepared according to published procedures. N-methyl-1-phenylmethanimine and N-benzyl-1-

phenylmethanimine were bought from sigma –Aldrich, N,1-diphenylmethanimine and N-(trimethylsilyl)-

1-phenylmethanimine were bought from Oakwood chemicals, and other imines were synthesized according 

to reported literature.2–4 Liquid imines were dried over CaH2 and stored under a nitrogen atmosphere, solid 

imines were dried under vacuum overnight before use. 1H NMR, 13C{1H} NMR and 2D NMR spectra were 

obtained on Varian INOVA (500 MHz) and Bruker (400 MHz) spectrometers. The chemical shifts are 

reported in δ (ppm), referenced to the lock signal on solvent for 1H and 13C{1H} spectra. The assignments 

are primarily based on the cross-peaks observed in the 1H-13C gradient Hetronuclear Multiple Bond 

Correlation (gHMBC), gradient Hetronuclear Single Quantum Correlation (gHSQC), 1H-1H Homonuclear 

Correlation Spectroscopy (COSY) and Nuclear Overhauser Effect Spectroscopy (NOESY) spectra. The 

spectra were recorded at 25 °C unless noted otherwise. Elemental analyses were performed at the CENTC 

Elemental Analysis Facility, Department of Chemistry at University of Rochester.    

2. Synthetic procedures 

2.1. Synthesis of complex 2 

Complex 1 (101 mg, 13.1 x 10-2 mmol, 1.00 eq) was dissolved in 5 mL of benzene in a vial equipped with 

a magnetic stir bar and 3,4-dihydroisoquinoline (17.0 mg, 13.1 x 10-2 mmol, 1.00 eq) was added to the 

solution at room temperature and stirred for 1 h. The color of the solution immediately changed from red 

to dark brown. Volatiles were removed under vacuum yielding 2 as a dark red solid, it was further washed 

with 5 mL of cold pentane to yield 2 (93.8 mg, 95% yield). Maroon colored crystals of 2 can be obtained 

from a concentrated solution of 2 in either pentane or toluene at -30 °C within a 2 d.  
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1H NMR (C6D6, 400 MHz) δ (ppm): 8.49 (s, 1H, H32), 8.10 (d, 2H, J = 7.8 Hz, Ar-H8,10), 7.93 (dd, 2H, J1  

= 7.9 Hz, J2 = 1.6 Hz, Ar-H5,14), 7.44 (m, 3H, Ar-H3,9,16), 7.08 (t, 2H,  J = 1.6 Hz, Ar-H4,15), 6.98 (m, 1H, 

Ar-H37), 6.84 (m, 2H, Ar-H36,35), 6.65 (d, 1H, J = 7.4 Hz, Ar-H34), 3.69 (t, 2H, J = 7.7 Hz, Ar-H40), 2.44 (t, 

2H, J = 7.7 Hz, Ar-H39), 1.57 (s, 18H, Ar-tBu, H20-22,24-26), 0.70 (s, 9H, W≡CtBu, H29-31). 

13C{1H}NMR (C6D6, 400 MHz) δ (ppm): 320.8 (C27), 193.1 (C12), 171.8 (C32), 163.2 (C1,18), 140.2 (C7,11), 

136.5 (C38), 135.2 (C6,13), 135.0 (C37), 134.7 (C2,17), 130.7 (C36), 127.9 (C5,14), 127.8 (C34), 127.3 (C35), 

127.0 (C8,10), 126.6 (C33), 124.7 (C3,16,9), 120.8 (C4,15), 50.0 (C28), 49.3 (C40), 35.2 (C19,23), 32.7 (C29-31), 30.4 

(C20-22,24-26), 25.1 (C39).  

2.2. Synthesis of complex 3 

Complex 1 (100 mg, 13.0 x 10-2 mmol, 1.00 eq) was dissolved in 5 mL of benzene in a vial equipped with 

a magnetic stir bar and 3,4-dihydroisoquinoline (85.2 mg, 65.2 x 10-2 mmol, 5.00 eq) was added to the 

solution at room temperature and stirred for 1 h. NMR spectral data of the reaction mixture reveals that 

complexes 2 and 3 coexist in the solution in ratio 1:2.5, respectively under these conditions. Volatiles were 

removed under vacuum. A brown precipitate (120.4 mg) was obtained after 3-4 triturations using pentane. 

Separation of 3 via crystallization was not possible. In situ solution NMR characterization of 3 is provided 

below.  

 

1H NMR (C6D6, 500 MHz) δ (ppm): 8.50 (t, 1H, J = 1.6 Hz, H32), 7.40 (dd, 1H, J1  = 6.3 Hz, J2 = 1.2 Hz, 

Ar-H10), 7.38 (dd, 1H, J1  = 6.5 Hz, J2 = 1.5 Hz Ar-H16), 7.33 (m, 1H, J1  = 6.2 Hz, J2 = 1.3 Hz, Ar-H14), 

7.30 (dd, 1H, J1  = 6.4 Hz, J2 = 1.5 Hz, Ar-H3), 7.28 (dd, 1H, J1  = 6.3 Hz, J2 = 1.4 Hz, Ar-H8), 7.26 (dd, 
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1H, J1  = 6.2 Hz, J2 = 1.5 Hz, Ar-H5), 7.21 (m, 1H, Ar-H43), 7.16 (m, 1H, Ar-H44), 7.09 (t, 1H, J = 6.3 Hz, 

Ar-H9), 7.06 (m, 1H, Ar-H46), 7.00 (m, 1H, H45), 6.91 (m, 1H, Ar-H36), 6.86 (t, 1H, J  = 6.3 Hz, Ar-H15), 

6.81 (t, 1H J = 6.1 Hz, Ar-H4), 6.77 (m, 1H, Ar-H35), 6.71 (m, 1H, Ar-H34), 6.54 (d, 1H, J  = 6.1 Hz, Ar-

H37), 5.15 (ddd, 1H, J1  = 10.4 Hz, J2 = 8.1 Hz, J3 = 4.9 Hz, Ar-H49’), 5.06 (ddd, 1H, J1  = 10.4 Hz, J2 = 6.1 

Hz, J3 = 2.6 Hz, Ar-H49’’), 3.91 (s, 1H, H41), 3.66 (td, 2H, J1  = 6.4 Hz, J2 = 1.6 Hz, Ar-H40), 3.13 (m, 1H, 

Ar-H48a), 2.90 (ddd, 1H, , J1  = 13.4 Hz, J2 = 5.1 Hz, J3 = 2.6 Hz, Ar-H48b), 2.10 (m, 2H, H39), 1.50 (s, 9H, 

Ar-tBu, H24-26), 1.04 (s, 9H, Ar-tBu, H20-22), 0.97 (s, 9H, H29-31). 

13C{1H}NMR (C6D6, 500 MHz) δ (ppm): 256.3 (C27), 169.7 (s, C18), 169.6 (s, C1), 167.5 (s, C32), 161.4 (s, 

C7), 159.5 (s, C11), 143.7 (s, C42), 139.3 (s, C2), 139.1 (s, C17), 136.9 (s, C38), 135.9 (s, C47), 135.1 (s, C9), 

131.5 (s, C13), 131.5 (s, C6), 131..0 (s, C8), 130.0 (s, C10), 129.6 (s, C34), 129.5 (s, C46), 129.0 (s, C5), 128.7 

(s, C43), 128.4 (s, C33), 128.3 (s, C14), 127.4 (s, C35) 127.2 (s, C37), 127.1 (s, C36), 126.7 (s, C16), 126.8 (s, 

C3), 125.9 (s, C44), 124.3 (s, C45), 118.6 (s, C4) 118.4 (s, C15), 118.1 (s, C12), 57.1 (s, C49), 48.8 (s, C40), 45.0 

(s, C28) 44.7 (s, C41), 35.1 (s, C29-31), 35.0 (s, C23), 34.7 (s, C19), 31.0 (s, C48) 30.6 (s, C20-22), 30.3 (s, C24-26), 

25.9 (s, C39). 

2.3. Synthesis of complex 4-R (R = Me, TMS, Ph, Bn) 

Complex 1 (100 mg, 13.0 x 10-2 mmol, 1.00 eq) was dissolved in 5 mL of benzene in a vial equipped with 

a magnetic stir bar. Imine (13.0 x 10-2 mmol, 1.00 eq) was added to the above solution at room temperature 

resulting in a dark red solution. The resultant solution was then transferred to a Schlenk tube equipped with 

a magnetic stir bar and heated at 80 oC in an oil bath for 2 d for N-methyl-1-phenylmethanimine (color 

changed to transparent yellow) and N-benzyl-1-phenylmethanimine (color changed to transparent amber), 

and 4d for N,1-diphenylmethanimine (color changed to transparent yellow) and N-(trimethylsilyl)-1-

phenylmethanimine (color changed to transparent yellow). Volatiles were removed under vacuum 

precipitating 4-R in 95-98% yields. 4-Me and 4-Bn were crystallized from concentrated pentane solutions 

as yellow crystals at -30 oC. 4-Ph and 4-TMS were crystallized from concentrated Et2O:THF (9:1) solutions 

as yellow crystals at -30 oC.  
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4-Me, 1H NMR (C6D6, 500 MHz) δ (ppm): 7.99 (t, 1H, J = 1.9 Hz, Ar-H12), 7.34 (d, 1H, J = 7.4 Hz, Ar-

H16), 7.28 (d, 1H, J = 7.7 Hz, Ar-H3), 7.18 (d, 1H, J = 1.7 Hz, Ar-H14), 7.16 (d, 2H,  J = 1.6 Hz, Ar-H30,34), 

7.13 (t, 1H, J = 9.6 Hz, Ar-H9), 7.02 (m, 2H, Ar-H31,33), 6.99 (m, 1H, Ar-H10), 6.93 (m, 2H, Ar-H5,15), 6.85 

(tt, 1H, J1 = 9.2 Hz, J2 = 1.7 Hz, Ar-H37), 6.75 (t, 1H, J = 9.7 Hz, Ar-H4), 6.64 (d, 1H, J = 9.5 Hz, Ar-H8), 

4.00 (s, 3H, H39), 1.69 (s, 9H, Ar-tBu, H24-26), 1.68 (s, 9H, Ar-tBu, H20-22), 1.10 (s, 9H, H36-38). 

13C{1H}NMR (C6D6, 500 MHz) δ (ppm): 198.3 (C27), 180.3 (C28), 162.0 (C18), 161.4 (C1), 142.6 (C11), 

141.7 (C7), 141.1 (C17), 138.6 (C29), 133.6 (C13), 132.5 (C6), 130.9 (C10,30,34), 129.7 (C8), 127.6 (C12), 127.3 

(C31,33), 127.1 (C32), 127.0 (C14), 126.9 (C5), 126.9 (C16), 126.9 (C3), 122.9 (C15), 122.4 (C4), 51.6 (C39), 

42.3 (s, C35), 35.7 (s, C19,23), 31.9 (s, C36-38), 30.2 (s, C20-22,24-26).  

Elemental Analysis calcd. (%) for C39H45NO2W (743.63 g/mol): C, 62.990; H, 6.100; N, 1.884; Found: C, 

62.605; H, 5.904; N, 1.795.  

 

4-TMS, 1H NMR (C6D6, 400 MHz) δ (ppm): 7.90 (t, 1H, J = 7.6 Hz, Ar-H12), 7.33 (dd, 1H, J1 = 1.8 Hz, J2 

= 7.8 Hz, Ar-H16), 7.26 (dd, 1H, J1 = 1.8 Hz, J2 = 7.8 Hz, Ar-H3), 7.21(m, 2H, Ar-H30,34), 7.19 (dd, 1H, J1 

= 1.8 Hz, J2 = 7.8 Hz, Ar-H14), 7.13(t, 1H, J = 7.6 Hz, Ar-H9), 7.02 (m, 2H, Ar-H31,33), 7.00 (m, 1H, Ar-

H10), 6.93 (dd, 1H, J1 = 1.8 Hz, J2 = 7.8 Hz, Ar-H5), 6.91 (t, 1H, J = 7.8 Hz, Ar-H15), 6.83 (tt, 1H, J1 = 1.3 

Hz, J2 = 7.4 Hz, Ar-H32), 6.74 (t, 1H, J = 7.8 Hz, Ar-H4), 6.70 (ddd, 1H, J1 = 1.1 Hz, J2 = 1.8 Hz, J3 = 7.6 

Hz, Ar-H8), 1.71 (s, 9H, Ar-tBu, H24-26), 1.69 (s, 9H, Ar-tBu, H20-22), 1.12 (s, 9H, H36-38), 0.25 (s, 9H, TMS, 

H39-41). 

13C{1H}NMR (C6D6, 400 MHz) δ (ppm): 196.7 (C27), 180.0 (C28), 161.7 (C18), 161.0 (C1), 141.5 (C11), 

140.9 (C17), 140.8 (C2), 140.7 (C7), 138.4 (C29), 133.8 (C13), 132.8 (C6), 131.1 (C9), 130.9 (C30,34), 129.3 

(C10), 129.1 (C12), 128.1 (C8), 127.4 (C31,34), 127.3 (C32), 127.1 (C14), 126.9 (C5), 126.8 (C3,16), 123.2 (C15), 

122.8 (C4), 41.6 (C35), 35.8 (C23), 35.7 (C19), 31.7 (C36-38), 30.5 (C24-26), 30.4 (C20-22), 2.71 (C39-41). 
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4-Ph, 1H NMR (C6D6, 400 MHz) δ (ppm): 8.00 (t, 1H, J = 1.8 Hz, Ar-H12), 7.34 (dd, 1H, J1 = 1.7 Hz, J2 = 

7.8 Hz, Ar-H16), 7.32 (dd, 2H, J1 = 1.2 Hz, J2 = 8.2 Hz, Ar-H30,34), 7.27 (dd, 1H, J1 = 1.7 Hz, J2 = 7.8 Hz, 

Ar-H3), 7.18 (dd, 1H, J1 = 1.7 Hz, J2 = 7.4 Hz, Ar-H14), 7.14 (dd, 2H, J1 = 1.3 Hz, J2 = 8.6 Hz, Ar-H40,44), 

7.12 (t, 1H, J = 7.7 Hz, Ar-H9), 7.05 (m, 4H, Ar-H31,33,41,43), 6.99 (ddd, 1H, J1 = 1.2 Hz, J2 = 1.8 Hz, J3 = 

7.7 Hz, Ar-H10), 6.92 (t, 1H, J = 7.8 Hz, Ar-H15), 6.91 (dd, 1H, J1 = 1.7 Hz, J2 = 7.8 Hz, Ar-H5), 6.87 (tt, 

1H, J1 = 1.3 Hz, J2 = 7.4 Hz, Ar-H42), 6.75 (t, 1H, J = 7.8 Hz, Ar-H4), 6.73 (tt, 1H, J1 = 1.2 Hz, J2 = 7.2 Hz, 

Ar-H32), 6.63 (ddd, 1H, J1 = 1.2 Hz, J2 = 1.8 Hz, J3 = 7.7 Hz, Ar-H8), 1.73 (s, 9H, Ar-tBu, H24-26), 1.64 (s, 

9H, Ar-tBu, H20-22), 1.07 (s, 9H, H36-38). 

13C{1H}NMR (C6D6, 400 MHz) δ (ppm): 203.3 (C27), 183.9 (C28), 161.8 (C18), 161.0 (C1), 157.2 (C39), 

142.7 (C11), 141.7 (C7), 141.3 (C17), 141.2 (C2), 137.9 (C29), 133.7 (C13), 132.5 (C6), 131.7 (C9), 131.3 

(C41,43), 129.8 (C10), 128.5 (C8), 127.7 (C31,33), 127.6 (C14), 127.5 (C16), 127.3 (C12), 127.1 (C42), 126.8 (C3), 

126.7 (C5), 125.4 (C40,44), 124.8 (C32), 123.3 (C15), 122.8 (C4), 42.8 (C35), 35.8 (C23), 35.7 (C19), 31.9 (C36-

38), 30.3 (C24-26), 30.2 (C20-22). 
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4-Bn, 1H NMR (C6D6, 400 MHz) δ (ppm): 8.01 (t, 1H, J = 1.8 Hz, Ar-H12), 7.32 (dd, 1H, J1 = 1.7 Hz, J2 = 

7.9 Hz, Ar-H16), 7.28 (m, 3H, Ar-H3,41,45), 7.17 (m, 4H, Ar-H9,14,30,34), 7.12 (m, 2H, Ar-H42,44), 7.02 (m, 3H, 

Ar-H31,33,43), 6.98 (ddd, 1H, J1 = 1.2 Hz, J2 = 1.8 Hz, J3 = 8.2 Hz, Ar-H10), 6.94 (dd, 1H, J1 = 1.7 Hz, J2 = 

7.9 Hz, Ar-H5), 6.91 (t, 1H, J = 7.9 Hz, Ar-H15), 6.86 (tt, 1H, J1 = 1.2 Hz, J2 = 7.5 Hz, Ar-H32), 6.76 (t, 1H, 

J = 7.9 Hz, Ar-H4), 6.64 (ddd, 1H, J1 = 1.2 Hz, J2 = 1.8 Hz, J3 = 8.2 Hz, Ar-H8), 5.39 (s, 2H, H39), 1.62 (s, 

18H, Ar-tBu, H20-22,24-26), 1.04 (s, 9H, H36-38).  

13C{1H}NMR (C6D6, 400 MHz) δ (ppm): 198.9 (C27), 180.9 (C28), 161.9 (C18), 161.3 (C1), 142.4 (C11), 

141.5 (C7), 141.2 (C17), 141.1 (C2), 140.1 (C40), 138.4 (C29), 133.7 (C13), 132.7 (C6), 131.5 (C9), 131.1 

(C30,34,43), 129.6 (C10), 128.6 (C12,42,44), 128.2 (C41,45), 128.0 (C8) 127.3 (C14,16), 127.2 (C3), 126.9 (C5), 126.8 

(C31,32,33), 122.9 (C15), 122.5 (C4), 68.3 (C39), 42.2 (C35), 35.7 (C19,23), 31.8 (C36-38), 30.1 (C20-22,24-26). 
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3. Experimental NMR data 

3.1. NMR spectra of 2  

 

Figure S1. 1H NMR spectrum of 2 (C6D6, 400 MHz, 25 °C). 

 

Figure S2. 1H NMR spectrum-expansion of 2 (C6D6, 400 MHz, 25 °C). 
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Figure S3. 13C NMR spectrum of 2 (C6D6, 400 MHz, 25 °C). 

 

Figure S4. 1H-1H COSY NMR spectrum-expansion of 2 (C6D6, 400 MHz, 25 °C). 
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Figure S5. 1H-13C HSQC NMR spectrum of 2 (C6D6, 400 MHz, 25 °C). 

 

Figure S6. 1H-13C HMBC NMR spectrum-expansion of 2 (C6D6, 400 MHz, 25 °C). 
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Figure S7. 1H-13C HMBC NMR spectrum-expansion of 2 (C6D6, 400 MHz, 25 °C). 

3.2. NMR spectra of 3 

 

Figure S8. 1H NMR spectrum of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 
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Figure S9. 1H NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 

 

 

Figure S10. 1H NMR spectrum of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 
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Figure S11. 13C{1H} NMR spectrum of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C).- 

 

Figure S12. 1H-1H COSY NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 
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Figure S13. 1H-1H COSY NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 

 

Figure S14. 1H-13C HSQC NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 
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Figure S15. 1H-13C HSQC NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 

 

Figure S16. 1H-13C HMBC NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 
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Figure S17. 1H-13C HMBC NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 

 

Figure S18. 1H-13C HMBC NMR spectrum-expansion of 3 (and 2 + 2,4-dihydroisoquinoline) (C6D6, 500 MHz, 25 °C). 
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Figure S19.  1D gNOESY spectrum of 3 (and 2 + 2,4-dihydroisoquinoline), collected on H24-26 (C6D6, 500 MHz, 25 °C). 

 

Figure S20.  1D gNOESY spectrum of 3 (and 2 + 2,4-dihydroisoquinoline), collected on H32 (C6D6, 500 MHz, 25 °C). 
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Figure S21.  1D gNOESY spectrum of 3 (and 2 + 2,4-dihydroisoquinoline), collected on H29-31 (C6D6, 500 MHz, 25 °C). 

3.3. NMR spectra of 4-Me 

 

Figure S22. 1H NMR spectrum of 4-Me (C6D6, 500 MHz, 25 °C). 
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Figure S23. 1H NMR spectrum-expansion of 4-Me (C6D6, 500 MHz, 25 °C). 

 

Figure S24. 13C{1H} NMR spectrum of 4-Me (C6D6, 500 MHz, 25 °C). 
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Figure S25. 1H-1H COSY NMR spectrum-expansion of 4-Me (C6D6, 500 MHz, 25 °C). 

 

Figure S26. 1H-13C HSQC NMR spectrum of 4-Me (C6D6, 500 MHz, 25 °C). 
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Figure S27. 1H-13C HMBC NMR spectrum-expansion of 4-Me (C6D6, 500 MHz, 25 °C). 

 

Figure S28. 1H-13C HMBC NMR spectrum-expansion of 4-Me (C6D6, 500 MHz, 25 °C). 
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3.4. NMR spectra of 4-TMS 

 

Figure S29. 1H NMR spectrum of 4-TMS (C6D6, 400 MHz, 25 °C). 

 

Figure S30. 1H NMR spectrum-expansion of 4-Me (C6D6, 400 MHz, 25 °C). 
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Figure S31. 13C{1H} NMR spectrum of 4-Me (C6D6, 400 MHz, 25 °C). 

 

Figure S32. 1H-1H COSY NMR spectrum-expansion of 4-Me (C6D6, 400 MHz, 25 °C). 
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Figure S33. 1H-13C HSQC NMR spectrum of 4-Me (C6D6, 400 MHz, 25 °C). 

 

Figure S34. 1H-13C HMBC NMR spectrum-expansion of 4-Me (C6D6, 400 MHz, 25 °C). 
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Figure S35. 1H-13C HMBC NMR spectrum-expansion of 4-Me (C6D6, 400 MHz, 25 °C). 

3.5. NMR spectra of 4-Ph 

 

Figure S36. 1H NMR spectrum of 4-Ph (C6D6, 400 MHz, 25 °C). 
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Figure S37. 1H NMR spectrum-expansion of 4-Ph (C6D6, 400 MHz, 25 °C). 

 

Figure S38. 13C{1H} NMR spectrum of 4-Ph (C6D6, 400 MHz, 25 °C). 
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Figure S39. 1H-1H COSY NMR spectrum-expansion of 4-Ph (C6D6, 400 MHz, 25 °C). 

 

Figure S40. 1H-13C HSQC NMR spectrum of 4-Ph (C6D6, 400 MHz, 25 °C). 
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Figure S41. 1H-13C HMBC NMR spectrum-expansion of 4-Ph (C6D6, 400 MHz, 25 °C). 

 

Figure S42. 1H-13C NMR HMBC spectrum-expansion of 4-Ph (C6D6, 400 MHz, 25 °C). 
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3.6. NMR spectra of 4-Bn 

 

Figure S43. 1H NMR spectrum of 4-Bn (C6D6, 400 MHz, 25 °C). 

 

Figure S44. 1H NMR spectrum-expansion of 4-Bn (C6D6, 400 MHz, 25 °C). 
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Figure S45. 13C{1H} NMR spectrum of 4-Bn (C6D6, 400 MHz, 25 °C). 

 

Figure S46. 1H-1H COSY NMR spectrum-expansion of 4-Bn (C6D6, 400 MHz, 25 °C). 
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Figure S47. 1H-13C HSQC NMR spectrum of 4-Bn (C6D6, 400 MHz, 25 °C). 

 

Figure S48. 1H-13C HMBC NMR spectrum-expansion of 4-Bn (C6D6, 400 MHz, 25 °C). 
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Figure S49. 1H-13C HMBC NMR spectrum-expansion of 4-Bn (C6D6, 400 MHz, 25 °C). 

4. X-ray crystallographic data 

4.1. Procedure for data collection  

X-Ray Intensity data were collected at 100 K on a Bruker Dual micro source D8 Venture diffractometer 

and PHOTON III detector running APEX3 software package of programs and using MoKα radiation ( = 

0.71073 Å).The data frames were integrated and multi-scan scaling was applied in APEX3.  Intrinsic 

phasing structure solution provided all of the non-H atoms. The structure was refined using full-matrix 

least-squares refinement (SHELXL, Sheldrick G.M. 2015).  The non-H atoms were refined with anisotropic 

displacement parameters and all of the H atoms were calculated in idealized positions and refined riding on 

their parent atoms. The refinement was carried out by minimizing the wR2 function using F2 rather than F 

values. R1 is calculated to provide a reference to the conventional R value but its function is not minimized.  

4.1.1. Crystallographic data of 2 

In the final cycle of refinement, 11557 reflections (of which 10619 are observed with I > 2 (I)) were used 

to refine 406 parameters and the resulting R1, wR2 and S (goodness of fit) were 2.20%, 5.74% and 1.317, 

respectively. 
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Figure S50. Solid-state molecular structure of 2. Ellipsoids drawn at 50% probability. Hydrogen atoms are removed 

for clarity. 

Table S1.  Crystal data and structure refinement for 2. 

Identification code  rinku18 

Empirical formula  C40H45NO2W 

Formula weight  755.62 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 13.2327(4) Å a= 90°. 

 b = 18.0672(5) Å b= 97.2920(10)°. 

 c = 14.0890(4) Å g = 90°. 

Volume 3341.12(17) Å3 

Z 4 

Density (calculated) 1.502 Mg/m3 

Absorption coefficient 3.493 mm-1 

F(000) 1528 

Crystal size 0.279 x 0.158 x 0.143 mm3 

Theta range for data collection 1.918 to 32.836°. 

Index ranges -19≤h≤19, -27≤k≤26, -21≤l≤21 

Reflections collected 94414 

Independent reflections 11557 [R(int) = 0.0328] 
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Completeness to theta = 25.242° 99.9 %  

Absorption correction multi-scan 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11557 / 0 / 406 

Goodness-of-fit on F2 1.317 

Final R indices [I>2sigma(I)] R1 = 0.0220, wR2 = 0.0574 [10619] 

R indices (all data) R1 = 0.0250, wR2 = 0.0585 

Extinction coefficient n/a 

Largest diff. peak and hole 0.844 and -1.807 e.Å-3 
 

R1 = Σ(||Fo| - |Fc||) / Σ|Fo|  

wR2 = [Σ[w(Fo
2 - Fc

2)2] / Σ[w(Fo
2)2]]1/2 

S = [Σ[w(Fo
2- Fc

2) 2] / (n-p)] 1/2 

w= 1/[2 (Fo
2)+(m*p) 2+n*p], p =  [max(Fo

2,0)+ 2* F c
 2]/3, m & n are constants. 

4.1.2. Crystallographic data of 4-Me 

The complex has two disordered regions in the methyl group C40 and the t-butyl group on C36.  In the 

final cycle of refinement, 16702 reflections (of which 14213 are observed with I > 2(I)) were used to 

refine 385 parameters and the resulting R1, wR2 and S (goodness of fit) were 2.62%, 5.10 % and 1.028, 

respectively. 

 

Figure S51. Solid-state molecular structure of 4-Me. Ellipsoids drawn at 50% probability. Hydrogen atoms are 

removed for clarity. 
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Table S2.  Crystal data and structure refinement for 4-Me. 

Identification code  rinku2 

Empirical formula  C39H45NO2W 

Formula weight  743.61 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 23.9026(19) Å a= 90°. 

 b = 11.1201(5) Å b= 97.854(3)°. 

 c = 26.2556(14) Å g = 90°. 

Volume 6913.3(7) Å3  

Z 8 

Density (calculated) 1.429 Mg/m3 

Absorption coefficient 3.375 mm-1 

F(000) 3008 

Crystal size 0.152 x 0.114 x 0.024 mm3 

Theta range for data collection 2.023 to 36.334° 

Index ranges -39≤h≤39, -18≤k≤18, -43≤l≤43 

Reflections collected 157067 

Independent reflections 16702 [R(int) = 0.0635] 

Completeness to theta = 25.242° 99.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9278 and 0.7247 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 16702 / 0 / 385 

Goodness-of-fit on F2 1.028 

Final R indices [I>2sigma(I)] R1 = 0.0262, wR2 = 0.0510 [14213] 

R indices (all data) R1 = 0.0342, wR2 = 0.0545 

Extinction coefficient n/a 

Largest diff. peak and hole 1.361 and -1.348 e.Å-3 

 

R1 = Σ(||Fo| - |Fc||) / Σ|Fo 

wR2 = [Σ[w(Fo
2 - Fc

2)2] / Σ[w(Fo
2)2]]1/2 

S = [Σ[w(Fo
2- Fc

2) 2] / (n-p)] 1/2 

w= 1/[2 (Fo
2)+(m*p) 2+n*p], p =  [max(Fo

2,0)+ 2* F c
 2]/3, m & n are constants. 
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4.1.3. Crystallographic data of 4-Ph 

In the final cycle of refinement, 9050 reflections (of which 8223 are observed with I > 2 (I)) were used to 

refine 442 parameters and the resulting R1, wR2 and S (goodness of fit) were 2.08%, 4.52% and 1.035, 

respectively. 

 

Figure S52. Solid-state molecular structure of 4-Ph. Ellipsoids drawn at 50% probability. Hydrogen atoms are 

removed for clarity. 

Table S3.  Crystal data and structure refinement for 4-Ph. 

Identification code  rinku33 

Empirical formula  C44H47NO2W 

Formula weight  805.67 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.3557(5) Å a= 101.459(10)°. 

 b = 11.8178(5) Å b= 91.875(10)°. 

 c = 16.8483(9) Å g = 99.739(2)°. 

Volume 1795.12(16) Å3  

Z 2 

Density (calculated) 1.491 Mg/m3 

Absorption coefficient 3.255 mm-1 
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F(000) 816 

Crystal size 0.650 x 0.084 x 0.075 mm3 

Theta range for data collection 1.951 to 28.538° 

Index ranges -12≤h≤12, -15≤k≤15, -22≤l≤22 

Reflections collected 96677 

Independent reflections 16702 [R(int) = 0.0635] 

Completeness to theta = 25.242° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9278 and 0.7247 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 16702 / 0 / 442 

Goodness-of-fit on F2 1.035 

Final R indices [I>2sigma(I)] R1 = 0.0208, wR2 = 0.0434  

R indices (all data) R1 = 0.0258, wR2 = 0.0452 

Extinction coefficient n/a 

Largest diff. peak and hole 0.875 and -0.477 e.Å-3 

 

R1 = Σ(||Fo| - |Fc||) / Σ|Fo 

wR2 = [Σ[w(Fo
2 - Fc

2)2] / Σ[w(Fo
2)2]]1/2 

S = [Σ[w(Fo
2- Fc

2) 2] / (n-p)] 1/2 

w= 1/[2 (Fo
2)+(m*p) 2+n*p], p =  [max(Fo

2,0)+ 2* F c
 2]/3, m & n are constants. 

4.1.4. Crystallographic data of 4-Bn 

The complex has five disordered regions in the Ph ring on C40, C41, C42, C43, and C44. It also has a high 

electron density peak at 0.76 Å from tungsten arising from anisotropic modelling of heavy metal atom. In 

the final cycle of refinement, 9366 reflections (of which 8548 are observed with I > 2 (I)) were used to 

refine 436 parameters and the resulting R1, wR2 and S (goodness of fit) were 3.13%, 7.18% and 1.087, 

respectively. 
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Figure S53. Solid-state molecular structure of 4-Bn. Ellipsoids drawn at 50% probability. Hydrogen atoms are 

removed for clarity. 

Table S4.  Crystal data and structure refinement for 4-Bn. 

Identification code  rinku36 

Empirical formula  C45H49NO2W 

Formula weight  819.70 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.425(2) Å a= 95.897(5)°. 

 b = 12.400(3) Å b= 92.628(7)°. 

 c = 16.608(3) Å g = 106.096(6)°. 

Volume 1875.8(7) Å3  

Z 2 

Density (calculated) 1.451 Mg/m3 

Absorption coefficient 3.117 mm-1 

F(000) 832 

Crystal size 0.650 x 0.084 x 0.075 mm3 

Theta range for data collection 1.980 to 28.348° 

Index ranges -12≤h≤12, -16≤k≤16, -22≤l≤22 

Reflections collected 90763 
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Independent reflections 9366 [R(int) = 0.0553] 

Completeness to theta = 25.242° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission n/a 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9366 / 4 / 436 

Goodness-of-fit on F2 1.087 

Final R indices [I>2sigma(I)] R1 = 0.0313, wR2 = 0.0718  

R indices (all data) R1 = 0.0360, wR2 = 0.0697 

Extinction coefficient n/a 

Largest diff. peak and hole 4.021 and -1.546 e.Å-3 

 

R1 = Σ(||Fo| - |Fc||) / Σ|Fo 

wR2 = [Σ[w(Fo
2 - Fc

2)2] / Σ[w(Fo
2)2]]1/2 

S = [Σ[w(Fo
2- Fc

2) 2] / (n-p)] 1/2 

w= 1/[2 (Fo
2)+(m*p) 2+n*p], p =  [max(Fo

2,0)+ 2* F c
 2]/3, m & n are constants. 
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