## Supporting Information

## Organophotocatalytic $\alpha$-deuteration of unprotected primary amines via H/D exchange with $\mathrm{D}_{2} \mathrm{O}$

Xiang Meng, ${ }^{a}$ Yue Dong, ${ }^{a}$ Qiangqiang Liu, ${ }^{a}$ and Wei Wang ${ }^{\text {a, }, ~}{ }^{\text {c, }, *}$
${ }^{\text {a }}$ Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona
${ }^{\mathrm{b}}$ Department of Chemistry and Biochemistry, University of Arizona
${ }^{c}$ University of Arizona Cancer Centre, University of Arizona. * 1703 E. Mabel Street, P. O. Box 210207, Tucson, AZ 85721-0207.

E-mail: weiwang1@arizona.edu

## Contents

1. General Information .......................................................................................................................S2
2. General Procedures and Optimization of Reaction Conditions.....................................................S2
3. Stern-Volmer Quenching Experiments........................................................................................S11
4. Compound Characterization Data ...............................................................................................S13
5. References ....................................................................................................................................... S30
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra.............................................................................................................. S31

## 1. General Information

Commercially available reagents were purchased from Sigma Aldrich, Matrix Chemical, AK Sci, Alfa Aesar, TCI, and Chem Cruz, and used as received unless otherwise noted. Except Isatin, 6Chloroisatin and 5-Bromoisatin are purchased form Sigma Aldrich. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with a fluorescence F254 indicator were used for thin-layer chromatography (TLC) analysis. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Advance 400/500 or JEOL 400. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million ( ppm ) relative to residual chloroform ( 7.26 ppm ) or dimethyl sulfoxide ( 2.50 ppm ) as internal standards. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet $)$, coupling constant in Hertz $(\mathrm{Hz})$ and hydrogen numbers based on integration intensities. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the central peak of $\mathrm{CDCl}_{3}(77.16 \mathrm{ppm})$ as internal standards.
2. General Procedures and Optimization of Reaction Conditions


Figure S1. The Visible-Light Photoredox Catalysis Experimental Setup

### 2.1 General Procedures of Synthesis of $\alpha$-Deuterated Amine:



General Procedure A: To an oven-dried $10 \mathrm{~mL}-$ Schlenk tube equipped with a stir bar, was added amine ( $0.2 \mathrm{mmol}, 1.0$ equiv), photocatalyst 4CzIPN ( $1.6 \mathrm{mg}, 1 \mathrm{~mol} \%$ ), triisopropylsilanethiol ( 12 $\mu \mathrm{L}, 30 \mathrm{~mol} \%$ ) and the tube was evacuated and backfilled with $\mathrm{N}_{2}$ (three times). Anhydrous EtOAc $(4 \mathrm{~mL})$, and 1 mL of $\mathrm{D}_{2} \mathrm{O}$ were added by syringe under $\mathrm{N}_{2}$. The solution was then stirred at room temperature under the irradiation of two 40 W Kessil Blue LEDs for 48 h . After completion of the reaction, the top layer EtOAc was concentrated and treated with a 2.0 M solution of HCl in diethyl ether and filtered. The solid was then washed with diethyl ether and dried under a vacuum to give the pure product. Alternatively, the top layer EtOAc was concentrated and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ and $\mathrm{HCl}(5 \mathrm{~mL}, 1.0 \mathrm{M}, \mathrm{aq})$. The organic layer was disposed and the aqueous layer diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and Ammonium hydroxide solution ( $10 \mathrm{~mL}, 33 \%$, aq). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Percentages of exchanged protons are determined by ${ }^{1} \mathrm{H}$ NMR.


General Procedure B: To an oven-dried 10 mL -Schlenk tube equipped with a stir bar, was added amine ( $0.2 \mathrm{mmol}, 1.0$ equiv), photocatalyst 3DPA2FBN ( $2.6 \mathrm{mg}, 2 \mathrm{~mol} \%$ ), triisopropylsilanethiol ( $12 \mathrm{uL}, 30 \mathrm{~mol} \%$ ) and the tube was evacuated and backfilled with $\mathrm{N}_{2}$ (three times). 4 mL anhydrous EtOAc, and $1 \mathrm{ml}_{2} \mathrm{O}$ were added by syringe under $\mathrm{N}_{2}$. The solution was then stirred at room temperature under the irradiation of two 40 W Kessil Blue LEDs for 48 h . After completion of the reaction, the top layer EtOAc was concentrated and treated with a 2.0 M solution of HCl in diethyl ether and filtered. The solid was then washed with diethyl ether and dried under a vacuum to give the pure product. Percentages of exchanged protons are determined by ${ }^{1} \mathrm{H}$ NMR.

### 2.2 General Procedure for Synthesis of 1as-1au



To an oven-dried round-bottom flask with a magnetic stir bar was added acid ( $3 \mathrm{mmol}, 1.0$ equiv.), alcohol or amine ( 3.6 mmol , 1.2 equiv.), DCC ( $742 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.2$ equiv.) and DMAP ( 37 m
$\mathrm{g}, 0.30 \mathrm{mmol}, 0.1$ equiv.). Dry dichloromethane ( 20 mL ) was added and the mixture was allowed to stir at room temperature until the acid was consumed (followed by TLC). Typical reaction times were between 12 h . The white precipitates were filtered off and the solvent was removed under reduced pressure. The desired products were obtained in the corresponding yields after purification by flash chromatography on silica gel eluting with hexane/ethyl acetate.
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 3-aminopropanoate (1as): The title product was prepared according to the general procedure and purified by column chromatography on silica gel eluting with hexane/ethyl acetate (8:1) as white soild about 500 mg ( $73 \%$ ).

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.65(\mathrm{tdd}, J=10.9,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{td}, J=6.3,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.38(\mathrm{td}, J=6.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.61(\mathrm{ddd}, J=13.2,5.8,2.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.33(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.09-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{td}, J=5.4,4.4,2.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.70$ (dd, $J=7.1,2.0 \mathrm{~Hz}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 172.3,74.2,47.0,41.0,38.5,38.1,34.3,31.4,26.4,23.5,22.1$, 20.8, 16.3.


$N$-(3-Aminopropyl)-2-(4-isobutylphenyl)propanamide (1at): The title product was prepared according to the general procedure and purified by column chromatography on silica gel eluting with hexane/ethyl acetate ( $10: 1$ ) as white oil about $660 \mathrm{mg}(83 \%)$.

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.19$ - $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (dd, $\left.J=8.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.16(\mathrm{~s}, 1 \mathrm{H})$, 3.49 (dd, $J=7.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{td}, J=6.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (dd, $J$ $=7.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{dtd}, J=13.6,6.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 2 \mathrm{H}), 0.87$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 174.7, 140.7, 138.8, 129.6, 127.4, 127.4, 46.9, 45.1, 40.0, 38.0, 32.4, 30.3, 22.4, 18.5.
 aminopropanoate (1au): The title product was prepared according to the general procedure and purified by column chromatography on silica gel eluting with hexane/ethyl acetate (10:1) as white oil about 600 mg (73\%).

${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CHLOROFORM}-D\right) \delta 4.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=6.4,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{dd}, J=6.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{ddd}, J=10.8,8.0,3.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.40$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.23 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 172.2,112.6,109.4,85.2,84.2,81.8,64.6,55.0$, 37.9, 37.8, 26.4, 25.0.


### 2.3 Reaction Conditions Optimization

Table S1. Optimization of reaction conditions for primary alkylamines


| Entry | HAT-Cat | Solvent | $\mathrm{D}_{2} \mathrm{O}$ | Times | D/\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HAT-1 (15 mol\%), HAT-2 (30 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 45 |
| 2 | HAT-1 (15 mol\%), HAT-3 (30 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 32 |
| $3^{\text {a }}$ | HAT-1 (15 mol\%), HAT-4 (30 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 49 |
| 4 | HAT-1 (15 mol\%), HAT-3 (30 mol\%) | ACN (0.1 M) | 80 equiv. | 16 h | 25 |
| 5 | HAT-1 (15 mol\%), HAT-3 (30 mol\%) | MeOH (0.1M) | 80 equiv. | 16 h | 0 |
| 6 | HAT-1 (15 mol\%), HAT-3 (30 mol\%) | DCM (0.1 M) | 80 equiv. | 16 h | nd |
| 7 | HAT-1 (15 mol\%), HAT-3 (30 mol\%) | Acetone (0.1 M) | 80 equiv. | 16 h | 0 |
| 8 | HAT-1 (15 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 0 |
| 9 | HAT-2 (30 mol\%) | EA (0.1M) | 80 equiv. | 16 h | 69 |
| 10 | HAT-1 (15 mol\%), HAT-2 (30 mol\%) | $\mathrm{D}_{2} \mathrm{O}(0.2 \mathrm{M})$ |  | 16 h | 39 |
| 11 | HAT-1 (15 mol\%), HAT-2 (30 mol\%) | THF (0.1 M) | 80 equiv. | 16 h | 37 |
| 12 | HAT-2 (50 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 85 |
| 13 | HAT-4 (30 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 50 |
| 14 | HAT-2 (30 mol\%) | EA ( 0.05 M ) | 80 equiv. | 16 h | 75 |
| 15 | HAT-2 (30 mol\%) | EA (0.1 M) | 250 equiv. | 16 h | 87 |
| 16 | HAT-2 (100 mol\%) | EA (0.1 M) | 80 equiv. | 16 h | 94 |
| 17 | HAT-2 (30 mol\%) | EA (0.1M) | 250 equiv. | 36 h | 95 |
| 18 | HAT-2 (50 mol\%) | EA (0.1M) | 250 equiv. | 16 h | 83 |
| 19 | HAT-2 (30 mol\%) | EA (0.1M) | 80 equiv. | 36 h | 90 |
| 20 | HAT-2 (20 mol\%) | EA (0.1 M) | 80 equiv. | 36 h | 83 |
| 21 | HAT-2 (30 mol\%) | EA (0.05 M) | 250 equiv. | 36 h | 100 |
|  | $\mathrm{N}^{-}=\mathrm{N}^{+} \mathrm{N}^{-}$ <br> HAT-1 <br> HAT-2 |  <br> HAT-3 |  | $\mathrm{HS} \bigcirc \mathrm{CO}_{2} \mathrm{Me}$ |  |

[^0]Table S2. Optimization of reaction conditions for secondary alkylamines

|  <br> 1ap, 0.2 mmol |  |  | nol\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | PC | Solvent | $\mathrm{D}_{2} \mathrm{O}$ | Times | D/\% |
| 1 | PC-1 | EA (0.05 M) | 250 equiv. | 48 h | 30 |
| 2 | PC-2 | EA ( 0.05 M ) | 250 equiv. | 16 h | 100 |
| 3 | PC-3 | EA (0.05 M) | 250 equiv. | 16 h | 0 |
| 4 | PC-4 | EA ( 0.05 M ) | 250 equiv. | 16 h | 0 |
| 4 CzIPN PC-1 |  |  | 3DPA2FBN PC-2 |  |  |
| $\left[\mathrm{E}_{1 / 2}\left(\mathrm{PC}^{*} / \mathrm{PC}^{-}\right)=+1.35 \mathrm{~V}\right.$ vs SCE |  |  | $\left[\mathrm{E}_{1 / 2}\left(\mathrm{PC}^{*} / \mathrm{PC}^{-}\right)=+0.92 \mathrm{~V}\right.$ vs SCE |  |  |
| $\left[\mathrm{E}_{1 / 2}\left({\mathrm{PC} / \mathrm{PC}^{-} \cdot}^{-}\right)=-1.21 \mathrm{~V}\right.$ vs SCE |  |  | $\left[\mathrm{E}_{1 / 2}\left({\mathrm{PC} / \mathrm{PC}^{-} \cdot}^{-}=-1.92 \mathrm{~V}\right.\right.$ vs SCE |  |  |
| $\left[\mathrm{Ir}\left(\mathrm{dFCF}_{3} \mathrm{ppy}\right)_{2}-\left(5,5{ }^{\prime}-\mathrm{dFbpy}\right) \mathrm{PF}_{6} \mathrm{PC-3}\right.$ |  |  | $\left[\operatorname{lr}\left(\mathrm{dFCF}_{3} \mathrm{ppy}\right)_{2}-\left(5,5{ }^{-}-\mathrm{dCF} F_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}$ |  |  |
| $\left[\mathrm{E}_{1 / 2}\left(\mathrm{PC}^{*} / \mathrm{PC}^{-}\right)=+1.61 \mathrm{~V}\right.$ vs SCE |  |  | $\left[\mathrm{E}_{1 / 2}\left(\mathrm{PC}^{*} / \mathrm{PC}^{-}\right)=+1.68 \mathrm{~V}\right.$ vs SCE |  |  |
| $\left[\mathrm{E}_{1 / 2}\left(\mathrm{PC} / \mathrm{PC}^{-} \cdot\right)=-1.54 \mathrm{~V}\right.$ vs SCE |  |  | $\left[\mathrm{E}_{1 / 2}\left(\mathrm{PC} / \mathrm{PC}^{-}\right)=-1.07 \mathrm{~V}\right.$ vs SCE |  |  |
| ${ }^{1} \mathrm{Pr}_{3} \mathrm{SiSH}$ |  |  | $\mathrm{E}^{0 \mathrm{x}}{ }_{1 / 2}\left(\mathrm{nBuNH}_{2}\right)=+1.40 \mathrm{~V} \text { vs SCE }$ |  |  |
| $\mathrm{E}^{\mathrm{OX}}{ }_{1 / 2}=+0.28 \mathrm{~V} \text { vs. SCE }$ |  |  |  |  |  |
| $\mathrm{E}^{\text {red }}{ }_{1 / 2}=-0.82 \mathrm{~V}$ vs. SCE |  |  |  |  |  |

## 3. Stern-Volmer Quenching Experiments

In a typical experiment, a solution of photocatalyst 4CzIPN in ethyl acetate ( $1.25 \times 10^{-4} \mathrm{M}$ ) was added with an appropriate amount of quencher in a quartz cuvette. Then the emission of the sample was collected. The emission intensity at 520 nm was collected with excited wavelength of 360 nm .


Figure S2. Stern-Volmer plot of 4CzIPN with varying reaction components. Dark Line: SternVolmer plot of 4CzIPN with constant phenylethylamine ( 0.3 M ) and varying concentration of triisopropylsilanethiol. The Stern-Volmer constant ( $K S V$ ) for the quenching of Thiol in the presence of amine is $K_{S V}=12.47 \mathrm{M}^{-1}$. Red line: Stern-Volmer plot of 4CzIPN with varying concentration of triisopropylsilanethiol. The Stern-Volmer constant ( $K S V$ ) for the quenching of Thiol is $K_{S V}=1.26 \mathrm{M}^{-1}$. The deprotonated thiol showed enhanced quenching ability than thiol.


Figure S3. Stern-Volmer plot of 4CzIPN with varying reaction components. Dark Line: SternVolmer plot of 4CzIPN with varying concentration of phenylethylamine. The Stern-Volmer constant ( $K S V$ ) for the quenching of amine is $K S V=4.27 \mathrm{M}^{-1}$. Red Line: Stern-Volmer plot of 4CzIPN with constant phenylethylamine ( 0.3 M ) and varying concentration of triisopropylsilanethiol. The Stern-Volmer constant (KSV) for the quenching of Thiol in the presence of amine is $K s V=12.47 \mathrm{M}^{-1}$. The deprotonated thiol showed enhanced quenching ability than the phenylethylamine.

## 4. Compound Characterization Data

The compounds $\mathbf{2 a}, \mathbf{2 r}, \mathbf{2 o}, \mathbf{2 y}, \mathbf{2 z}, \mathbf{2 a c}, \mathbf{2 a d}, \mathbf{2 a i}, \mathbf{2 a n}, \mathbf{2 a o}$ and $\mathbf{2 a p}$ are known compounds. ${ }^{1-4}$

## 2-Phenylethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2a):



The title product was prepared according to the general procedure and isolated as white solid about 30.2 mg ( $95 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 8.05(\mathrm{~s}, 3 \mathrm{H}), \delta 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3 H ), 2.84 ( $\mathrm{s}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta$ 137.9, 129.2, 129.2, 127.3, 33.3.

## 2-(4-Chlorophenyl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2b):



The title product was prepared according to the general procedure Aand isolated as white solid about 37 mg ( $96 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.45-7.99$ (m, 2H), 7.39 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.31 (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO) $\delta 136.9,131.8,131.1,129.0,32.5,32.4,32.4,32.3$.
HRMS (ESI-TOF) m/z: [C88 $\left.\mathrm{H}_{8} \mathrm{D}_{2} \mathrm{ClN}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{ClN}$ : 158.0706, found: 158.0700.

## 2-(4-Fluorophenyl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2c):



The title product was prepared according to the general procedure A and isolated as white solid about 33.6 mg (95\%).
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 8.16(\mathrm{t}, J=20.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}$, 2 H ), 2.88 ( $\mathrm{s}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 162.6,160.7,134.0,131.1,131.0,115.9,115.7,32.4,32.3,32.2$.

HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{D}_{2} \mathrm{FN}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{FN}$ : 142.1001, found: 142.0996.

## 2-(4-Bromophenyl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2d):



The title product was prepared according to the general procedure A and isolated as white solid about 45 mg ( $95 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 7.57-7.47$ (m, 2H), $7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 137.4,131.9,131.5,120.3,32.5,32.4,32.4,32.3$.
HRMS (ESI-TOF) m/z: [C8 $\left.\mathrm{H}_{8} \mathrm{D}_{2} \mathrm{BrN}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{BrN}$ : 202.0200, found: 202.0195.

## 3-(3-Fluorophenyl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2e):



The title product was prepared according to the general procedure A and isolated as white solid about 33.3 mg (94\%).
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 8.48-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 2 \mathrm{H})$, 2.95 (s, 2H).
${ }^{13}$ C NMR (126 MHz, DMSO) $\delta 162.0,160.1,131.6,131.5,129.5,129.4,125.1,125.1,124.6$, 124.4, 115.9, 115.7, 26.7, 26.6, 26.6, 26.6.

HRMS (ESI-TOF) m/z: [C88 $\left.\mathrm{H}_{8} \mathrm{D}_{2} \mathrm{FN}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{FN}$ : 142.1001, found: 142.0995.

## 2-(2,4-Dichlorophenyl)ethan-1,1- $d_{2}$-1-amine hydrochloride (2f):



The title product was prepared according to the general procedure A and isolated as white solid about 43.5 mg ( $96 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.70-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.35(\mathrm{~m}$, 2 H ), 3.04 ( $\mathrm{s}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 134.5,132.8,129.3,128.1,30.4,30.3,30.3$.

HRMS (ESI-TOF) m/z: [C88 $\left.\mathrm{H}_{7} \mathrm{D}_{2} \mathrm{Cl}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{D}_{2} \mathrm{Cl}_{2} \mathrm{~N}$ : 192.0316, found: 192.0310 .

## 4-(2-Aminoethyl-2,2- $d_{2}$ )phenol hydrochloride (2g):



The title product was prepared according to the general procedure A and isolated as white solid about 33.2 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 3 \mathrm{H}), 7.06-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.60$ (m, 2H), 2.72 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta$ 156.7, 130.1, 127.8, 115.9, 32.5.
HRMS (ESI-TOF) m/z: [C8 $\left.\mathrm{H}_{9} \mathrm{D}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{D}_{2} \mathrm{NO}$ : 140.1044, found: 140.1039.

## 2-(4-(Trifluoromethoxy)phenyl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2h):



The title product was prepared according to the general procedure A and isolated as white solid about 47.1 mg (93\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO) $\delta 8.62-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dt}, J=7.7,1.1$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 2.95 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 147.6,147.6,137.5,131.1,124.4,121.8,121.6,119.3,116.7$, 32.4, 32.4, 32.3.

HRMS (ESI-TOF) m/z: [C9 $\left.{ }_{9}{ }_{8} \mathrm{D}_{2} \mathrm{~F}_{3} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{~F}_{3} \mathrm{NO}: 208.0918$, found: 208.0913 .

## 2-(4-(Trifluoromethyl)phenyl)ethan-1,1- $\boldsymbol{d}_{\mathbf{2}}$-1-amine hydrochloride (2i):



The title product was prepared according to the general procedure A and isolated as white solid about 43.1 mg ( $95 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.56-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 2.97 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 142.9,130.2,128.9,128.5,128.1,127.8,127.5,126.2,126.0$, $125.9,125.9,125.9,123.5,120.8,33.0,32.9,32.9$.

HRMS (ESI-TOF) m/z: [C9 $\left.\mathrm{H}_{8} \mathrm{D}_{2} \mathrm{~F}_{3} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{~F} 3 \mathrm{~N}: 192.0969$, found: 192.0964.

## 2-(3-(Trifluoromethyl)phenyl)ethan-1,1-d $\mathbf{d}_{2}$-1-amine hydrochloride (2j):



The title product was prepared according to the general procedure A and isolated as white solid about 43.1 mg (95\%).
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 8.10(\mathrm{~s}, 3 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 138.3,132.4,129.0,129.0,128.8,128.5,124.8,124.8,124.7$, 124.7, 122.9, 122.9, 122.6, 31.8.

HRMS (ESI-TOF) m/z: [C9 $\left.\mathrm{H}_{8} \mathrm{D}_{2} \mathrm{~F}_{3} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{D}_{2} \mathrm{~F}_{3} \mathrm{~N}: 192.0969$, found: 192.0964.

## 2-(3-Methoxyphenyl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2k):



The title product was prepared according to the general procedure A and isolated as white solid about 35.9 mg (95\%).
${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 3 \mathrm{H}), 3.75$ (s, 3H), 2.85 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 158.8,138.3,129.0,120.2,113.7,111.6,54.4,32.2$.
HRMS (ESI-TOF) m/z: [C9 $\left.\mathrm{H}_{11} \mathrm{D}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{NO}: 154.1201$, found: 154.1195 .

## 2-(4-(tert-Butyl)phenyl)ethan-1,1-d $\mathbf{d}_{2}$-1-amine hydrochloride (21):



The title product was prepared according to the general procedure A and isolated as white solid about 41.2 mg (96\%).
${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.43-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.27$ ( $\mathrm{s}, 9 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO) $\delta 149.5,134.8,128.8,125.8,34.6,32.8,32.8,32.7,32.7,31.6$. HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{D}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{D}_{2} \mathrm{~N}$ : 180.1721, found: 180.1715.

## 2-Mesitylethan-1,1- $\boldsymbol{d}_{\mathbf{2}}$-1-amine hydrochloride (2m):



The title product was prepared according to the general procedure A and isolated as white solid about 39.4 mg (98\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 6.73(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.12(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 136.2,134.6,134.2,129.1,34.0,21.0,20.0$.
HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{D}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{D}_{2} \mathrm{~N}$ : 166.1565, found: 166.1559.

## 2-(p-Tolyl)ethan-1,1- $d_{2}$-1-amine hydrochloride (2n):



The title product was prepared according to the general procedure A and isolated as white solid about 33.5 mg (97\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 8.40-7.99$ (m, 2H), 7.09 (d, $\left.J=1.8 \mathrm{~Hz}, 5 \mathrm{H}\right), 2.81$ (s, 2H), $2.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 136.2,134.9,129.7,129.0,32.9,32.8,32.8,21.2$.
HRMS (ESI-TOF) m/z: [C9 $\left.{ }_{4} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~N}$ : 138.1252, found: 138.1246.

## 2-Phenylethan-1,1-d $d_{2}$-1-amine hydrochloride (2o):



The title product was prepared according to the general procedure A and isolated as white solid about 36.2 mg (96\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 8.05(\mathrm{~s}, 3 \mathrm{H}), \delta 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3 H ), 2.84 ( $\mathrm{s}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 137.9,129.2,129.2,127.3,33.3$.
HRMS (ESI-TOF) m/z: [C9 $\left.\mathrm{H}_{11} \mathrm{D}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{NO}: 154.1201$, found: 154.1195 .

## Methyl 4-(2-aminoethyl-2,2- $d_{2}$ )benzoate hydrochloride (2p):



The title product was prepared according to the general procedure A and isolated as white solid about 43 mg (99\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D $) ~ \delta 7.87(\mathrm{dt}, J=8.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.96 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- ${ }_{6}$ ) $\delta 166.6,143.7,130.0,129.7,128.6,52.6,33.1,33.1,33.0$, 33.0.

HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{NO}_{2}$ : 182.1150 , found: 182.1145 .

## 2-(3-Methoxy-4-propoxyphenyl)ethan-1,1-d $\boldsymbol{d}_{2}$-1-amine hydrochloride (2q):



The title product was prepared according to the general procedure A and isolated as white solid about 46.4 mg (94\%).
${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.33-7.84(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ (dd, $J=8.1$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO) $\delta 149.5,147.4,130.2,121.1,113.8,113.3,70.2,56.0,32.8,22.6$, 10.9 .

HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{D}_{2} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{D}_{2} \mathrm{NO}_{2}$ : 212.1620, found: 212.1614.

## 2-(3,4-Dimethoxyphenyl)ethan-1,1,2,2- $d_{4}-1$-amine (2r):



The title product was prepared according to the general procedure A and isolated as white solid about 42.4 mg (96\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D ${ }_{6}$ ) $\delta 6.93-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $11.5,2.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 149.2,147.6,133.4,120.9,113.1,112.4,56.0,55.9$.

## 2-(2,2-Difluorobenzo[d][1,3]dioxol-5-yl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2s):



The title product was prepared according to the general procedure A and isolated as white solid about 43 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 7.98(\mathrm{~s}, 3 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 142.3,141.0,133.6,130.6,124.2,110.0,109.4,31.8$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{D}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{D}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}: 204.0805$, found: 204.0800.

## 2-(2,4-Difluoro-3-methoxyphenyl)ethan-1,1-d $\boldsymbol{d}_{2}$-1-amine hydrochloride (2t):



The title product was prepared according to the general procedure A and isolated as white solid about 40.5 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 7.32-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}, J=8.7,6.0 \mathrm{~Hz}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 155.9,155.9,155.6,155.5,153.5,153.4,153.1,153.1,136.5$, $136.4,136.2,124.8,124.7,124.7,124.6,122.1,122.0,112.7,112.7,112.5,112.5,62.3,62.3$, 62.3, 26.4.

HRMS (ESI-TOF) m/z: [C9H9D $\left.{ }_{2} \mathrm{~F}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{D}_{2} \mathrm{~F}_{2} \mathrm{NO}$ : 190.1012, found: 190.1007.

## 2-(Thiophen-2-yl)ethan-1,1-d $\boldsymbol{d}_{2}$-1-amine hydrochloride (2u):



The title product was prepared according to the general procedure A and isolated as white solid about 30.3 mg ( $92 \%$ ).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.30(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dq, $J=3.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta 138.5,127.6,126.7,125.4,26.7$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{D}_{2} \mathrm{NS}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{D}_{2} \mathrm{NS}: 130.0659$, found: 130.0654.

## 2-(Furan-2-yl)ethan-1,1- $\boldsymbol{d}_{2}$-1-amine hydrochloride (2v):



The title product was prepared according to the general procedure A and isolated as white solid about 28.3 mg (95\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 8.07(\mathrm{~d}, J=48.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dt, $J$ $=3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 151.4,142.7,111.1,107.2,26.1,26.0,25.9,25.9$.
HRMS (ESI-TOF) m/z: [C6 $\left.\mathrm{H}_{7} \mathrm{D}_{2} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{D}_{2} \mathrm{NO}: 114.0888$, found: 114.0882.

## 2-(4-Phenylthiazol-2-yl)ethan-1,1- $\boldsymbol{d}_{\mathbf{2}}$-1-amine hydrochloride (2w):

The title product was prepared according to the general procedure A and isolated as white solid about 46.46 mg ( $95 \%$ ).

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D6) $\delta 7.95-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{td}, J$ $=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 169.5,154.2,134.8,129.3,128.4,126.5,114.1,37.4$.
HRMS (ESI-TOF) m/z: [C $\left.\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{~S}$ : 207.0925, found: 207.0920.

## tert-Butyl 3-aminopropanoate-3,3- $\boldsymbol{d}_{2}$ hydrochloride (2x):



The title product was prepared according to the general procedure A and isolated as colorless oil about 30 mg ( $82 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.13-7.86(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta$ 170.1, 81.3, 32.7, 28.3.
HRMS (ESI-TOF) m/z: [C7 $\left.\mathrm{H}_{13} \mathrm{D}_{2} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{D}_{2} \mathrm{NO}_{2}$ : 148.1307, found: 148.1301.

## 4-Phenylbutan-1,1- $d_{2}$-1-amine hydrochloride (2y):



The title product was prepared according to the general procedure A and isolated as white solid about 35.5 mg (95\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D $) \delta 8.04(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.05$ (m, 3H), 2.54 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.47$ (m, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 142.3,128.9,128.8,126.3,35.1,28.2,26.9,26.9,26.8$.

## 3-Phenylpropan-1,1- $\boldsymbol{d}_{\mathbf{2}}$-1-amine hydrochloride (2z):



The title product was prepared according to the general procedure A and isolated as white solid about 35.5 mg (95\%).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-D_{6}$ ) $\delta 7.29$ - $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=12.1,7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.61(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 141.5,129.0,128.8,126.6,32.3,29.1,29.0,28.9$.
tert-Butyl (((1r,4r)-4-(aminomethyl- $\left.\boldsymbol{d}_{2}\right)$ cyclohexyl)methyl)carbamate hydrochloride (2aa):


The title product was prepared according to the general procedure A and isolated as white solid about 50.4 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 8.10(\mathrm{t}, J=19.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.73$ (d, $J$ $=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.23(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{dq}, J=21.1,12.5,11.7 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 156.3,77.8,46.6,46.4,38.2,35.9,35.9,35.8,30.0,29.8$, 28.8.

HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: 245.2198$, found: 245.2193.

## 3-Aminopropanenitrile-3,3- $\boldsymbol{d}_{\mathbf{2}}$ hydrochloride (2ab):



The title product was prepared according to the general procedure A and isolated as white solid about 19 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.18$ (s, 3H), 2.82 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 118.4,16.0$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{D}_{2} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{D}_{2} \mathrm{~N}_{2}$ : 73.0735, found: 73.0729.

## Cyclohexylmethan- $\boldsymbol{d}_{2}$-amine hydrochloride (2ac):



The title product was prepared according to the general procedure A and isolated as brown solid about 26.8 mg ( $89 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO) $\delta 7.88(\mathrm{~s}, 2 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.25-$ $1.12(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{td}, J=11.9,3.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 35.7,35.7,30.1,26.1,25.5$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{D}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{D}_{2} \mathrm{~N}$ : 116.1408, found: 116.1403.

## Cycloheptylmethan- $\boldsymbol{d}_{2}$-amine hydrochloride (2ad):



The title product was prepared according to the general procedure A and isolated as brown solid about 28 mg ( $85 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 7.82(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.38(\mathrm{~m}, 11 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 39.3,36.6,31.9,31.9,27.8$.

## tert-Butyl (3-aminopropyl-3,3- $d_{2}$ )carbamate hydrochloride (2ae):



The title product was prepared according to the general procedure A and isolated as white solid about 34.7 mg ( $82 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 2.98(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 126 MHz, DMSO) $\delta 156.2,78.2,37.3,28.7,28.0$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ : 177.1572, found:
177.1567.

## 4,4-Diethoxybutan-1,1,2,2,3,3,4-d $\boldsymbol{z}$-1-amine hydrochloride (2af):



The title product was prepared according to the general procedure A and isolated as colorless oil about 28.5 mg ( $70 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO) $\delta 3.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 2 \mathrm{H}), 1.13-1.04(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 65.4,15.6$.
HRMS (ESI-TOF) m/z: [C8 $\left.\mathrm{H}_{12} \mathrm{D}_{7} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{D}_{7} \mathrm{NO}_{2}$ : 169.1933 , found: 169.1928.

## Benzyl (2-aminoethyl-2,2- $d_{2}$ )carbamate hydrochloride (2ag):



The title product was prepared according to the general procedure A and isolated as white solid about 42.6 mg ( $92 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.37$ - $8.05(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.23$ ( $\mathrm{s}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D 6 ) $\delta 156.8,137.5,128.9,128.4,128.3,66.1,38.4,38.4,38.3$, 38.2.

HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ : 197.1259 , found: 197.1254.

## Benzyl (3-aminopropyl-3,3- $d_{2}$ )carbamate hydrochloride (2ah):



The title product was prepared according to the general procedure A and isolated as white solid about 45.7 mg (93\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.11(\mathrm{t}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{q}, J=7.3 \mathrm{~Hz}, 5 \mathrm{H}), 4.98(\mathrm{~s}$, $2 \mathrm{H}), 3.02(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D 6 ) $\delta 156.7,137.7,128.9,128.3,128.3,65.8,37.9,37.8,27.9$, 27.8, 27.8, 27.7.

HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: 211.1416$, found: 211.1410.

## Adamantan-1-ylmethan- $d_{2}$-amine hydrochloride (2ai):



The title product was prepared according to the general procedure A and isolated as white solid about 36.5 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.16-7.74(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{q}, J=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.54(\mathrm{~m}$, $8 \mathrm{H}), 1.52(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 39.3,36.6,31.9,27.8$.

## 3-Butoxypropan-1,1,2,2,3,3- $\boldsymbol{d}_{6}$-1-amine hydrochloride (2aj):

[100] [50]

[60]
The title product was prepared according to the general procedure A and isolated as colorless oil about 28.3 mg ( $82 \%$ ).
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CHLOROFORM}-D) \delta 3.56(\mathrm{dd}, J=8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{tt}, J=9.6,4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 0.91(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 71.4,69.1,31.7,29.8,19.4,17.8,14.0$.
HRMS (ESI-TOF) m/z: [C77 $\left.\mathrm{H}_{11} \mathrm{D}_{6} \mathrm{NO}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{D}_{6} \mathrm{NO}: 138.1765$, found: 138.1760.

## (2,3-Dihydro-1 $H$-inden-2-yl)methan- $d_{2}$-amine hydrochloride: (2ak):



The title product was prepared according to the general procedure A and isolated as white solid about 33.3 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D $)^{2} \delta 8.25(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{p}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (dq, $J$ $=4.7,2.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{q}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=9.1,5.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-D6) $\delta 142.5,126.9,124.9,37.8,36.8$.
HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~N}: 150.1252$, found: 150.1246.
tert-Butyl 4-(aminomethyl- $d_{2}$ )piperidine-1-carboxylate-2,2,6,6- $\boldsymbol{d}_{4}$ hydrochloride (2al):


The title product was prepared according to the general procedure A and isolated as white solid about 45 mg ( $88 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.08(\mathrm{~d}, J=40.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 1.68$ (ddd, $J=27.7$, $12.0,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.04-0.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-D 6 ) $\delta$ 154.3, 79.1, 34.0, 29.2, 28.6.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{D}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{D}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}: 211.2136$, found: 211.2130.

## Methyl (tert-butoxycarbonyl)-L-lysinate-6,6- $\boldsymbol{d}_{2}$ hydrochloride (2am):



The title product was prepared according to the general procedure A and isolated as white solid about 47.7 mg ( $80 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CHLOROFORM- $D$ ) $\delta 5.06(\mathrm{dd}, J=26.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{dt}, J=13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{q}, J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 173.4,155.5,80.0,53.4,52.4,32.7,29.8,28.0$, 23.1, 22.6.

HRMS (ESI-TOF) m/z: [C12 $\left.\mathrm{H}_{22} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}: 263.1940$, found: 263.1934.

## 4-Phenylbutan-2- $d$-2-amine hydrochloride (2an):



The title product was prepared according to the general procedure B and isolated as white solid about 35.7 mg (96\%).
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-D $) ~ \delta 8.41-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.11(\mathrm{~m}$, $3 \mathrm{H}), 2.71-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{dtd}, J=13.9,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 141.6,129.0,128.8,126.5,36.3,36.2,36.2,31.3,18.4,18.4$, 18.3.

## 1-(Adamantan-1-yl)ethan-1-d-1-amine hydrochloride (2ao):



The title product was prepared according to the general procedure B and isolated as white solid about 38.9 mg ( $90 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 7.92(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{dt}, J=25.1,12.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 37.6,36.7,34.5,34.5,34.5,28.0,13.1,13.1,13.0$.

## 2,3-Dihydro-1H-inden-2-d-2-amine hydrochloride (2ap):



The title product was prepared according to the general procedure B and isolated as white solid about 32.6 mg (96\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 8.43$ (s, 2H), 7.23 (dd, $J=6.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.15 (dt, $J=5.2$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.21(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 140.4,127.4,125.2,37.7$.
HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{~N}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~N}$ : 150.1252, found: 150.1246.
tert-Butyl 4-aminopiperidine-1-carboxylate-4-d hydrochloride (2aq):


The title product was prepared according to the general procedure B and isolated as white solid about 43.1 mg (91\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D6) $\delta 8.07(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74$ (s, 2H), 1.83 (d, $J$ $=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 10 \mathrm{H}), 1.31(\mathrm{dd}, J=12.8,4.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta$ 154.3, 79.5, 41.5, 29.8, 28.6.
HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{DN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{DN}_{2} \mathrm{O}_{2}$ : 202.1666, found:
202.1660.
tert-Butyl 4-amino-3-(4-chlorophenyl)butanoate-4,4- $d_{2}$ hydrochloride (2ar):


The title product was prepared according to the general procedure A and isolated as white solid about 55.2 mg (90\%).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $D_{6}$ ) $\delta 8.05(\mathrm{~s}, 3 \mathrm{H}), 7.36(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (dd, $J=8.5$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=15.7,5.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.18$ (d, $J=1.9 \mathrm{~Hz}, 9 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6) $\delta 170.5,139.4,132.4,130.6,129.0,80.5,39.4,39.3,28.1$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{D}_{2} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{D}_{2} \mathrm{ClNO}_{2}: 272.1386$, found: 272.1381.
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 3-aminopropanoate-3,3- $\boldsymbol{d}_{2}$ (2as):


The title product was prepared according to the general procedure A and isolated as white solid about 46.6 mg ( $88 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CHLOROFORM-D) $\delta 4.71-4.67$ (m, 1H), $2.52(\mathrm{~s}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=6.9$
$\mathrm{Hz}, 2 \mathrm{H}), 1.81(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{dtt}, J=12.0,6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ $-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 7 \mathrm{H}), 0.73(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 171.9,74.8,47.0,41.0,34.3,31.5,26.4,23.5,22.1$, 20.8, 16.4.

HRMS (ESI-TOF) m/z: [C13 $\left.\mathrm{H}_{23} \mathrm{D}_{2} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{D}_{2} \mathrm{NO}_{2}: 230.2089$, found: 230.2084.

## $N$-(3-Aminopropyl-3,3- $d_{2}$ )-2-(4-isobutylphenyl)propanamide (2at):



The title product was prepared according to the general procedure A and isolated as white solid about 55.2 mg (92\%).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-D_{6}$ ) $\delta 7.84(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (dd, $J=8.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=7.1,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.75(\mathrm{dtt}, J=14.3,7.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.81 (dd, $J=6.7,2.0 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D ${ }_{6}$ ) $\delta 173.8,140.2,139.7,129.3,127.4,45.3,44.8,36.7,33.3$, 30.2, 22.7, 19.2.

HRMS (ESI-TOF) m/z: [C16 $\left.\mathrm{H}_{24} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{D}_{2} \mathrm{~N}_{2} \mathrm{O}: 265.2249$, found:
265.2243.
((3aR,4R,6R,6aR)-6-Methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl 3-aminopropanoate-3,3- $d_{2}$ (2au):


The title product was prepared according to the general procedure A and isolated as white solid about 50 mg ( $80 \%$ ).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 4.96$ (d, $\left.J=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.87-4.75$ (m, 1H), $4.63-$ $4.53(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.31(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 169.0,110.1,110.0,88.5,85.9,81.6,64.1,55.6$, 33.6, 26.4, 24.9, 24.8.

HRMS (ESI-TOF) m/z: [ $\left.\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{D}_{2} \mathrm{NO}_{6}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{D}_{2} \mathrm{NO}_{6}$ : 278.1573, found: 278.1567.

## 5. References

1. Y. Ding, S. Luo, A. Adijiang, H. Zhao and J. An, J. Org. Chem., 2018, 83, 12269-12274.
2. Y. Ding, S. Luo, C. Weng and J. An, J. Org. Chem., 2019, 84, 15098-15105.
3. L. Ning, H. Li, Z. Lai, M. Szostak, X. Chen, Y. Dong, S. Jin and J. An, J. Org. Chem., 2021, 86, 2907-2916.
4. S. Luo, C. Weng, Z. Qin, K. Li, T. Zhao, Y. Ding, C. Ling, Y. Ma and J. An, J. Org. Chem., 2021, 86, 11862-11870.

## 6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

2a


2b



2c



2d



2e


$2 f$



2 g



2h


$2 i$



2j



2k



2m


2n
(



2p

$2 q$



2r



2s



## 2u




2v


2w


2x


$2 y$



2 z

$2 a \mathbf{a}$


$2 a b$


$2 a c$



2 ad



## $2 a e$

(


2af


## $2 a g$



2ah
(


2ai

(

2aj


## 2ak




2al


$2 a m$



2 an

$2 a 0$


## 2ap



$2 a q$

$2 a r$


| 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



2as



2at

$2 a u$




[^0]:    ${ }^{\text {a }}$ The crude NMR spectra is messy.

