Supporting Information

Synthesis of 3-Aminotetrahydro-1H-carbazols by Visible-Light Photocatalyzed Cycloaddition of Cyclopropylanilines with 2Alkenylarylisocyanides

Table of content
I. General Information S2
II. Experimental Procedures S3
III. Crystal Data for 3aa (CCDC: 2265600) S8
IV. Characterization Data for Products S13
V. References S30
VI. NMR Spectra of All Compound S31

I. General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by Thin Layer Chromatography (TLC) using UV light ($254 / 365 \mathrm{~nm}$) for detection. Flash chromatography was carried out using silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a JEOL 400 MHz and 100 MHz NMR spectrometers or Bruker 600 MHz and 150 MHz NMR spectrometers. For ${ }^{1} \mathrm{H}$ NMR, tetramethyl silane (TMS) served as internal standard $(\delta=0)$ and data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, and coupling constant (s) in Hz. For ${ }^{13} \mathrm{C}$ NMR, TMS ($\delta=0$) was used as internal standard and spectra were obtained with complete proton decoupling. High resolution mass spectra (HRMS) were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer. Crystal measurement was recorded on Bruker D8 QUEST.

II. Experimental Procedures

(1). General Procedure for the Synthesis of Aryl Isocyanides

Aryl isocyanides were synthesized according to literature reports. $\mathbf{1 a}-\mathbf{1} \mathbf{c}^{[1]}, \mathbf{1}{ }^{[1]}, \mathbf{1 g}-$ $\mathbf{1} \mathbf{i}^{[1]}, \mathbf{1} \mathbf{k}^{[1]}, \mathbf{1 1}{ }^{[1]}, \mathbf{1 m}{ }^{[2]}, \mathbf{1} \mathbf{s}^{[2]}, \mathbf{1} \mathbf{p}^{[3]}, \mathbf{1} \mathbf{q}^{[3]}, \mathbf{1} \mathbf{t}^{[4]}$ are known compounds. The characterization data of new isocyanides $\mathbf{1 d}, \mathbf{1 f}, \mathbf{1} \mathbf{j}, \mathbf{1 n}, \mathbf{1 0}, \mathbf{1 r}$ are as following:

(E)-2-isocyano-1-styryl-4-(trifluoromethyl)benzene (1d)

White solid, Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, $30 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.3,137.2,135.8,135.3,130.1\left(\mathrm{C}-\mathrm{F},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=33.8 \mathrm{~Hz}\right)$, $129.4,129.0,127.4,126.2,126.1,126.1,126.1,124.6\left(\mathrm{C}-\mathrm{F},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right), 121.8,120.8$. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}$ 274.0838; found 274.0833.

(E)-4-(tert-butyl)-1-isocyano-2-styrylbenzene (1f)

White solid, Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, 30/1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.80(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28$ (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.4,152.9,136.6$, 133.1, 132.2, 128.9, 128.6, 127.1, 127.0, 125.6, 122.9, 122.3, 35.1, 31.2. HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}$ 262.1590; found 262.1587.

(E)-2-isocyano-1-methyl-3-styrylbenzene ($\mathbf{1} \mathbf{j}$)

White solid, Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, 30/1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.65-7.58$
(m, 3H), $7.53-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ 127.0, 122.9, 122.9, 19.1. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N} 220.1121$; found 220.1116.

(E)-1-(4-(tert-butyl)styryl)-2-isocyanobenzene (1n)

White solid, Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, $30 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.82-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.9,152.0,134.0,133.7$, 132.6, 129.5, 127.9, 127.4, 126.9, 125.8, 125.4, 121.5, 34.8, 31.3. HRMS (ESI) m/z [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N} 262.1590$; found 262.1585.

(E)-4-(2-isocyanostyryl)-1,1'-biphenyl (10)

White solid, Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, 20/1). ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.84-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-$ $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 167.1,141.4,140.5$, $135.5,133.8,132.2,129.5,129.0,128.1,127.6,127.6,127.6,127.4,127.1,125.5,125.0$, 122.2. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}$ 282.1277; found 282.1270.

(E)-1-chloro-2-(2-isocyanostyryl)benzene (1r)

White solid, Column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate, 20/1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.85-7.80(\mathrm{~m}$, $2 \mathrm{H}), 7.66(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 167.2, 134.6, 133.9, 133.5, 130.0, 129.6, 129.6, 128.7, 128.6, 127.4, 127.2,
127.0, 125.9, 125.2, 124.7. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN} 240.0575$; found 240.0567.

(2). General Procedure for the Synthesis of \boldsymbol{N}-Aryl Aminocyclopropane

Aryl halide derivatives and Cyclopropylamine are commercial available and used directly without purification. N-aryl aminocyclopropane $\mathbf{2 a - 2 m}$ were prepared according to literature procedures ${ }^{[5]}$.

(3). General Procedure for Preparation of 3

A pressure tube was charged with $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1$ equiv.), $\mathbf{2}$ ($0.4 \mathrm{mmol}, 2$ equiv.), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$. The reaction mixture was then stirred and irradiation with a 20 W blue LED at room temperature for 12 h under Ar atmosphere. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate $10: 1(\mathrm{v} / \mathrm{v})$ to give the corresponding products.

Figure S1. Reaction setup for photocatalyzed cycloaddition

(4) Control Experiments ${ }^{[6]}$

(a)

(b)

1a
$+$

2a

3aa, N. D.

3aa, N. D.
(a) A pressure tube was charged with $\mathbf{1}(0.2 \mathrm{mmol}, 1$ equiv.), $\mathbf{2}$ ($0.4 \mathrm{mmol}, 2$ equiv.), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, TEMPO ($0.44 \mathrm{mmol}, 2.0$ equiv. $)$ and $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$. The reaction mixture was then stirred and irradiation with a 20 W blue LED at room temperature for 12 h under Ar atmosphere. No $\mathbf{3 a a}$ was detected by TLC.
(b) A pressure tube was charged with $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1$ equiv.), $\mathbf{2}$ ($0.4 \mathrm{mmol}, 2$ equiv.), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{BQ}(0.40 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$. The reaction mixture was then stirred and irradiation with a 20 W blue LED at room temperature for 12 h under Ar atmosphere. No 3aa was detected by TLC.

(5) Scale-up synthesis of product 3aa

A pressure tube was charged with $\mathbf{1 a}$ ($2.4 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 a}$ ($4.8 \mathrm{mmol}, 2.0$ equiv.), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$. The reaction mixture was then stirred and irradiation with a 20 W blue LED at room temperature for 24 h under Ar atmosphere. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:1(v/v) to give the corresponding products 3aa (566 $\mathrm{mg}, 76 \%$).

III. Crystal Data for 3aa (CCDC: 2265600)

Single crystal of $N, 4$-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3aa) suitable for X-ray analysis was obtained by slow evaporation of 0.02 M solution in 20:1 mixture of petroleum hexane/ethyl acetate at room temperature. A suitable crystal was measured on a Bruker APEX-II CCD diffractometer. The crystal was kept at 276(2) K during data collection.

Figure S1 X-Ray crystal structure of 3aa (CCDC: 2265600), ellipsoids are drawn at the 30\% probability level.

Table S1 Crystal data, data collection, and structure refinement for compound 3aa

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}$
Formula weight	338.43
Temperature/K	$276(2) \mathrm{K}$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{(1) / \mathrm{n}}$

a / \AA	9.4607(7)
b/Å	10.9217(8)
c/ \AA	17.9906(14)
α^{10}	90
$\beta /{ }^{\circ}$	96.556(2)
γ^{\prime}	90
Volume/ $/ \AA^{3}$	1846.8(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.217
μ / mm^{-1}	0.071
$F(000)$	720.0
Crystal size/ mm^{3}	$0.120 \times 0.110 \times 0.100$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Range for data collection	2.185 to 25.100
Limiting indices	$-11<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-21<=\mathrm{l}<=21$
Reflections collected	52227
Independent reflections	$3280[\mathrm{R}(\mathrm{int})=0.5287]$
Data/restraints/parameters	3280 / 0 / 236
Goodness-of-fit on F^{2}	0.828
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R}_{1}=0.0419, \mathrm{wR}_{2}=0.0816$
R indices (all data)	$\mathrm{R}_{1}=0.1220, \mathrm{wR}_{2}=0.0978$

Table S2. Bond lengths [A] and angles [deg] for 3aa

Atom	Length
$\mathrm{C}(1)-\mathrm{N}(1)$	1.376(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.385(3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.411(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.372(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.391(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.370(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.390(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.434(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.354(2)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.491(3)
$\mathrm{C}(8)-\mathrm{N}(1)$	1.378(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.492(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.522(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.527(2)
$\mathrm{C}(11)-\mathrm{N}(2)$	1.444(2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.562(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.508(2)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.384(2)
$\mathrm{C}(13)-\mathrm{C}(18)$	1.387(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.382(3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.376(3)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.376(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.380(3)

$\mathrm{C}(19)-\mathrm{N}(2)$	1.386(2)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.388(3)
$\mathrm{C}(19)-\mathrm{C}(24)$	1.394(3)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.389(3)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.369(3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.373(3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.373(3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	131.1(2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	106.90(19)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.0(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	117.5(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.6(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.7(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.6(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	134.4(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	107.00(19)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.16(19)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	124.05(19)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	128.79(19)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$	109.55(19)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	126.4(2)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	124.0(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	109.00(18)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	112.04(16)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	109.62(16)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	114.52(17)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	111.17(17)

```
C(7)-C(12)-C(13) 113.87(17)
C(7)-C(12)-C(11) 107.28(16)
C(13)-C(12)-C(11) 113.72(15)
C(14)-C(13)-C(18) 117.82(19)
C(14)-C(13)-C(12) 122.3(2)
C(18)-C(13)-C(12) 119.86(19)
C(15)-C(14)-C(13) 121.0(2)
C(16)-C(15)-C(14) 120.3(2)
C(17)-C(16)-C(15) 119.6(2)
C(16)-C(17)-C(18) 119.8(2)
C(17)-C(18)-C(13) 121.5(2)
N(2)-C(19)-C(20) 123.2(2)
N(2)-C(19)-C(24) 118.45(19)
C(20)-C(19)-C(24) 118.4(2)
C(19)-C(20)-C(21) 119.8(2)
C(22)-C(21)-C(20) 121.6(2)
C(21)-C(22)-C(23) 118.3(3)
C(24)-C(23)-C(22) 121.5(3)
C(23)-C(24)-C(19) 120.4(2)
C(1)-N(1)-C(8) 109.37(18)
C(19)-N(2)-C(11) 124.73(16)
```


IV. Characterization Data for Products

N,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3aa)

Colorless semisolid ($26.4 \mathrm{mg}, 78 \%$ yield, d.r. $=2.3: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.08(\mathrm{~m}$, $4 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.14-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~h}, J=6.0 \mathrm{~Hz}$, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.1,140.1,136.8,134.3,130.3,129.6,128.0,127.3$, 126.8, 121.6, 119.5, 118.5, 117.3, 113.5, 111.7, 110.5, 52.4, 41.0, 24.7, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} 339.1856$; found 339.1865 .

7-methyl-N,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ba)

Colorless semisolid ($27.5 \mathrm{mg}, 78 \%$ yield, d.r. $=1.4: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate solvents. ($14.1 \mathrm{mg}, 40 \%$ yield).
cis isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $3 \mathrm{H}), 7.14(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{q}, J=7.0,4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 140.2,137.3,133.6,131.4$, $130.3,129.6,128.0,126.8,125.2,121.2,118.2,117.5,113.7,111.6,110.7,52.6,41.2,24.8$, 23.0, 21.8. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2}$ 353.2012; found 353.2022.

7-chloro-N,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ca)

Colorless semisolid ($28.6 \mathrm{mg}, 77 \%$ yield, d.r. $=1.8: 1$), purified by flash chromatography using petroleum ether/ethyl acetate $(10: 1)$ as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis
isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.08$ (dd, $J=6.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H})$, $6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, J=9.7$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 147.1, 139.9, 137.3, 135.1, 130.2, 129.6, 128.1, 127.5, 127.0, 126.1, 120.2, 119.3, 117.5, 113.6, 112.1, 110.6, 52.5, 41.1, 24.7, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2}$ 373.1466; found 373.1479.

$\mathrm{N}, 4$-diphenyl-7-(trifluoromethyl)-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3da)

colorless semisolid ($26.4 \mathrm{mg}, 65 \%$ yield, d.r. $=1.7: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis
isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 7 \mathrm{H})$, $7.04(\mathrm{dd}, J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 146.9,139.7,137.3,135.7,130.1,129.7,129.5,128.7,128.1,127.1,123.6$ (q, C$\left.\mathrm{F},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.6 \mathrm{~Hz}\right), 118.7,117.5,116.4,113.5,112.3,108.0,108.0,52.2,40.8,24.5,23.0$. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2}$ 407.1730; found 407.1742.

6-methyl- $\mathrm{N}, 4$-diphenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3ea)

Colorless semisolid ($27.4 \mathrm{mg}, 78 \%$ yield, d.r. $=3.3: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=$ $8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=7.7,5.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 147.2,140.3,135.2,134.4,130.3,129.6,128.7$, 128.0, 127.7, 126.8, 123.2, 118.3, 117.4, 113.6, 111.5, 110.2, 52.6, 41.1, 24.8, 23.1, 21.5. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2}$ 353.2012; found 353.2025.

6-(tert-butyl)- $\mathrm{N}, 4$-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3fa)

Colorless semisolid ($31.5 \mathrm{mg}, 80 \%$ yield, d.r. $=1.5: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis
isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $4 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=6.7,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=6.5 \mathrm{~Hz}$, 2H), $\left.2.17(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}\right) \delta 143.5,142.5$, 134.7, 134.3, 129.5, 128.8, 128.5, 127.7, 126.6, 119.7, 117.6, 115.0, 113.8, 110.0, 109.8, 56.1, 45.8, 34.6, 32.0, 23.6, 19.9. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2}$ 395.2482; found 395.2498.

6-fluoro- $\mathrm{N}, 4$-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ga)

Colorless semisolid ($25.6 \mathrm{mg}, 72 \%$ yield, d.r. $=2.3: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR
(400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H})$, $6.80-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.46$ $(\mathrm{s}, 1 \mathrm{H}), 3.16-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.1,139.9$, 136.3, 133.3, 130.3, 129.7, 128.2, 127.1, 117.6, 113.7, $111.0\left(\mathrm{~d}, \mathrm{C}-\mathrm{F},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.5 \mathrm{~Hz}\right), 109.7$ $\left(\mathrm{d}, \mathrm{C}-\mathrm{F},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.1 \mathrm{~Hz}\right), 103.8\left(\mathrm{~d}, \mathrm{C}-\mathrm{F},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.5 \mathrm{~Hz}\right), 52.5,41.2,24.8,23.1$. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{FN}_{2}$ 357.1762; found 357.1775.

6-chloro-N,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ha)

Colorless semisolid ($27.9 \mathrm{mg}, 75 \%$ yield, d.r. $=1.9: 1$), purified by flash chromatography using petroleum ether/ethyl acetate $(10: 1)$ as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis
isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~m}, J=7.4$, $2.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (q, $J=7.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, J=10.3,9.0$, $5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 147.1,139.8,135.9,135.2,130.2,129.6,128.6$, 128.1, 127.1, 125.3, 121.9, 118.0, 117.5, 113.6, 111.8, 111.5, 52.4, 41.0, 24.6, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2} 373.1466$; found 373.1480 .

4-phenyl-3-(phenylamino)-2,3,4,9-tetrahydro-1 H -carbazole-6-carbonitrile (3ia)

Colorless semisolid ($18.9 \mathrm{mg}, 52 \%$ yield, d.r. $=1.3: 1$), purified by flash chromatography using petroleum ether/ethyl acetate, (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis
isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.25(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=8.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}$, 2H), 2.08 - $2.01(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 146.8,139.3,138.5,136.8,130.06$, 129.7, 128.3, 127.3, 127.2, 124.9, 123.9, 117.6, 113.5, 112.8, 111.3, 102.6, 52.2, 40.7, 24.5, 22.9. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} 364.1808$; found 364.1821 .

8-methyl- $\mathrm{N}, 4$-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ja)

Colorless oil ($23.9 \mathrm{mg}, 68 \%$ yield, d.r. $=2.5: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. ${ }^{1} \mathbf{H}$ NMR (cis isomer, $400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=6.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 171.4,147.4,147.1,143.6,140.2,136.2$, 135.9, 134.0, 133.9, 130.3, 129.6, 129.5, 128.6, 128.5, 128.0, 127.3, 126.8, 126.8, 126.6, 122.3, 119.7, 119.6, 117.4, 117.3, 116.6, 116.2, 113.6, 113.5, 112.2, 109.9, 60.6, 55.6, 52.4, 45.4, 41.1, 24.7, 23.01, 22.8, 21.2, 19.5, 16.8, 14.3. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2}$ 353.2012; found 353.2022.

6,8-dimethyl- $\mathrm{N}, 4$-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ka)

Colorless oil ($24.8 \mathrm{mg}, 68 \%$ yield, d.r. $=2.1: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. ${ }^{1} \mathbf{H}$ NMR (cis isomer, $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.69(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $(\mathrm{m}, 4 \mathrm{H}), 4.72-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{q}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.39(\mathrm{~m}$, $3 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 147.5,147.2$, $140.3,134.6,134.3,134.1,134.0,130.3,129.6,129.5,129.0,129.0,128.7,128.5,128.0$, 127.7, 127.2, 126.7, 126.5, 124.1, 119.4, 119.3, 117.4, 117.3, 116.2, 115.9, 113.6, 113.5, $111.9,109.3,60.6,55.5,52.5,45.2,41.1,29.8,24.7,23.1,22.3,21.4,19.3,16.7$ HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} 367.2169$; found 367.2181.

6,8-dichloro-N,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3la)

Colorless oil ($27.6 \mathrm{mg}, 68 \%$ yield, d.r. $=1.9: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (10:1) as eluants. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (cis isomer, $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ $8.18(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.07(\mathrm{~m}$, $1 \mathrm{H}), 3.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{q}, J=10.7,9.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 147.1,146.8,142.7,139.3,136.7,136.4,132.5,132.2,130.1,129.6,129.5,129.2,128.7$, 128.5, 128.2, 127.2, 127.0, 125.2, 125.2, 121.0, 117.7, 117.5, 117.1, 116.8, 116.4, 116.3, 113.6, 113.5, 112.8, 110.7, 77.5, 55.4, 52.1, 45.2, 40.7, 24.4, 23.0, 22.8, 19.5. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ 407.1076; found 407.1072.

N-phenyl-4-(p-tolyl)-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3ma)

Colorless semisolid ($24.9 \mathrm{mg}, 71 \%$ yield, d.r. $=1.5: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.06$ (m, 2H), $7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{dt}, J=9.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 147.5,140.6,136.1,134.1,129.5,129.2,128.5,127.9,121.6,119.5,118.9,117.4$, 113.6, 110.5, 109.7, 55.7, 45.0, 22.9, 21.2, 19.5. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2}$ 353.2012; found 353.2022.

4-(4-(tert-butyl)phenyl)- N -phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3na)

Colorless semisolid $(26.4 \mathrm{mg}, 67 \%$ yield, d.r. $=7.3: 1)$, purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 1 \mathrm{H})$, $6.68-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{q}, J=6.2,4.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}), 2.01(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.6$, $147.3,137.0,134.2,129.9,129.6,127.5,124.9,121.6,119.5,118.7,117.3,113.6,112.3$, 110.5, 52.6, 40.8, 34.5, 31.6, 24.8, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2}$ 395.2482; found 395.2495.

E isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{p}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 149.2,147.4,140.4,136.4,134.1,129.4,128.1,127.9$, $125.3,121.5,119.4,118.9,117.3,113.5,110.5,109.5,55.2,44.6,34.5,31.5,22.3,19.2$.

4-([1,1'-biphenyl]-4-yl)-N-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (30a)

Colorless oil ($24.8 \mathrm{mg}, 60 \%$ yield, d.r. $=1.9: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. ${ }^{1} \mathbf{H}$ NMR (cis isomer, $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.99(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{q}, J=6.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{q}, J=8.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 147.1,141.0,139.5,139.3,136.8,134.4,130.7,129.6,128.9$, 127.3, 127.2, 127.1, 126.7, 121.7, 119.5, 118.5, 117.4, 113.6, 111.7, 110.6, 52.5, 40.6, 24.8, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} 415.2169$; found 415.2182 .

4-(4-chlorophenyl)- N -phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3pa)

Colorless semisolid ($24.8 \mathrm{mg}, 67 \%$ yield, d.r. $=1.4: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR (400
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-$ $6.57(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=14.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.98(\mathrm{~m}, 2 \mathrm{H})$, $2.01-1.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 147.0,138.9,137.0,134.4,132.8$, 131.6, 129.7, 128.1, 127.3, 121.9, 119.7, 118.4, 117.6, 113.6, 111.5, 110.6, 52.5, 40.5, 25.0, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2} 373.1466$; found 373.1479 .

4-(3-(phenylamino)-2,3,4,9-tetrahydro-1H-carbazol-4-yl)phenyl acetate (3qa)

Colorless semisolid ($24.5 \mathrm{mg}, 62 \%$ yield, d.r. $=1: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.70(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 169.5,149.7,146.9,137.7,136.9,134.3,131.1,129.7,127.3$, 121.8, 120.9, 119.7, 118.5, 117.6, 113.7, 111.7, 110.6, 52.7, 40.4, 24.8, 23.1, 21.3. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ 397.1911; found 397.1924.

4-(2-chlorophenyl)- N -phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3ra)

Colorless semisolid ($23.8 \mathrm{mg}, 64 \%$ yield, d.r. $=13: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $7.05(\mathrm{~m}, 6 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.49(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=5.3$
$\mathrm{Hz}, 1 \mathrm{H}), 4.31$ (ddd, $J=8.5,5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dtd}, J=16.8,6.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dddd, $J=16.7,7.6,6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dtd}, J=13.1,6.1,2.6 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 147.4, 137.8, 136.6, 135.1, 134.6, 131.9, 129.7, 129.3, 128.1, 127.1, 126.5, 121.7, 119.5, 119.2, 117.3, 113.4, 110.6, 110.5, 51.8, 39.5, 25.6, 21.1. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2}$ 373.1466; found 373.1478.

4-(3-chlorophenyl)- N -phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3sa)

Yellow semisolid ($22.3 \mathrm{mg}, 60 \%$ yield, d.r. $=6.7: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.06(\mathrm{~m}, 7 \mathrm{H}), 7.00-6.95(\mathrm{~m}$, $2 \mathrm{H}), 6.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12$ $(\mathrm{m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 147.0,142.6,137.0,134.4,134.1,130.1,129.7,129.1,128.6,127.3,127.1$, $121.8,119.7,118.4,117.7,113.7,111.2,110.7,52.5,40.9,24.9,22.9$.

E isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 5 \mathrm{H}), 7.12$ (ddd, $J=8.4,4.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{p}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J$ $=7.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 147.1,145.9,136.4$, 134.4, 134.3, 129.8, 129.5, 128.6, 127.5, 126.9, 121.8, 119.6, 118.7, 117.6, 113.6, 110.7, 108.7, 55.5, 45.1, 22.8, 19.4. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2}$ 373.1466; found 373.1476 .

4-(naphthalen-2-yl)- N -phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3ta)

Yellow semisolid ($22.3 \mathrm{mg}, 71 \%$ yield, d.r. $=1.8: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H})$, $7.15-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{qd}, J=16.7,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~h}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 144.7,140.1,136.8,135.5,134.4,130.3,129.4$, 128.0, 127.8, 127.6, 127.3, 126.8, 126.5, 126.0, 122.1, 121.7, 119.6, 118.6, 118.5, 111.7, 110.6, 105.1, 52.5, 40.4, 24.6, 23.1. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2}$ 389.2012; found 389.2023.
N-([1,1'-biphenyl]-4-yl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ab)

Yellow semisolid ($35.2 \mathrm{mg}, 85 \%$ yield, d.r. $=2.1: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 4 \mathrm{H})$, $7.10(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 146.7,141.4,140.2,137.0,134.3,130.3,130.3,128.8,128.3,128.1$, 127.5, 126.9, 126.4, 126.2, 121.7, 119.6, 118.6, 113.8, 111.9, 11.6, 52.6, 41.4, 24.9, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} 415.2169$; found 415.2180 .

N -(4-(tert-butoxy)phenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ac)

Colorless semisolid $(33.6 \mathrm{mg}, 82 \%$ yield, d.r. $=5.3: 1)$, purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.08(\mathrm{q}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}$, $2 \mathrm{H}), 6.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.07-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 140.2$, $136.9,134.3,130.3,128.1,127.5,126.9,125.7,121.7,119.6,118.6,114.2,112.0,110.5$, 53.4, 41.2, 29.0, 26.6, 24.8, 23.0. HRMS (ESI) $\mathbf{~ m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O} 411.2431$; found 411.2442 .
N-(4-methoxyphenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ad)

Colorless semisolid $(28.7 \mathrm{mg}, 78 \%$ yield, d.r. $=2.4: 1)$, purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis
isomer: ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{q}, J=7.7 \mathrm{~Hz}, 5 \mathrm{H}), 6.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.45(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 161.3,148.6,140.2,136.9,134.3,130.3,128.0,127.4,126.9,121.7,119.6$, $118.6,111.9,110.5,106.7,102.6,99.6,55.3,52.6,41.3,24.9,23.0$. HRMS (ESI) m/z [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O} 369.1961$; found 369.1972.

N -(4-chlorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3ae)

Yellow semisolid ($33.4 \mathrm{mg}, 90 \%$ yield, d.r. $=1.6: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}) $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.07(\mathrm{~m}$, $6 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H})$, $\left.3.07(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 145.8,140.0$, 136.9, 134.2, 130.2, 129.4, 128.1, 127.4, 127.0, 121.9, 121.8, 119.6, 118.5, 114.7, 111.7, 110.6, 52.8, 41.1, 24.8, 22.9. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2} 373.1466$; found 373.1478 .

4-phenyl- N -(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3af)

Yellow semisolid ($30.4 \mathrm{mg}, 75 \%$ yield, d.r. $=4.9: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=$ 8.1 Hz, 1H), 7.23 (p, $J=2.9,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{tt}, J=12.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.13-$ $2.98(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 149.6, 139.8, $135.4(\mathrm{q}$, C-F, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=262.5 \mathrm{~Hz}\right), 130.1,128.2,127.1,127.0,126.9\left(\mathrm{q}, \mathrm{C}-\mathrm{F},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 121.7$, 120.0, 118.5, 112.4, 111.3, 110.6, 52.1, 40.9, 24.6, 22.8. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} 407.1730$; found 407.1741.

4-phenyl- N -(m-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ag)

Colorless semisolid ($24.6 \mathrm{mg}, 70 \%$ yield, d.r. $=1.0: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{~m}$, $5 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 147.3,140.3,139.4,136.9,134.4,130.3$, $129.5,128.0,127.5,126.8,121.7,119.6,118.6,118.3,114.3,112.0,110.8,110.5,52.5,41.3$, 24.9, 23.0, 21.8. HRMS (ESI) $\mathbf{~ m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} 353.2012$; found 353.2023.

N -(3-chlorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ah)

Yellow semisolid ($31.2 \mathrm{mg}, 84 \%$ yield, d.r. $=1.2: 1$), purified by flash chromatography using (petroleum ether/ethyl acetate, $8: 1$) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 3 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 5 \mathrm{H})$, $6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J$ $=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{tt}, J=9.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 148.5$, $140.0,136.9,135.4,134.2,130.5,130.2,128.2,127.4,127.0,121.8,119.7,118.6,117.2$, 113.1, 111.8, 111.7, 110.6, 52.5, 41.3, 24.8, 22.9. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{2}$ 373.1466; found 373.1444.

4-phenyl- N -(0-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3ai)

Colorless semisolid ($27.4 \mathrm{mg}, 78 \%$ yield, d.r. $=2.3: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.09(\mathrm{~m}$, $6 \mathrm{H}), 6.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~h}, J=5.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.14$ $-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 145.0,140.3,136.9$, $134.4,130.6,130.1,128.1,127.5,127.4,126.9,122.3,121.7,119.6,118.6,116.8,111.9$, 110.6, 110.3, 52.1, 41.1, 24.9, 22.9, 17.4. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2}$ 353.2012; found 353.2022.
N-([1,1'-biphenyl]-2-yl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-amine (3aj)

Colorless semisolid (18.6mg, 45\% yield, d.r. = 99:1), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, $\mathbf{C D I}_{3}$) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.08(\mathrm{~m}$, $8 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.87(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 144.0,140.1,139.4,136.8,134.2,129.8,129.3,128.8$, 128.2, 128.1, 127.4, 127.0, 126.6, 121.6, 119.5, 118.6, 116.7, 111.9, 110.8, 110.5, 52.6, 41.5, 42.6, 22.7. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} 415.2169$; found 415.2181 .
N-(3,5-dimethylphenyl)-4-phenyl-2,3,4,9-tetrahydro- 1 H -carbazol-3-amine (3ak)

Colorless semisolid (27.4mg, 75\% yield, d.r. = 1.4:1), purified by flash chromatography using petroleum ether/ethyl acetate (15:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$, $6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.08(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 147.2,140.3,139.2,136.9,134.4,130.4,128.0,127.5,126.8,121.7,119.6,119.5$, 118.6, 114.8, 111.6, 110.5, 52.6, 41.4, 24.9, 23.1, 21.7. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} 367.2196$; found 367.2197.
N-(naphthalen-2-yl)-4-phenyl-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3al)

Yellow semisolid (33.3mg, 86\% yield, d.r. $=2.8: 1$), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR
($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=12.6,8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{dt}, J=8.9,5.3$ $\mathrm{Hz}, 4 \mathrm{H}), 6.98(\mathrm{t}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dt}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~h}, J=6.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~h}, J=4.6$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 144.9,140.2,136.9,135.6,134.4,130.3,129.3$, $128.0,127.8,127.7,127.5,126.9,126.5,126.0,122.1,121.7,119.6,118.6,118.5,111.8$, 110.6, 105.3, 52.6, 40.8, 24.8, 23.0. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2}$
389.2012; found 389.2023.

4-phenyl- N -(pyridin-2-yl)-2,3,4,9-tetrahydro-1 H -carbazol-3-amine (3am)

Yellow semisolid (18.3mg, 54\% yield, d.r. = 1.0:1), purified by flash chromatography using petroleum ether/ethyl acetate (8:1) as eluants. The cis isomer was separated by crystallization with hexane and ethyl acetate as solvents. cis isomer: ${ }^{1} \mathbf{H}$ NMR (400
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.09(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J$ $=7.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.8,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.17-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{pt}, J=9.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 157.9,140.3,137.7,136.7,134.3,130.1,128.2,127.3,126.9,121.5,119.4$, 118.6, 112.8, 111.5, 110.5, 107.9, 50.8, 41.6, 24.9, 22.7. HRMS (ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} 340.1808$; found 340.1818 .

V. References

1. Drennhaus, T.; Leifert, D.; Lammert, J., et al. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J. Am. Chem. Soc. 2023, 145(15), 8665-8676.
2. Wang, C. H.; Li, Y. H.; Yang, S. D. Autoxidation Photoredox Catalysis for the Synthesis of 2-Phosphinoylindoles. Org. Lett. 2018, 20(8), 2382-2385.
3. Hu, Z.; Dong, J.; Li, Z., et al. Metal-Free Triple Annulation of Ene-Yne-Ketones with Isocyanides: Domino Access to Furan-Fused Heterocycles via Furoketenimine. Org. Lett. 2018, 20(21), 6750-6754.
4. Yoshihisa, K. and Thru, F. Development of a Novel Indole Synthesis and Its Application to Natural Products Synthesis. J. Heterocyclic Chem. 1998, 35, 1043-1055.
5. Kuang, Y.; Ning, Y.; Zhu, J., et al. Dirhodium(II)-Catalyzed (3+2) Cycloaddition of the N-Arylaminocyclopropane with Alkene Derivatives. Org. Lett. 2018, 20(9), 2693-2697.
6. Pei, C.; Liu, Y.; Chen, X.; et al. Visible-Light-Induced Oxidative Carboazidation of Arylacrylamides. Adv. Synth. Catal. 2023, 365, 860-864.

VI. NMR Spectra of All Compound

$1 f$

\%	\&	
¢	-	
	T	

H

$1 f$

[^0]

1j

1j

-19.12

3aa

$3 a a$

3ea

3fa

3fa

3 ga

3ha

3ha

3ia

190	$\stackrel{1}{18}$	170	1	150	14	1	1	110		1	1	70	1	50	40	1	20	10
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \mathrm{ppl} \end{gathered}$	90	80	70	60	50	40	30	20	10

\qquad

3na

3na

3na

$30 a$

$3 p a$

3sa

3sa

卦 a | T |
| :---: |
| $\frac{T}{6}$ |
| 0 |

[^1]

¢®	윽ㅇㅇㅇ	ற80゙	¢－88\％	バッウ
＋i¢	＋i＋i＋i	ம்ற்ண்	$\underbrace{\text { N⿵冂人}}$	－i

3 ac

3ad

3ad

 n \qquad

3ae

3af

[^2]

3ag

3ag

3ai

3ai

\qquad

3al

3am
 1

[^0]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} 1(\mathrm{ppm})\end{array}$

[^1]:

[^2]:

