Supporting Information

Catalytic Asymmetric Conjugate Addition of Coumarins

to Unsaturated Ketones

Xiangjie Chen^{a,+}, Yujie Zhao^{a,+}, Cheng Huang^a, Zhifei Zhao^a, Weiwei Zhao^{b*} and Shi-Wu Li^{a*}

^aKey Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemitry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 83 2000, People's Republic of China.

^bCollege of Life Science & Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China.

E-mail: lishiwu@shzu.edu.cn; n2550384692@163.com

+These authors contributed equally to this work.

Table of Contents

Ι	General Information	3
II	Optimization of Reaction Conditions	4
III	Experimental Section	5
IV	References	21
V	NMR Spectrum	22
VI	Chiral HPLC analysis trace	48
VII	Single Crystal X-Ray Diffraction of 4g	73

I General Information

All reactions were performed in Schlenk tubes at room temperature using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. THF was obtained from solvent distillation machine (Vigor VSPS-5) and stored under argon over 4 Å molecular sieves. Toluene was freshly distilled before use over sodium and benzophenone. Dichloromethane (DCM) was distilled over CaH₂. Methanol and Ethyl Alcohol were used without further purification. Reactions were monitored by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 400 MHz, 100 MHz and 376 MHz respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. HPLC analyses of the compounds were done using chiralcel IA-IF columns and chiralcel IC, AD-H, AS-H, OJ-H and OD-H columns using hexane and isopropanol as eluent. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry.

II Optimization of Reaction Conditions

Entry	$M (x \mod \%)$	Solvent	Time (d) ^d	Yield $(\%)^b$	Ee(%) ^c
1	Λ-Rh1 (2)	DCE	7 d	20	52
2	Λ-Rh2 (2)	DCE	7 d	18	32
3	A-Rh3 (2)	DCE	7 d	35	43
4	Λ-Ir1 (2)	DCE	7 d	12	38
5	Δ-RhS (2)	DCE	7 d	70	72
6	Δ-RhS (0)	DCE	2 d	NR	/
7	Δ-RhS (2)	DCM	3 d	65	92
8	Δ-RhS (2)	МеОН	5 d	76	75
9	Δ-RhS (2)	THF	5 d	26	90
10	Δ-RhS (2)	MTBE	5 d	20	92
11	Δ-RhS (2)	Toluene	5 d	33	62
12	Δ-RhS (2)	CHCl ₃	3 d	86	98

13	Δ -RhS (1)	CHCl ₃	5 d	88	98
14 ^e	Δ-RhS (1)	CHCl ₃	7 d	85	98
15 ^f	Δ-RhS (1)	CHCl ₃	5 d	87	98

^aReaction conditions: **1a** (0.15 mmol), **2a** (0.10 mmol), **A-Rh/A-RhS/ A-Ir1** (1-2 mol %), solvent (0.5 mL) at room temperature under Ar atmosphere. ^bIsolated yields. ^c Determined by chiral HPLC analysis on a chiral stationary phase. ^dd = days. ^e**1a**:**2a**= 1.0:1.0, **1a** (0.1 mmol), **2a** (0.1 mmol). ^f**1a**:**2a**= 2:1, **1a** (0.2 mmol), **2a** (0.1 mmol).

III Experimental Section

Δ-Rh was prepared according to reported procedure.¹ α , β -unsaturated 2-acyl imidazoles were synthesized according to reported procedures.²⁻³ All methylcoumarins **1** were prepared according to the literature procedure.⁴

General procedures for the preparation of substrates:

General procedure A for synthesis of 2-acetyl imidazoles.²⁻³

$$0 + R^{-N} + \frac{n-BuLi, THF}{-78 \circ C} + N$$

THF (60 mL) and 1-methylimidazole (4.4 mL, 55.2 mmol, 1.1 equiv) were added to a 250 mL Two-mouth round bottom flask and cooled to -78 °C. A solution of n-BuLi in hexanes (2.5 M, 34.1 mL, 85.3 mmol, 1.7 equiv) was added to the flask over 10 min. The solution was allowed to stir at -78 °C for 30 min. Then, the solution of 4-acetylmorpholine (6 mL, 50.1 mmol, 1.0 equiv) in THF(40 mL) was added to the flask over 10 min. After that, the mixture was stirred for 1 h at -78 °C. The solution was quenched with saturated NH₄Cl (20 mL) , then saturated NaHCO₃ (20 mL) were added. The mixture was transferred to a separatory funnel, and the aqueous phase was extracted with ethyl acetate (3 x 50 mL). Combined the organic phase and washed with saturated NaCl (60 mL) . Finally, the organic phase was dried over sodium sulfate, filtered and concentrated on a rotatory evaporator. The resulting residue was purified by column chromatography on silica gel (200-300 mesh, EtOAc/Petroleum ether v/v = 1:3) to afford the desired product.

General procedure B for synthesis of α,β-unsaturated 2-acyl imidazoles.²⁻³

$$Ar H + N H \frac{1}{R} H \frac{1}{2} HCl, rt Ar R$$

2-acetyl imidazoles (10.0 mmol, 1.0 equiv) and EtOH (20 mL) were added to a 50 mL round bottom flask followed by the desired aromatic aldehyde (10.5 mmol, 1.05 equiv) and NaOH (440 mg, 11 mmol, 1.1 equiv). The solution was stirred for 10-30 h, then dilute hydrochloric acid was added until the pH of solution was 7. The solution was transferred to a separatory funnel. H₂O (10 mL) were added and the mixture was extracted with EtOAc (3 x 50 mL). Combined the organic phase and washed with saturated NaCl (50 mL) . Finally, the organic extracts were dried over sodium sulfate, filtered, and concentrated on a rotatory evaporator. The resulting residue was purified by flash column chromatography on silica gel (200-300 mesh, EtOAc/Petroleum v 77iooether v/v = 1:5-1:2) to afford the desired product.

General procedure C for synthesis of 3-cyano-4-methylcoumarins.⁴

The mixture of I (10 mmol), II (15 mmol) and NH₄OAc (25 mmol) was heated to 155 °C for 5 hour. Then, the mixture was cooled to room temperature, an appropriate amount of ethanol was added, and stirred overnight. The reaction mixture was filtered and evaporated under reduced pressure and purified by column chromatography (petroleum ether:EtOAc = 4:1) to give 1a-1i.

General procedure for Catalytic Asymmetric Conjugate Addition of Coumarins to Unsaturated Ketones.

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, Δ -RhS (1 mol%) was added along with 3-cyano-4- methylcoumarins 1 (1.5 equiv, 0.15 mmol) and α , β unsaturated 2-acylimidazole 2 (1.0 equiv, 0.10 mmol) in CHCl₃ (1.0 mL). The reaction was stirring in an oil bath at room temperature until consumption of the β unsaturated 2-acylimidazole 2 (monitored by TLC). The solution was directly purified by silica gel column chromatography to afford 3 or 4.

General procedure for gram-scale experiments with lower catalyst loading.

To an oven-dried 25 mL Schlenk tube equipped with a stir bar, Δ -RhS (0.06 mol%) was added along with α,β -unsaturated ketone 2a (1.0 equiv, 4.81 mmol, 1.019 g) and 3-cyano-4 -methylcoumarin 1a (1.5 equiv, 7.22 mmol, 1.335 g) in CHCl₃ (10.0 mL). The reaction was stirring at room temperature until consumption of the 2a (monitored by TLC). The solution was directly purified by silica gel column chromatography (EtOAc/DCM = 1:20) to afford 3a (white solid, 1.661 g, 87% yield, 98% ee).

General Experimental Procedure for the Synthesis of Products 5a.⁵

In an oven- and vacuum-dried seal tube, **3a** (39.8 mg,0.1 mmol, 1 equiv), Sulfur (3.2 mg, 0.1 mmol, 1 equiv) and piperidine (3μ L, 0.3 mmol, 3 equiv) were taken in 150 μ L of freshly distilled DMF. Next, the seal tube was purged with argon and was heated to reflux at 160 °C for 5 h. After cooling down to r.t., the reaction mixture was diluted with 2 mL water and 10 mL EtOAc. Subsequently the aqueous layer was extracted

with EtOAc(3×10 mL) and dried over Na₂SO₄. Then the solvent was removed under reduced pressure, and crude reaction mixture was purified through silica gel column chromatography (eluent: EtOAc/Petroleum ether = 1/2) to afford **5a** (white solid, 28.3 mg, 66% yield, 97% ee).

4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2H-chromene-3carbonitrile (3a). White solid (35 mg, 88%). Mp: 185.5-186.8 °C. $[\alpha]_D^{25} = +256$ (c = 0.5 in CH₂Cl₂). HPLC: 98% ee (Chiralpak AD-H, hexane/ isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 18.49 min (major), 34.34 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.36 (d, *J* = 8 Hz, 1H), 7.25-7.12 (m, 6H), 7.08 (s, 1H), 4.0 (s, 3H), 3.93-3.82 (m, 2H), 3.73-3.62 (m, 2H), 3.34-3.29 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.1, 156.6, 153.4, 142.9, 142.7, 140.6, 134.9, 129.4, 128.8, 127.7, 127.7, 127.5, 126.9, 125.5, 117.7, 117.6, 113.3, 102.9, 44.9, 41.5, 43.2, 39.2, 36.2. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₉N₃O₃H⁺, 398.1499; found, 398.1494.

4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-(o-tolyl)butyl)-2-oxo-2H-chromene-3carbonitrile (3b). White solid (35 mg, 85%). Mp: 145.5-156.8 °C. $[\alpha]_D^{25} = +339.4$ (c = 0.5 in CH₂Cl₂). HPLC: 97% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 14.91 min (major), 25.48 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 81.0 (d, *J* = 8 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.44-7.35 (m, 2H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.06 (s, 1H), 7.00-6.97 (m, 2H), 6.88-6.87 (m, 1H), 4.20-4.12 (m, 1H), 3.89 (s, 3H), 3.76-3.70 (m, 1H), 3.57-3.48 (m, 2H), 3.33-3.27 (m, 1H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) **CDCl₃, 25** °**C**) δ/ppm: 190.5, 164.0, 156.6, 153.3, 142.7, 139.3, 135.3, 135.0, 130.4, 129.4, 127.4, 127.3, 127.2, 127.0, 126.7, 125.5, 117.8, 117.7, 113.4, 102.9, 45.7, 38.7, 36.2, 29.7, 19.5. **HRMS (ESI)** *m/z*: [M + H]⁺ calcd for C₂₅H₂₁N₃O₃H⁺, 412.1656; found, 412.1650.

4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-(m-tolyl)butyl)-2-oxo-2H-chromene-3carbonitrile (3c). White solid (39.9 mg, 97%). Mp: 140.5-146.8 °C. $[\alpha]_D^{25} = +368.0$ (c = 0.5 in CH₂Cl₂). HPLC: 96% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 15.55 min (major), 26.95 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 81.0 (d, *J* = 8 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.44-7.35 (m, 2H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.05 (s, 1H), 7.00-6.97 (m, 2H), 6.88-6.86 (m, 1H), 4.20-4.12 (m, 1H), 3.89 (s, 3H), 3.76-3.70 (m, 1H), 3.57-3.48 (m, 2H), 3.33-3.27 (m, 1H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.0, 156.6, 153.3, 142.7, 139.3, 135.3, 135.0, 130.4, 129.4, 127.4, 127.3, 127.2, 127.0, 126.7, 125.5, 117.8, 117.7, 113.4, 102.9, 45.7, 38.7, 36.2, 19.5. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₅H₂₁N₃O₃H⁺, 412.1656; found, 416.1651.

4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-(p-tolyl)butyl)-2-oxo-2H-chromene-3carbonitrile (3d). White solid (40.7 mg, 99%). Mp: 160.5-166.8 °C. $[\alpha]_D^{25} = +328.6$ (c = 0.5 in CH₂Cl₂). HPLC: 96% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 19.54 min (major), 49.64 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 81.3 (d, J = 10.0 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.07 (s, 1H), 6.98-6.90 (m, 5H), 3.91 (s, 3H), 3.82-3.70 (m, 2H), 3.59-3.50 (m, 2H), 3.23-3.18 (m, 1H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.6, 164.2, 156.7, 153.4, 142.8, 137.5, 137.2, 134.9, 129.5, 127.5, 127.4, 127.0, 125.5, 117.7, 117.6, 113.4, 102.9, 45.1, 41.2, 39.3, 36.2, 21.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₁N₃O₃H⁺, 412.1656; found, 412.1650.

4-(2-(4-chlorophenyl)-4-(1-methyl-1H-imidazol-2-yl)-4-oxobutyl)-2-oxo-2Hchromene-3-carbonitrile (3e). White solid (39.7 mg, 92%). Mp: 165.5-171.8 °C. $[\alpha]_D^{25} = +251.6$ (c = 0.5 in CH₂Cl₂). HPLC: 98% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 24.55 min (major), 51.96 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 81.8 (d, *J* = 7.6 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.24-7.19 (m, 3H), 7.12-7.09 (m, 3H), 4.01 (s, 3H), 3.87-3.81 (m, 2H), 3.73-3.61 (m, 2H), 3.35-3.30 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.0, 163.7, 156.5, 153.5, 142.6, 139.0, 135.0, 133.5, 129.4, 129.0, 127.5, 126.7, 125.6, 117.8, 117.4, 113.3, 103.1, 44.9, 41.0, 38.9, 36.2. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈ClN₃O₃ H⁺, 432.1110; found 432.1101 and 434.1066.

4-(2-(4-bromophenyl)-4-(1-methyl-1H-imidazol-2-yl)-4-oxobutyl)-2-oxo-2Hchromene-3-carbonitrile (3f). White solid (47.1 mg, 99%). Mp: 180.3-186.5 °C. $[\alpha]_{D}^{25}$ = +397.2 (c = 0.5 in CH₂Cl₂). HPLC: 97% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 30.91 min (major), 65.56 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.10 (d, *J* = 4.4 Hz, 1H), 7.65-7.61 (m, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.30-7.29 (m, 3H), 7.07-6.94 (m, 4H), 3.91 (s, 3H), 3.76-3.71 (m, 2H), 3.61-3.51 (m, 2H), 3.54-3.19 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.0, 163.7, 156.5, 153.4, 142.6, 139.7, 135.1, 131.9, 129.5, 129.4, 127.6, 126.8, 125.6, 117.8, 117.4, 113.3, 103.0, 44.8, 41.0, 38.8, 36.2. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈BrN₃O₃ H⁺, 476.0604; found 476.0596 and 478.0578.

4-(4-(1-methyl-1H-imidazol-2-yl)-2-(naphthalen-2-yl)-4-oxobutyl)-2-oxo-2H-

chromene-3-carbonitrile (3g). White solid (38.9 mg, 87%). Mp: 185.2-195.4 °C. $[\alpha]_D^{25} = +350.0$ (c = 0.5 in CH₂Cl₂). HPLC: 98% ee (Chiralpak OD-H, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 10.13 min (major), 12.69 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.14 (d, J = 4.4 Hz, 1H), 7.69-7.61 (m, 1H), 7.58-7.54 (m, 1H), 7.45-7.34 (m, 1H), 7.24-7.20 (m, 1H), 7.16-7.14 (m, 1H), 7.06-7.03 (m, 1H), 6.95 (s, 3H), 4.80 (s, 1H), 4.00-3.93 (m, 2H), 3.86 (s, 3H), 3.69-3.65 (m, 2H), 3.38-3.27 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 163.8, 156.4, 153.2, 142.7, 137.4, 134.9, 131.3, 129.5, 129.1, 128.0, 127.5, 126.6, 125.9, 125.8, 125.5, 125.5, 125.2, 121.8, 117.9, 117.5, 113.3, 102.8, 54.9, 45.6, 39.4, 36.2, 34.3. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₈H₂₁N₃O₃ H⁺, 448.1656; found, 448.1649.

4-(2-(furan-2-yl)-4-(1-methyl-1H-imidazol-2-yl)-4-oxobutyl)-2-oxo-2H-chromene-3-carbonitrile (3h). White solid (31.0 mg, 80%). Mp: 175.2-183.5 °C. $[\alpha]_D^{25} = +173.4$ (c = 0.5 in CH₂Cl₂). HPLC: 99% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 43.8 min (major), 72.77 min (minor). ¹H **NMR (400 MHz, CDCl₃, 25 °C)** δ /ppm: 8.02 (d, *J* = 8.0 Hz, 1H), 7.63-7.59 (m, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.30-7.28 (m, 1H), 7.22-7.20 (m, 1H), 7.09-7.01 (m, 2H), 6.12-6.11 (m, 1H), 5.88 (d, *J* = 3.2 Hz, 1H), 3.94 (s, 3H), 3.86-3.82 (m, 1H), 3.78-3.60 (m, 2H), 3.48-3.44 (m, 1H), 3.32-3.27 (m, 1H). ¹³C **NMR (100 MHz, CDCl₃, 25 °C)** δ /ppm: 189.9, 163.7, 156.7, 153.5, 153.4, 142.6, 142.1, 134.9, 129.5, 127.5, 126.6, 125.5, 117.6, 112.8, 110.4, 107.0, 103.0, 42.9, 37.0, 36.2, 35.0. **HRMS (ESI)** *m/z*: [M + H]⁺ calcd for C₂₂H₁₇N₃O₄H⁺, 388.1292; found, 388.1287.

4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-(thiophen-2-yl)butyl)-2-oxo-2H-

chromene-3-carbonitrile (3i). White solid (35.1 mg, 87%). Mp: 185.2-195.4 °C. $[\alpha]_D^{25} = +168.5$ (c = 0.5 in CH₂Cl₂). HPLC: 96% ee (Chiralpak OD-H, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 35.19 min (major), 40.09 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.06 (d, J = 8.0 Hz, 1H), 7.64-7.60 (m, 1H), 7.40-7.37 (m, 1H), 7.31-7.29 (m, 1H), 7.10-7.01 (m, 1H), 6.80-6.72 (m, 2H), 4.12-4.05 (m, 1H), 3.94 (s, 3H), 3.86-3.80 (m, 1H), 3.71-3.65 (m, 1H), 3.58-3.54 (m, 1H), 3.27-3.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 189.8, 163.5, 156.6, 153.4, 143.6, 142.6, 134.9, 129.6, 127.6, 127.1, 126.7, 125.6, 117.7, 117.5, 113.1, 103.2, 45.9, 39.9, 36.6, 36.2. HRMS(ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₃O₃SH⁺, 404.1063; found, 404.1057.

4-(2-(2,2-difluorobenzo[d]][1,3]dioxol-5-yl)-4-(1-methyl-1H-imidazol-2-yl)-4oxobutyl)-2-oxo-2H-chromene-3-carbonitrile(3j). White solid (30.1 mg, 63%). Mp: 95.5-105.5 °C. $[\alpha]_D^{25} = +313.2$ (c = 0.5 in CH₂Cl₂). HPLC: 98% ee (Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 16.99 min (major), 29.97 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.08 (d, *J* = 8.4 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.31-7.29 (m, 1H), 7.08-7.00 (m, 1H), 6.85-6.78 (m, 3H), 3.91 (s, 3H), 3.81-3.68 (m, 2H), 3.62-3.51 (m, 2H), 3.26-3.20 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 189.8, 163.5, 156.5, 153.5, 143.9, 143.0, 142.6, 136.9, 135.2, 134.1, 131.6 (t, *J_{C-F}* = 253.9 Hz), 129.6, 129.0, 127.6, 126.6, 125.6, 123.0, 117.9, 117.4, 113.4, 109.6, 109.0, 103.1, 45.0, 41.4, 39.0, 36.2, 29.7. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ /ppm: -49.86. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₅H₁₇F₂N₃O₅ H⁺, 478.1210; found, 478.1201.

5-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4-(1-methyl-1H-imidazol-2-yl)-4-

oxobutyl)-2-oxo-2H-chromene-3-carbonitrile(3k). White solid (38.2 mg, 84%). Mp: 198.2-202.5 °C. $[\alpha]_D^{25} = +118.7$ (c = 0.5 in CH₂Cl₂). HPLC: 96% ee (Chiralpak OJ-H, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 57.91 min (major), 47.09 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.19 (d, J = 8.0 Hz, 1H), 7.72-7.68 (m, 1H), 7.50-7.46 (m, 1H), 7.39-7.37 (m, 1H), 7.17-7.08 (m, 1H), 6.74-6.59 (m, 2H), 4.21 (s, 4H), 4.02 (s, 3H), 3.87-3.71 (m, 2H), 3.66-3.56 (m, 2H), 3.31-3.25 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.1, 156.8, 153.4, 143.5, 142.9, 142.7, 134.8, 133.8, 129.4, 127.4, 126.9, 125.4, 120.5, 117.7, 117.6, 117.5, 116.5, 113.3, 103.0, 64.3, 45.2, 40.9, 39.3, 36.2. HRMS (ESI)

m/z: $[M + H]^+$ calcd for $C_{26}H_{21}N_3O_5H^+$, 456.1554; found, 456.1548.

4-(2-methyl-4-(1-methyl-1H-imidazol-2-yl)-4-oxobutyl)-2-oxo-2H-chromene-3carbonitrile (31). White solid (25.1 mg, 75%). Mp: 143.4-149.8 °C. $\left[\alpha\right]_{D}^{25}$ = +186.2 (c = 0.5 in CH₂Cl₂). HPLC: 98% ee (Chiralpak AD-H, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 19.18 min (major), 44.32 min (minor). ¹H NMR **(400 MHz, CDCl₃, 25 °C)** δ /ppm: 8.21 (d, *J* = 8.0 Hz, 1H), 7.72-7.69 (m, 1H), 7.49-7.38 (m, 2H), 7.15-7.09 (m, 1H), 4.04 (s, 3H), 3.45-3.38 (m, 2H), 3.30-3.24 (m, 1H), 2.96-2.90 (m, 1H) 2.75-2.70 (m, 1H), 1.1 (d, *J* = 6.8 Hz, 3H). ¹³C NMR **(100 MHz, CDCl₃, 25 °C)** δ /ppm: 190.5, 164.1, 156.8, 153.4, 143.5, 142.9, 142.7, 134.8, 133.8, 129.4, 127.4, 126.9, 125.4, 120.5, 117.7, 117.6, 117.5, 116.5, 113.3, 103.0, 64.3, 45.2, 40.9, 39.3, 36.2. HRMS **(ESI)** *m/z*: [M + H]⁺ calcd for C₁₉H₁₇N₃O₃H⁺, 336.1343; found, 336.1337.

(E)-4-(2-(2-(1-methyl-1H-imidazol-2-yl)-2-oxoethyl)-4-phenylbut-3-en-1-yl)-2oxo-2H-chromene-3-carbonitrile(3m). White solid (25.4 mg, 67%). Mp: 161.0-168.0 °C. $[\alpha]_D^{25} + 450.7$ (c = 0.5 in CH₂Cl₂). HPLC: 90% ee (Chiralpak AD-H, hexane/ isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 42.71 min (major), 57.24 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.24 (d, *J* = 8.0 Hz, 1H), 7.71 (t, *J* = 8.8 Hz, 1H), 7.53-7.49 (m, 1H), 7.39-7.37 (m, 1H), 7.29-7.19 (m, 6H), 7.09 (s, 4H), 6.26-6.20 (m, 2H), 4.04 (s, 3H), 3.65-3.49 (m, 3H), 3.41 (s, 1H), 3.21-3.15 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.3, 156.7, 153.6, 142.8, 136.2, 135.0, 132.3, 129.4, 129.3, 127.7, 127.5, 126.8, 126.4, 125.6, 117.8, 117.7, 113.8, 103.1, 44.6, 40.5, 37.4, 36.2. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₆H₂₁N₃O₃H⁺, 424.1656; found, 424.1650.

4-(4-(1-isopropyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2H-chromene-3carbonitrile(3n). White solid (42.1 mg, 99%). Mp: 155.0-160.0 °C. $[\alpha]_D^{25} = +283.7$ (c = 0.5 in CH₂Cl₂). HPLC: 96% ee (Chiralpak OD-H, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 8.77 min (major), 11.05 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.20 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 4.0 Hz, 1H), 7.49 (t, *J* = 4.0 Hz, 1H), 7.37-7.35 (m, 1H), 7.30-7.29 (m, 1H), 7.25-7.12 (m, 6H), 5.56-5.46 (m, 1H), 3.96-3.84 (m, 2H), 3.73-3.62 (m, 2H), 3.36-3.30 (m, 1H), 1.43 (q, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.6, 164.1, 156.6, 153.4, 142.0, 140.6, 134.8, 129.9, 128.8, 127.7, 127.6, 126.9, 125.5, 117.7, 117.6, 113.3, 103.0, 49.3, 45.5, 41.7, 39.2, 23.6. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₆H₂₃N₃O₃H⁺, 426.1812; found, 426.1805.

2-oxo-4-(4-oxo-2-phenyl-4-(1-phenyl-1H-imidazol-2-yl)butyl)-2H-chromene-3carbonitrile(30). White solid (45.5 mg, 99%). Mp: 111.0-118.0 °C. $[\alpha]_D^{25} = +303.6$ (c = 0.5 in CH₂Cl₂). HPLC: 90% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 26.57 min (major), 45.36 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.92 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.37-7.35 (m, 3H), 7.31-7.20 (m, 3H), 7.10-7.02 (m, 8H), 3.80-3.64 (m, 3H), 3.51-3.47 (m, 1H), 3.26-3.20 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 189.0, 164.0, 156.6, 153.4, 142.7, 140.6, 138.1, 129.9, 129.1, 128.9, 128.8, 127.7, 127.7, 127.5, 126.8, 125.5, 117.7, 117.5, 113.4, 103.0, 45.1, 41.5, 39.2. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₉H₂₁N₃O₃H⁺, 460.1656; found, 460.1649.

6-methyl-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2Hchromene-3-carbonitrile(4b). White solid (31.2 mg, 76%). Mp: 141.0-148.0 °C. $[\alpha]_D^{25} = +388.4$ (c = 0.5 in CH₂Cl₂). HPLC: 97% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 16.67 min (major), 30.53 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.80 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.19-7.10 (m, 6H), 7.07-7.05 (m, 1H), 6.98 (s, 1H), 3.92(s, 3H), 3.86-3.73 (m, 2H), 3.64-3.59 (m, 1H), 3.52-3.48 (m, 1H), 3.26-3.20 (m, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.0, 156.9, 151.6, 142.8, 140.8, 135.9, 135.2, 129.4, 128.8, 128.4, 127.7, 127.4, 126.8, 126.6, 117.3, 117.3, 113.4, 102.8, 44.9, 41.6, 39.2, 36.2, 21.0. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₅H₂₁N₃O₃H⁺, 412.1656; found, 412.1648.

6-methyl-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2Hchromene-3-carbonitrile(4c). White solid (32.1 mg, 78%). Mp: 155.0-158.0 °C. $[\alpha]_D^{25} = +138.7$ (c = 0.5 in CH₂Cl₂). HPLC: 98% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 16.94 min (major), 29.58 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.95 (d, J = 8.0 Hz, 1H), 7.20-7.11 (m, 6H), 7.08-7.05 (m, 2H), 6.98 (s, 1H), 3.91(s, 3H), 3.81-3.72 (m, 2H), 3.63-3.49 (m, 2H), 3.25-3.19 (m, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.0, 157.0, 153.6, 142.7, 140.6, 129.4, 128.8, 127.6, 127.3, 126.8, 126.5, 117.8, 115.3, 113.5, 101.7, 44.9, 41.6, 39.1, 36.2, 22.0. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₅H₂₁N₃O₃H⁺, 412.1656; found, 412.1650.

6,7-dimethyl-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2H chromene-3-carbonitrile (4d). White solid (23.4 mg, 55%). Mp: 175.0-178.0 °C. $[\alpha]_D^{25} = +178.7$ (c = 0.5 in CH₂Cl₂). HPLC: 82% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 14.21 min (major), 22.35 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.75 (s, 1H), 7.19-7.11 (m, 5H), 7.07-7.04 (m, 2H), 6.98 (s, 1H), 3.92(s, 3H), 3.85-3.77 (m, 2H), 3.69-3.45 (m, 2H), 3.24-3.14 (m, 1H), 2.31 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 164.0, 157.2, 151.9, 146.0, 142.8, 140.8, 134.5, 129.4, 128.7, 127.7, 127.6, 127.4, 126.8, 118.0, 115.3, 113.6, 101.4, 44.9, 41.6, 39.2, 36.2, 20.6, 19.5. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₆H₂₃N₃O₃H⁺H⁺, 426.1812; found, 426.1805.

6-fluoro-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2Hchromene-3-carbonitrile(4e). White solid (34.0 mg, 82%). Mp: 158.0-167.0 °C. $[\alpha]_D^{25} = +196.8$ (c = 0.5 in CH₂Cl₂). HPLC: 94% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 21.53 min (major), 41.02 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.14 (d, *J* = 0.8 Hz, 1H), 7.55-7.53 (m, 1H), 7.24-7.13 (m, 4H), 7.10 (s, 1H), 7.05-7.00 (m, 1H), 3.95 (s, 3H), 3.87-3.80 (m, 1H), 3.75-3.68 (m, 1H), 3.62-3.48 (m, 2H), 3.24-3.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.2, 163.1 (d, *J*_{C-F} = 2.9 Hz), 159.2 (d, *J*_{C-F} = 244.7 Hz), 156.2, 149.6 (d, *J*_{C-F} = 1.9 Hz), 142.7, 140.2, 129.5, 128.9 127.9, 127.7, 127.5, 122.7 (d, *J*_{C-F} = 24.6 Hz), 119.3 (d, *J*_{C-F} = 8.3 Hz), 118.5 (d, *J*_{C-F} = 8.9 Hz), 112.9, 112.7, (d, *J*_{C-F} = 25.4 Hz), 104.0, 45.0, 41.4, 39.3, 36.2. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ /ppm: -114.39. HRMS (ESI) *m/z*: [M + H]⁺ calcd for $C_{24}H_{18}FN_3O_3H^+$, 416.1405; found, 416.1397.

6-chloro-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2Hchromene-3-carbonitrile(4f). White solid (37.2 mg, 86%). Mp: 175.0-179.0 °C. $[\alpha]_D^{25} = +166.0$ (c = 0.5 in CH₂Cl₂). HPLC: 96% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 21.33 min (major), 41.70 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.14 (d, J = 0.8 Hz, 1H), 7.55-7.53 (m, 1H), 7.24-7.13 (m, 4H), 7.10 (s, 1H), 7.05-7.00 (m, 3H), 3.95 (s, 3H), 3.87-3.80 (m, 1H), 3.75-3.68 (m, 1H), 3.62-3.48 (m, 2H), 3.24-3.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 163.0, 156.0, 151.7, 142.7, 140.3, 134.7, 131.1, 129.5, 129.0, 127.9, 127.7, 127.5, 126.5, 119.0, 118.6, 112.8, 103.9, 44.9, 41.6, 39.2, 36.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₈ClN₃O₃H⁺, 432.1110; found 432.1109 and 434.1063.

Br 6-bromo-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-

phenylbutyl)-2-oxo-2H-chromene-3-carbonitrile(4g). White solid (46.2 mg, 97%). Mp: 165.0-169.0 °C. $[\alpha]_D^{25} = +277.4$ (c = 0.5 in CH₂Cl₂). HPLC: 94% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 22.05 min (major), 42.81 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.27 (d, J = 1.6 Hz, 1H), 7.68-7.65 (m, 1H), 7.20-7.10 (m, 5H), 7.05-7.00 (m, 3H), 3.95 (s, 3H), 3.86-3.80 (m, 1H), 3.72-3.67 (m, 1H), 3.61-3.56 (m, 2H), 3.22-3.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 163.0, 155.9, 152.2, 142.7, 140.3, 137.5, 129.5, 129.5, 128.9, 127.9, 127.7, 127.5, 119.3, 119.0, 118.4, 112.8, 103.8, 44.9, 41.6, 39.2, 36.2. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈BrN₃O₃H⁺, 476.0604; found 476.0599 and 478.0576.

6-methoxy-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2Hchromene-3-carbonitrile(4h). White solid (26.0 mg, 61%). Mp: 173.0-178.0 °C. $[\alpha]_D^{25} = +154.8$ (c = 0.5 in CH₂Cl₂). HPLC: 99% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 18.97 min (major), 31.19 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.73 (m, 1H), 7.23-7.14 (m, 6H), 7.05-7.01 (m, 3H), 3.98 (s, 3H), 3.95-3.90 (m, 4H), 3.81-3.74 (m, 1H), 3.58-3.51 (m, 2H), 3.23-3.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.9, 163.6, 156.9, 148.0, 142.7, 140.4, 129.5, 128.9, 127.8, 127.8, 127.4, 123.6, 118.7, 117.9, 113.3, 108.2, 103.1, 56.3, 45.1, 41.2, 39.4, 36.2, 1.0. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₅H₂₁N₃O₄H⁺, 428.1605; found, 428.1600.

3-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2H-

benzo[g]chromene-3-carbonitrile (4i). White solid (18.5 mg, 41%). Mp: 185.0-191.0 °C. $[\alpha]_D^{25} = -70.0$ (c = 0.5 in CH₂Cl₂). HPLC: 93% ee (Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 28.97 min (major), 40.08 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.63 (d, J = 8.8 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.61-7.57 (m, 1H), 7.33-7.30 (m, 1H), 7.05-7.04 (m, 4H), 6.92-6.84 (m, 3H), 4.21-4.16 (m, 1H), 3.88-3.74 (m, 5H), 3.64-3.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.1, 176.2, 173.7, 169.7, 164.7, 156.6, 155.2, 143.9, 140.9, 137.3, 1314, 130.1, 129.4, 129.4, 129.3, 127.4, 127.3, 127.2, 126.6, 125.3, 117.4, 112.9, 45.0, 43.3, 40.1, 36.1, 23.6. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₈H₂₁N₃O₃H⁺, 448.1656; found, 448.1650.

(R)-8-bromo-4-(4-(1-methyl-1H-imidazol-2-yl)-4-oxo-2-phenylbutyl)-2-oxo-2Hchromene-3-carbonitrile(4j).White solid (39.54 mg, 83%). Mp: 168.0-170.3 °C. $[\alpha]_D^{25} + 256.6$ (c = 0.5 in CH₂Cl₂). HPLC: 99% ee (Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 38.59 min (major), 17.99 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 8.23-8.21 (m, 1H), 7.92-7.90 (m, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.24-7.20 (m, 3H), 7.16 (s, 1H), 7.12-7.08 (m, 3H), 4.0 (S, 3H), 3.95-3.88 (m, 1H), 3.84-3.77 (m, 1H), 3.67-3.60. (m, 2H), 3.33-3.72 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 190.5, 163.8, 155.5, 150.1, 142.7, 140.3, 130.3, 129.5, 128.9, 127.8, 127.7, 127.6, 126.3, 126.1, 118.9, 112.9, 112.3, 103.6, 44.9, 41.5, 39.2, 36.2. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈BrN₃O₃H⁺, 476.0604; found, 476.0599.HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈BrN₃O₃H⁺, 476.0604; found 476.0596 and 478.0578.

(R)-3-amino-1-(3-(1-methyl-1H-imidazol-2-yl)-3-oxo-1-phenylpropyl)-4Hthieno[3,4-c]chromen-4-one (5a). Yellow solid (28.3 mg, 66%). Mp: 176.3-178.2 °C. $[\alpha]_D^{25} = +270.9$ (c = 0.5 in CH₂Cl₂). HPLC: 97% ee (Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min, λ = 250 nm) t_R = 23.24 min (major), 32.50 min (minor). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ /ppm: 7.99-7.97 (m, 1H), 7.76 (S, 2H), 7.49 (s, 1H), 7.41-7.39 (m, 2H), 7.36-7.30 (m, 3H), 7.24-7.22 (m, 3H), 7.15 (d, *J* = 0.8Hz, 1H), 5.52 (t, *J* = 4.0, 1H), 3.83-3.81 (m, 5H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ /ppm: 189.2, 164.0, 159.4, 151.6, 143.0, 142.6, 129.5, 129.2, 128.9, 127.9, 127.4, 125.5, 124.7, 124.5 121.4, 118.9, 117.8, 127.2, 98.8, 46.3, 36.0. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₉N₃O₃SH⁺, 429.1248; found, 429.1253.

IV References

(1) Wang, C.-Y.; Chen, L.-A.; Huo, H.-H.; Shen, X.-D.; Harms, K.; Gong, L.; Meggers, E. Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality. *Chem. Sci.* **2015**, 6, 1094-1100.

(2) Myers, M. C.; Bharadwaj, A. R.; Milgram, B. C.; Scheidt, K. A. Catalytic Conjugate Additions of Carbonyl Anions under Neutral Aqueous Conditions. *J. Am. Chem. Soc.* **2005**, 127, 14675-14680.

(3) Lin, S.-X.; Sun, G.-J.; Kang, Q. Visible-Light-Activated Rhodium Complex in Enantioselective Conjugate Addition of α -Amino Radicals with Michael Acceptors. *Chem. Commun.*, **2017**, 53, 7665-7668.

(4) (a) Kibou, Z.; Villemin, D.; Lohier, J.-F.; Cheikh, N.; Bar, N.; Choukchou-Braham, N. *Tetrahedron*, 2016, *72*, 1653. (b) Levchenko, K. S.; Chudov, K. A.; Zinoviev, E. V.; Lyssenko, K. A.; Fakhrutdinov, A. N.; Demin, D. U.; Poroshin, N. O.; Zhukova, A. A.; Shmelin, P. S.; Grebennikov, E. P. *Mendeleev Commun.* 2019, *29*, 301.

(5) Sanjay, S.; Ravi, S.; Ravi, P. S. Enantioselective Distal Functionalization of 3-Cyano-4-methylcoumarins through Direct Vinylogous Conjugate Addition to Maleimides. *J. Org. Chem.* **2023**, *88*, 12, 7712–7723.

V NMR Spectrum

¹H NMR 3b

¹H NMR 3c

¹H NMR 3d

¹H NMR 3e

¹H NMR 3f

¹H NMR 3h

¹H NMR 3i

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR 3k

¹³C NMR 3k

34

¹³C NMR 3l

¹H NMR 3m

¹³C NMR 3m

¹H NMR 3n

¹³C NMR 3n

¹H NMR 30

¹³C NMR 30

¹H NMR 4c

¹³C NMR 4c

¹H NMR 4d

¹³C NMR 4d

¹H NMR 4e

¹⁹F NMR 4e

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR 4i

VI Chiral HPLC analysis trace

racemic-3a

chiral-3a

chiral-3b

chiral-3c

chiral-3d

chiral-3f

chiral-3g

racemic-3h

chiral-3i

chiral-3j

chiral-3m

chiral-3n

chiral-30

chiral-4c

chiral-4e

chiral-4f

chiral-4g

chiral-4i

VIII. Single Crystal X-Ray Diffraction of 4g

Table 1. Crystal data and structure refinement for 4g.CCDC 2245007

Identification code	4g
Empirical formula	$C_{24}H_{18}BrN_3O_3$
Formula weight	476.32
Temperature/K	220.00(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.11185(14)
b/Å	13.81714(17)
c/Å	15.0875(2)
α/°	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	2107.98(5)
Ζ	4
$\rho_{calc}g/cm^3$	1.501
μ/mm^{-1}	2.922
F(000)	968.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/° 8.678 to 147.5	
Index ranges	$\textbf{-12} \leq h \leq 12, \textbf{-17} \leq k \leq 15, \textbf{-13} \leq l \leq 18$
Reflections collected	11365
Independent reflections	4198 [$R_{int} = 0.0294, R_{sigma} = 0.0304$]
Data/restraints/parameters	4198/0/281
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0281, wR_2 = 0.0694$
Final R indexes [all data]	$R_1 = 0.0304, wR_2 = 0.0707$
Largest diff. peak/hole / e Å ⁻³ 0.16/-0.58	
Flack/Hooft parameter	-0.019(7)/-0.005(7)