Supporting Information

Simple, Catalytic C(sp3)–H Azidation Using the C–H Donor as the Limiting Reagent

James F. Hooson, Hai N. Tran, Kang-jie Bian, Julian G. West*

Table of Contents

General Information	2
Screening cyclooctane with TMS-N $_3$.3
Screening <i>n</i> -octane with TMS-N₃	.17
Screening 1-chloroadamantane with TMS-N ₃	.21
Screening cyclooctane with NaN ₃	.31
Screening cycloheptanone with TMS-N ₃	32
Reaction Scope	.34
Application	53
NMRs	54
Supporting information References	98

General Information

All reagents were purchased from commercially available sources without further purification. All reactions were carried out in an oven dried vial with a magnetic stirring bar under N₂ atmosphere.

¹H-NMR and ¹³C{¹H}-NMR spectra were performed on a Bruker DRX-600 spectrometer operating at 600 MHz for proton nuclei and 151 MHz for carbon were calibrated using residual undeuterated solvent as an internal reference (CDCl3: 7.26 ppm ¹H-NMR and 77.20 ppm ¹³C{¹H}-NMR).

For reporting NMR peak multiplicities, the following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, hept = heptet, m = multiplet, br = broad.

CAUTION: Azides are potentially explosive compounds; Extreme caution is necessary and proper safety measures should be taken.

Organic azides with (NC + NO)/NN ratio more than 3 are normally stable and can be isolated and stored in pure form. Azides with (NC + NO)/NN less than 3 but more than 1 can be isolated but should be stored in fridge at no more than 1 *M* concentration and at a maximum of 5 grams of material. Azides with (NC + NO)/NN < 1 should never be isolated, as they are very unstable and potentially explosive.

Mn Catalyst Screening for the Azidation of Cyclooctane

1 eq.

XX% yield

N-F reagent	Mn catalyst	Yield of azidocyclooctane	
Selectfluor	Mn(OAc) ₃ 2H ₂ O	38%	
NFSI	$Mn(OAc)_3 2H_2O$	5%	
Selectfluor	[Mn(TPP)Cl]	3%	
NFSI	[Mn(TPP)Cl]	trace	
Selectfluor	(<i>S,S</i>)-Jacobsen's catalyst	29%	
NFSI	(<i>S,S</i>)-Jacobsen's catalyst	1%	
Selectfluor	MnF₃	39%	
NFSI	MnF₃	8% (and 2% yield of fluorocyclooctane)	
Selectfluor	Mn(OAc) ₂ 4H ₂ O	34%	
NFSI	Mn(OAc) ₂ 4H ₂ O	trace (and 2% yield of fluorocyclooctane)	
Selectfluor	MnBr ₂	33% (and 16% yield of bromocyclooctane)	
NFSI	MnBr ₂	none (and 20% yield of bromocyclooctane)	
Selectfluor	Mn(acac)₃	26%	
NFSI	Mn(acac)₃	7% (and 17% yield of fluorocyclooctane)	
Selectfluor	Mn(acac) ₂	37%	
NFSI	Mn(acac) ₂	none	
Selectfluor	Mn(OTf) ₂	35%	
NFSI	Mn(OTf) ₂	5% (and 30% yield of fluorocyclooctane)	

[Mn(TPP)CI] is (5,10,15,20-tetraphenylporphyrinato)manganese(III) chloride which is also known as 5,10,15,20-tetraphenyl-21*H*,23*H*-porphine manganese(III) chloride or Mn(III) *meso*-tetraphenylporphine chloride. (*S*,*S*)-Jacobsen's catalyst is (*S*,*S*)-(+)-*N*,*N*'-bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride.

General procedure: Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the N-F reagent (2 eq., 0.000892 mol = 0.892 mmol) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5trimethoxybenzene as an internal standard.

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, *J* = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Fluorocyclooctane has previously been characterized.^[3] ¹H-NMR (600 MHz, CDCl₃) δ 4.69 (dm, J = 48 Hz, 1H), 1.93 – 1.86 (m, 4H), 1.74 – 1.69 (m, 2H), 1.59 – 1.44 (m, 8H).

Bromocyclooctane (also known as cyclooctyl bromide) has previously been characterized.^[4] ¹H-NMR (600 MHz, CDCl₃) δ 4.44 – 4.39 (m, 1H), 2.25 – 2.19 (m 2H), 2.16 – 2.10 (m 2H), 1.78 – 1.70 (m, 2H), 1.61 – 1.45 (m, 8H).

Fe Catalyst Screening for the Azidation of Cyclooctane

N-F reagent	Fe catalyst	Yield of azidocyclooctane	
Selectfluor	FeCl ₃ (anhydrous)	58% (and 13% yield of cyclooctyl chloride)	
NFSI	FeCl ₃ (anhydrous)	34% (and 11% yield of cyclooctyl chloride)	
Selectfluor	FeCl ₃ 6H ₂ O	52% (and 16% yield of cyclooctyl chloride)	
NFSI	FeCl ₃ 6H ₂ O	43% (and 9% yield of cyclooctyl chloride)	
Selectfluor	Fe(NO ₃) ₃ 9H ₂ O	69%	
NFSI	Fe(NO ₃) ₃ 9H ₂ O	37%	
Selectfluor	Fe ₂ (SO ₄) ₃ 5H ₂ O	4%	
NFSI	Fe ₂ (SO ₄) ₃ 5H ₂ O	none	
Selectfluor	Fe(III) oxalate 6H ₂ O	15%	
NFSI	Fe(III) oxalate 6H ₂ O	43%	
Selectfluor	Fe(OTf)₃	69%	
NFSI	Fe(OTf)₃	12%	
Selectfluor	FeF ₃	43%	
NFSI	FeF ₃	49%	
Selectfluor	Fe(OAc) ₂	10%	
NFSI	Fe(OAc) ₂	43%	
Selectfluor	Fe(OTf) ₂	33%	
NFSI	Fe(OTf) ₂	trace	
Selectfluor	FeCl ₂	26% (and 5% yield of cyclooctyl chloride)	
NFSI	FeCl ₂	46% (and 10% yield of cyclooctyl chloride)	
Selectfluor	FeBr₃	26% (and 16% yield of bromocyclooctane)	
NFSI	FeBr₃	none (and 9% yield of bromocyclooctane)	
Selectfluor	FeF ₂	20%	
NFSI	FeF ₂	16%	
Selectfluor	Fe ₂ O ₃	3%	
NFSI	Fe ₂ O ₃	none	
Selectfluor	Fe(acac) ₂	12%	
NFSI	Fe(acac) ₂	none	
Selectfluor	Fe(acac) ₃	8%	
NESI	Fe(acac) ₂	none	

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the N-F reagent (2 eq., 0.000892 mol = 0.892 mmol) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, *J* = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Cyclooctyl chloride (also known as chlorocyclooctane) has previously been characterized.^[5] ¹H NMR (600 MHz, CDCl₃) δ 4.27 – 4.20 (m, 1H), 2.15 – 2.08 (m, 2H), 2.02 – 1.95 (m, 2H), 1.80 – 1.71 (m, 2H), 1.64 – 1.45 (m, 8H).

Bromocyclooctane (also known as cyclooctyl bromide) has previously been characterized.^[4] ¹H-NMR (600 MHz, CDCl₃) δ 4.44 – 4.39 (m, 1H), 2.25 – 2.19 (m 2H), 2.16 – 2.10 (m 2H), 1.78 – 1.70 (m, 2H), 1.61 – 1.45 (m, 8H).

Screening $Fe(NO_3)_3$ 9H₂O with a Variety of Temperature or Light Conditions for the Azidation of Cyclooctane at 0.112 *M* in MeCN

1 eq.	+ TMS-N ₃ 3.07 eq	catalyst (20 mol%)/ N-F reagent (2 eq.)/ MeCN [0.112 <i>M</i>] / 24 hrs/ Temperatue or light	XX% yield
Catalyst	N-F reagent	Temperature or light	Yield of azidocyclooctane
Fe(NO ₃) ₃ 9H ₂ O	Selectfluor	RT	40%
Fe(NO ₃) ₃ 9H ₂ O	Selectfluor	70°C	69%
$Fe(NO_3)_3$ $9H_2O$	Selectfluor	RT, 40 W blue LEDs (390 nm, 1 cm, 25% intensity)	57%
Fe(NO ₃) ₃ 9H ₂ O	NFSI	RT	Trace
Fe(NO ₃) ₃ 9H ₂ O	NFSI	70°C	37%

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the N-F reagent (2 eq., 0.000892 mol = 0.892 mmol) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature or light. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Screening Fe(OTf)₃ with a Variety of Temperature or Light Conditions for the Azidation of Cyclooctane at 0.112 *M* in MeCN

1 eq.	+ TMS-N ₃ - 3.07 eq	catalyst (20 mol%)/ N-F reagent (2 eq.)/ MeCN [0.112 <i>M</i>] / 24 hrs/ Temperatue or light	XX% yield
Catalyst	N-F reagent	Temperature or light	Yield of azidocyclooctane
Fe(OTf)₃	Selectfluor	RT	54%
Fe(OTf)₃	Selectfluor	70°C	69%
Fe(OTf)₃	NFSI	RT	4%
Fe(OTf) ₃	NFSI	70°C	12%

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the N-F reagent (2 eq., 0.000892 mol = 0.892 mmol) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature or light. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Screening $Fe(NO_3)_3$ 9H₂O with a Variety of Temperature or Light Conditions for the Azidation of Cyclooctane at 0.223 *M* in MeCN

Catalyst	Temperature or light	Yield of
		azidocyclooctane
Fe(NO ₃) ₃ 9H ₂ O	RT	28%
Fe(NO ₃) ₃ 9H ₂ O	RT, 40 W blue LEDs (390 nm, 1 cm, 25% intensity)	66%
Fe(NO ₃) ₃ 9H ₂ O	RT, 40 W blue LEDs (427 nm, 1 cm, 25% intensity)	41%
Fe(NO ₃) ₃ 9H ₂ O	70°C	71%

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (2 eq., 0.000892 mol = 0.892 mmol, 316 mg) was added to the vial. The vial was sealed tightly and placed into the correct conditions regarding the temperature or light. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Screening Fe(OTf)₃ with a Variety of Temperature or Light Conditions for the Azidation of Cyclooctane at 0.223 *M* in MeCN

Catalyst	Temperature or light	Yield of
		azidocyclooctane
Fe(OTf) ₂	RT	52%
Fe(OTf) ₃	RT, 40 W blue LEDs (390 nm, 1 cm, 25% intensity)	51%
Fe(OTf) ₃	RT, 40 W blue LEDs (427 nm, 1 cm, 25% intensity)	48%
Fe(OTf)₃	70°C	69%

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (2 eq., 0.000892 mol = 0.892 mmol, 316 mg) was added to the vial. The vial was sealed tightly and placed into the correct conditions regarding the temperature or light. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Screening the amount of $Fe(NO_3)_3$ 9H₂O for the Azidation of Cyclooctane

Catalyst	Amount of catalyst	Yield of azidocyclooctane
Fe(NO ₃) ₃ 9H ₂ O	10 mol%	50%
Fe(NO ₃) ₃ 9H ₂ O	20 mol%	69%
Fe(NO ₃) ₃ 9H ₂ O	30 mol%	73%

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (2 eq., 0.000892 mol = 0.892 mmol, 316 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand-bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Screening the amount of Fe(OTf)₃ for the Azidation of Cyclooctane

Catalyst	Amount of catalyst	Yield of azidocyclooctane
Fe(OTf) ₃	10 mol%	54%
Fe(OTf)₃	20 mol%	69%
Fe(OTf)₃	30 mol%	72%

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (2 eq., 0.000892 mol = 0.892 mmol, 316 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand-bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the $Fe(NO_3)_3$ 9H₂O (20 mol%, 0.0000892 mol = 0.0892 mmol, 36 mg) was added to the vial. Then, (**if applicable**) the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand-bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

trace

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, *J* = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Fluorocyclooctane has previously been characterized.^[3] ¹H-NMR (600 MHz, CDCl₃) δ 4.69 (dm, *J* = 48 Hz, 1H), 1.93 – 1.86 (m, 4H), 1.74 – 1.69 (m, 2H), 1.59 – 1.44 (m, 8H).

Screening 20 mol% Fe(OTf)₃ at 70°C with Selectfluor for the Azidation of Cyclooctane

4% yield

General procedure: Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN. Next the Fe(OTf)₃ (20 mol%, 0.0000892 mol = 0.0892 mmol, 44.9 mg) was added to the vial. Then, (if applicable) the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sandbath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, J = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Fluorocyclooctane has previously been characterized.^[3] ¹H-NMR (600 MHz, CDCl₃) δ 4.69 (dm, J = 48 Hz, 1H), 1.93 – 1.86 (m, 4H), 1.74 – 1.69 (m, 2H), 1.59 – 1.44 (m, 8H).

Cyclooctanone has previously been characterized. ^[6] ¹H-NMR (600 MHz, CDCl₃) δ 2.43 – 2.40 (m, 1H), 1.90 - 1.86 (m, 1H), 1.57 - 1.53 (m, 1H), 1.40 - 1.35 (m, 1H).

Screening 20 mol% Fe(NO₃)₃ 9H₂O under 390 nm LEDs

with Selectfluor for the Azidation of Cyclooctane

General procedure:

Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 2 mL MeCN. Next the $Fe(NO_3)_3$ 9H₂O (20 mol%, 0.0000892 mol = 0.0892 mmol, 36 mg) was added to the vial. Then, (**if applicable**) the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor was added to the vial. The vial was sealed tightly and placed 1 cm from 40 W Blue LEDs (390 nm, 25% intensity). The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, *J* = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Fluorocyclooctane has previously been characterized.^[3] ¹H-NMR (600 MHz, CDCl₃) δ 4.69 (dm, *J* = 48 Hz, 1H), 1.93 – 1.86 (m, 4H), 1.74 – 1.69 (m, 2H), 1.59 – 1.44 (m, 8H).

Cyclooctanone has previously been characterized.^{[6] 1}H-NMR (600 MHz, CDCl₃) δ 2.43 – 2.40 (m, 1H), 1.90 – 1.86 (m, 1H), 1.57 – 1.53 (m, 1H), 1.40 – 1.35 (m, 1H).

Screening a Variety of Catalysts and 3 eq. Selectfluor for the Azidation of Cyclooctane

Catalyst (20 mol%)	Temperature or light	Yield of azidocyclooctane
Fe(NO ₃) ₃ 9H ₂ O	70°C	92%
Fe(NO ₃) ₃ 9H ₂ O*	RT, 40 W blue LEDs (390 nm, 1 cm, 25% intensity)*	68%*
Fe(OTf)₃	70°C	82%
FeF ₃	70°C	65%
FeBr ₃	70°C	40% (and 20% yield of bromocyclooctane)
FeF ₂	70°C	36%
Fe(acac)₂	70°C	64%
FeCl ₂	70°C	76% (and 12% yield of cyclooctyl chloride)
Fe(OAc) ₂	70°C	67%
Fe(OTf)2	70°C	62%
MnBr ₂	70°C	44% (and 16% yield of bromocyclooctane)
Mn(OAc) ₂ 4H ₂ O	70°C	67%
Mn(OAc) ₃ 2H ₂ O	70°C	53%
MnF₃	70°C	61%
Mn(OTf)2	70°C	50%
(none)	70°C	28%
(none)*	RT, 40 W blue LEDs (390 nm, 1 cm, 25% intensity)*	22%*
Mn(OAc) ₃ 4H ₂ O (5 mol%) and BPhen (5 mol%)	70°C	37%
Mn(OAc) ₃ 4H ₂ O (20 mol%) and 4,4'-dimethyl-bipy (20 mol%)	70°C	56%

*concentration is 0.223 M (with 2 mL MeCN) instead of 0.112 M

General procedure: Cyclooctane (1 eq., 0.000446 mol = 0.446 mmol, 0.06 mL) was added to a vial with a stir bar followed by 4 mL MeCN (for 0.112 *M*). Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 474 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, *J* = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Cyclooctyl chloride (also known as chlorocyclooctane) has previously been characterized.^[5] ¹H NMR (600 MHz, CDCl₃) δ 4.27 – 4.20 (m, 1H), 2.15 – 2.08 (m, 2H), 2.02 – 1.95 (m, 2H), 1.80 – 1.71 (m, 2H), 1.64 – 1.45 (m, 8H).

Bromocyclooctane (also known as cyclooctyl bromide) has previously been characterized.^[4] ¹H-NMR (600 MHz, CDCl₃) δ 4.44 – 4.39 (m, 1H), 2.25 – 2.19 (m 2H), 2.16 – 2.10 (m 2H), 1.78 – 1.70 (m, 2H), 1.61 – 1.45 (m, 8H).

Screening Catalysts in the Presence of Selectfluor for the Azidation of *n*-Octane

>

catalyst (20 mol%)/ TMS-N₃ (3.07 eq.)/ Selectfluor (X eq.)/ MeCN [0.112 *M*] / 24 hrs/ Temperature

N₃

1 eq.

Temp.	Eq. of	catalyst	Yield of azidation products: 2-azidooctane,
DT			
	5	$Fe(NO_3)_3 9H_2O$	776
	2		160/
KI 70%0	3		10%
70°C	3	Fe(OIT) ₃	35%
RT, 390 nm*	3*	Fe(NO ₃) ₃ 9H ₂ O*	2 <mark>2</mark> %*
RT, 390 nm*	2*	Fe(NO ₃) ₃ 9H ₂ O*	22%*
RT	3	Fe(OAc) ₂	5%
70°C	3	Fe(OAc)₂	20%
RT	3	Mn(OAc) ₂ 4H ₂ O	22%
70°C	3	Mn(OAc) ₂ 4H ₂ O	36%
RT	3	Mn(OAc)₃ 2H₂O	28%
70°C	3	Mn(OAc)₃ 2H₂O	30%
RT	3	Fe(OTf) ₂	4%
70°C	3	Fe(OTf) ₂	35%
RT	3	(none)	5%
70°C	3	(none)	28%
RT	3	(S,S)-Jacobsen's catalyst	19%
70°C	3	(S,S)-Jacobsen's catalyst	21%
RT	3	MnF ₃	14%
70°C	3	MnF ₃	27%
RT	3	FeF ₃	13%
70°C	3	FeF ₃	25%
RT	3	Mn(OTf) ₂	20%
70°C	3	Mn(OTf) ₂	30%

*concentration is 0.223 M (with 2 mL MeCN) instead of 0.112 M; 390 nm (40 W blue LEDs, 1 cm, 25% intensity)

General procedure:

n-Octane (1 eq., 0.000446 mol = 0.446 mmol, 0.051 g) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 0.474 g) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature or light. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

2-azidooctane, 3-azidooctane, and 4-azidooctane have all previously been characterized.^[1,8] They are characterized here as an inseperable mixture. ¹H-NMR (600 MHz, CDCl₃) δ 3.47 – 3.36 (m, 0.33H), 3.23 (m, 0.33H), 3.17 (m, 0.33H), 1.61 – 1.42 (m, 5H), 1.34 – 1.25 (m, 5H), 1.00 – 0.86 (m, 6H).

Screening Conditions with Fe(OTf)₂ for the Azidation of *n*-Octane

1 eq.

Temp.	Eq. of	Amount of	Yield of azidation products: 2-azidooctane,
	Selectfluor	Fe(OTf)2	3-azidooctane, and 4-azidooctane
70°C	3	5 mol %	36%
70°C	3	10 mol %	36%
70°C	3	20 mol%	35%
70°C	2	20 mol%	19%
70°C*	4*	20 mol%*	33%*
70°C	3	30 mol%	35%

*other changes besides 4 eq. Selectfluor are the concentration is 0.074 *M* (with 6 mL MecN) instead of 0.112 *M* and using 4.26 eq TMS-N₃ (with 0.0019 mol TMS-N₃, 0.25 mL TMS-N₃) instead of 3 eq. TMS-N₃.

Screening Conditions with Mn(OAc)₂ 4H₂O for the Azidation of *n*-Octane

Mn(OAc) ₂ 4H ₂ O (<mark>XX mol%</mark>)/
TMS-N ₃ (3.07 eq.)/
Selectfluor (X eq.)/
MeCN [0.112 <i>M</i>] /
24 hrs/ <mark>70°C</mark>

N₃

~ ~

Temp.	Eq. of	Amount of	Yield of azidation products: 2-azidooctane,	
	Selectfluor	Mn(OAc) ₂ 4H ₂ O	3-azidooctane, and 4-azidooctane	
70°C	3	5 mol %	11%	
70°C	3	10 mol %	19%	
70°C	3	20 mol%	36%	
70°C	2	20 mol%	14%	
70°C*	4*	20 mol%*	36%*	
70°C	3	30 mol%	30%	

*other changes besides 4 eq. Selectfluor are the concentration is 0.074 *M* (with 6 mL MecN) instead of 0.112 *M* and using 4.26 eq TMS-N₃ (with 0.0019 mol TMS-N₃, 0.25 mL TMS-N₃) instead of 3 eq. TMS-N₃.

Screening Conditions with Fe(OTf)₃ for the Azidation of *n*-Octane

1 eq.

Temp.	Eq. of Selectfluor	Amount of Fe(OTf)₃	Yield of azidation products: 2-azidooctane, 3-azidooctane, and 4-azidooctane
70°C	3	5 mol %	35%
70°C	3	10 mol %	38%
70°C	3	20 mol%	35%
70°C	2	20 mol%	42%
70°C*	4*	20 mol%*	32%*
70°C	3	30 mol%	43%

*other changes besides 4 eq. Selectfluor are the concentration is 0.074 M (with 6 mL MecN) instead of 0.112 M and using 4.26 eq TMS-N₃ (with 0.0019 mol TMS-N₃, 0.25 mL TMS-N₃) instead of 3 eq. TMS-N₃.

2-azidooctane, 3-azidooctane, and 4-azidooctane have all previously been characterized.^[1,8] They are characterized here as an inseperable mixture. ¹H-NMR (600 MHz, CDCl₃) δ 3.47 – 3.36 (m, 0.33H), 3.23 (m, 0.33H), 3.17 (m, 0.33H), 1.61 – 1.42 (m, 5H), 1.34 – 1.25 (m, 5H), 1.00 – 0.86 (m, 6H).

Screening Catalysts in the Presence of Selectfluor for the Azidation of 1-Chloroadamantane

catalyst (20 mol%)/ TMS-N₃ (3.07 eq.)/ Selectfluor (X eq.)/ MeCN [0.112 *M*] / 24 hrs/ Temperature

1 eq.

Temp.	Eq. of	catalyst	Yield of (1r,3s,5R,7S)-1-azido-3-
or light	Selectfluor		chloroadamantane
RT	3	Fe(NO ₃) ₃ 9H ₂ O	32%
70°C	3	$Fe(NO_3)_3 9H_2O$	25%
RT	3	Fe(OTf)₃	17%
70°C	3	Fe(OTf)₃	15%
RT, 390 nm*	3*	Fe(NO ₃) ₃ 9H ₂ O*	24%*
RT, 390 nm*	2*	Fe(NO ₃) ₃ 9H ₂ O*	24%*
RT	3	Fe(OAc) ₂	13%
70°C	3	Fe(OAc) ₂	26%
RT	3	Mn(OAc) ₂ 4H ₂ O	50%
70°C	3	Mn(OAc) ₂ 4H ₂ O	50%
RT	3	Mn(OAc)₃ 2H₂O	50%
70°C	3	Mn(OAc)₃ 2H₂O	50%
RT	3	Fe(OTf) ₂	8%
70°C	3	Fe(OTf) ₂	14%
RT	3	(none)	16%
70°C	3	(none)	20%
RT	3	(S,S)-Jacobsen's catalyst	40%
70°C	3	(S,S)-Jacobsen's catalyst	28%
RT	3	MnF₃	38%
70°C	3	MnF₃	47%
RT	3	FeF₃	40%
70°C	3	FeF₃	42%
RT	3	Mn(OTf) ₂	36%
70°C	3	Mn(OTf) ₂	44%
RT	3 NFSI**	Fe(OAc) ₂	5%
70°C	3 NFSI**	Fe(OAc) ₂	22%

*concentration is 0.223 M (with 2 mL MeCN) instead of 0.112 M; 390 nm (40 W blue LEDs, 1 cm, 25% intensity)

**NFSI instead of Selectfluor

General procedure:

1-chloroadamantane (1 eq., 0.000446 mol = 0.446 mmol, 0.076 g) was added to a vial with a stir bar followed by 4 mL MeCN. Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 0.474 g) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature or light. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5trimethoxybenzene as an internal standard.

(1r, 3s, 5R, 7S)-1-azido-3-chloroadamantane has previously been characterized.^[2] ¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, 2H), 2.09 (s, 2H), 1.99 (q, *J* = 12.3 Hz, 4H), 1.70 (s, 3H), 1.53 (q, *J* = 12.0 Hz, 2H) 1.18 (s, br, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 66.5, 60.4, 51.1, 46.0, 39.8, 34.0, 31.8.

Screening Ligands (20 mol%) with Mn(OAc)₂ 4H₂O (20 mol%) for the Azidation of 1-Chloroadamantane

1 eq.

Mn(OAc)₂ 4H₂O (20 mol%)/ ligand (20 mol%) Selectfluor (X eq.)/ MeCN [0.112 *M*] / 24 hrs/ Temperature

CI

Temperature	Equivalents of Selectfluor	Ligand (20 mol%) used with Mn(OAc) ₂ 4H ₂ 0 (20 mol%)	Yield of (1 <i>r</i> ,3 <i>s</i> ,5 <i>R</i> ,7 <i>S</i>)-1- azido-3-chloroadamantane
RT	3	ethyl-salen	17%
70°C	3	ethyl-salen	21%
RT	3	propyl-salen	12%
70°C	3	propyl-salen	25%
RT	3	salphen	12%
70°C	3	salphen	18%
RT	3	(S,S)-Jacobsen's ligand	42%
70°C	3	(S,S)-Jacobsen's ligand	17%
RT	3	2,2'-bipy	21%
70°C	3	2,2'-bipy	60%
RT	3	1,10-phen	13%
70°C	3	1,10-phen	57%
RT	3	Sigman's ligand	44%
70°C	3	Sigman's ligand	48%
RT	3	pybox	41%
70°C	3	pybox	55%
RT	3	4,4'-dimethyl-2,2'-bipy	21%
70°C	3	4,4'-dimethyl-2,2'-bipy	52%
RT	3	4,4'-dimethoxy-2,2'-bipy	28%
70°C	3	4,4'-dimethoxy-2,2'-bipy	56%
RT	3	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	20%
70°C	3	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	57%
RT	3	5,5'-dimethyl-2,2'-bipy	20%
70°C	3	5,5'-dimethyl-2,2'-bipy	58%
RT	3	6,6'-dimethyl-2,2'-bipy	52%
70°C	3	6,6'-dimethyl-2,2'-bipy	46%
RT	3	BPhen	23%
70°C	3	BPhen	55%
RT	3	neocuproine	44%
70°C	3	neocuproine	47%
RT	3	bathocuproine	53%
70°C	3	bathocuproine	50%
RT	3	2,2':6',2''-terpy	33%
70°C	3	2,2':6',2''-terpy	48%
RT	3	pymox	41%

70°C	3	рутох	56%
RT	3	4,4',4"-tri- <i>tert</i> -butyl-2,2':6',2"-terpy	11%
70°C	3	4,4',4"-tri- <i>tert</i> -butyl-2,2':6',2"-terpy	50%
RT	3	2-ampy	22%
70°C	3	2-ampy	50%
RT	3	di-(2-picolyl)amine	15%
70°C	3	di-(2-picolyl)amine	46%
RT	3	4,4'-bis(CF₃)-2,2'-bipy	35%
70°C	3	4,4'-bis(CF₃)-2,2'-bipy	56%
RT	3	2,2'-bpz	50%
70°C	3	2,2'-bpz	50%
RT	3	2,2'-bpm	23%
70°C	3	2,2'-bpm	50%

Ethyl-salen is *N*,*N*'-bis(salicylidene)ethylenediamine. Propyl-salen is *N*,*N*'-bis(salicylidene)-1,3-propanediamine. Salphen is *N*,*N*'-bis(salicylidene)*o*-phenylenediamine which is also known as *N*,*N*'-bis(salicylidene)-*ortho*-phenylenediamine or *N*,*N*'-bis(salicylidene)-1,2-phenylenediamine. (*S*,*S*)-Jacobsen's ligand is (*S*,*S*)-(+)-*N*,*N*'-bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediamine. 2,2'-bipy is 2,2'-bipyridine. 1,10-phen is 1,10phenanthroline. Sigman's ligand is 2-(2-quinolinyl)oxazoline which is also known as 2-(4,5-dihydro-2-oxazolyl)quinoline. Pybox is 2,6-bis(4,5dihydrooxazol-2-yl)pyridine which is also known as 2,6-di(2-oxazolyl)pyridine. 4,4'-dimethyl-2,2'-bipy is 4,4'-dimethyl-2,2'-bipyridine. 4,4'dimethoxy-2,2'-bipy is 4,4'-dimethoxy-2,2'-bipyridine. 4,4'-di-*tert*-butyl-2,2'-bipy is 4,4'-di-*tert*-butyl-2,2'-bipyridine. 5,5'-dimethyl-2,2'-bipy is 5,5'-dimethyl-2,2'-bipyridine. 6,6'-dimethyl-2,2'-bipy is 6,6'-dimethyl-2,2'-bipyridine. BPhen is bathophenanthroline which is also known as 4,7diphenyl-1,10-phenanthroline Neocuproine is 2,9-dimethyl-1,10-phenanthroline. Bathocuproine is 2,9-dimethyl-4,7-diphenyl-1,10phenanthroline. 2,2':6',2''-terpy is 2,2':6',2''-terpyridine which is also known as either 2,6-bis(2-pyridyl)pyridine or 1²,2²:2⁶,3²-terpyridine. Pymox is 2-pyrid-2-ylmonooxazoline which is also known as 2-(pyridin-2-yl)-4,5-dihydrooxazole or 2-(2-pyridyl)-4,5-dihydrooxazole or 2-pyrid-2yloxazoline. 4,4',4''-tri-*tert*-butyl-2,2':6',2'''-terpy is 4,4',4''-tri-*tert*-butyl-2,2':6',2''-terpyridine which is also known as 1⁴,2⁴,3⁴-tri-*tert*-butyl-1²,2²:2⁶,3²-terpyridine. Di-(2picolyl)amine is also known as 2-(2-pyridylmethyl)aminomethylpyridine or bis(2-pyridylmethyl)amine or bis(pyridin-2-ylmethyl)amine. 4,4'bis(CF₃)-2,2'-bipy is 4,4'-bis(trifluoromethyl)-2,2'-bipyridine. 2,2'-bipyrazine. 2,2'-bipyrimidine.

General procedure:

The ligand (20 mol%, 0.0000892 mol = 0.0892 mmol) was placed into a vial with a stir bar followed by 4 mL MeCN. Next, $Mn(OAc)_2 4H_2O$ (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial and the vial was sealed and allowed to stir vigorously for 5 min at RT. Then, the 1-chloroadamantane (1 eq., 0.000446 mol = 0.446 mmol, 0.076 g) was added to the vial and then the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial. Lastly, the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 0.474 g) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

(1r,3s,5R,7S)-1-azido-3-chloroadamantane has previously been characterized.^[2] ¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, 2H), 2.09 (s, 2H), 1.99 (q, *J* = 12.3 Hz, 4H), 1.70 (s, 3H), 1.53 (q, *J* = 12.0 Hz, 2H) 1.18 (s, br, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 66.5, 60.4, 51.1, 46.0, 39.8, 34.0, 31.8.

Screening Ligands (20 mol%) with $Mn(OAc)_3 2H_2O$ (20 mol%) for the Azidation of 1-Chloroadamantane

1 eq.

Mn(OAc)₃ 2H₂O (20 mol%)/ ligand (20 mol%) Selectfluor (X eq.)/ MeCN [0.112 *M*] / 24 hrs/ Temperature

Temperature	Equivalents of Selectfluor	Ligand (20 mol%) used with Mn(OAc)₃ 2H₂0 (20 mol%)	Yield of (1 <i>r</i> ,3 <i>s</i> ,5 <i>R</i> ,7 <i>S</i>)-1- azido-3-chloroadamantane
RT	3	ethyl-salen	6%
70°C	3	ethyl-salen	17%
RT	3	propyl-salen	8%
70°C	3	propyl-salen	15%
RT	3	salphen	7%
70°C	3	salphen	14%
RT	3	(S,S)-Jacobsen's ligand	36%
70°C	3	(S,S)-Jacobsen's ligand	23%
RT	3	2,2'-bipy	28%
70°C	3	2,2'-bipy	59%
RT	3	1,10-phen	22%
70°C	3	1,10-phen	57%
RT	3	Sigman's ligand	37%
70°C	3	Sigman's ligand	54%
RT	3	pybox	49%
70°C	3	pybox	50%
RT	3	4,4'-dimethyl-2,2'-bipy	22%
70°C	3	4,4'-dimethyl-2,2'-bipy	64%
RT	3	4,4'-dimethoxy-2,2'-bipy	30%
70°C	3	4,4'-dimethoxy-2,2'-bipy	53%
RT	3	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	23%
70°C	3	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	55%
RT	3	5,5'-dimethyl-2,2'-bipy	13%
70°C	3	5,5'-dimethyl-2,2'-bipy	58%
RT	3	6,6'-dimethyl-2,2'-bipy	52%
70°C	3	6,6'-dimethyl-2,2'-bipy	52%
RT	3	BPhen	29%
70°C	3	BPhen	58%
RT	3	neocuproine	47%
70°C	3	neocuproine	56%
RT	3	bathocuproine	56%
70°C	3	bathocuproine	50%
RT	3	2,2':6',2''-terpy	35%
70°C	3	2,2':6',2''-terpy	50%
RT	3	pymox	45%

70°C	3	рутох	56%
RT	3	4,4',4"-tri- <i>tert</i> -butyl-2,2':6',2"-terpy	21%
70°C	3	4,4',4"-tri- <i>tert</i> -butyl-2,2':6',2"-terpy	50%
RT	3	2-ampy	30%
70°C	3	2-ampy	55%
RT	3	di-(2-picolyl)amine	25%
70°C	3	di-(2-picolyl)amine	41%
RT	3	4,4'-bis(CF ₃)-2,2'-bipy	37%
70°C	3	4,4'-bis(CF₃)-2,2'-bipy	56%
RT	3	2,2'-bpz	50%
70°C	3	2,2'-bpz	50%
RT	3	2,2'-bpm	33%
70°C	3	2,2'-bpm	50%

Ethyl-salen is *N*,*N*'-bis(salicylidene)ethylenediamine. Propyl-salen is *N*,*N*'-bis(salicylidene)-1,3-propanediamine. Salphen is *N*,*N*'-bis(salicylidene)*o*-phenylenediamine which is also known as *N*,*N*'-bis(salicylidene)-*ortho*-phenylenediamine or *N*,*N*'-bis(salicylidene)-1,2-phenylenediamine. (*S*,*S*)-Jacobsen's ligand is (*S*,*S*)-(+)-*N*,*N*'-bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediamine. 2,2'-bipy is 2,2'-bipyridine. 1,10-phen is 1,10phenanthroline. Sigman's ligand is 2-(2-quinolinyl)oxazoline which is also known as 2-(4,5-dihydro-2-oxazolyl)quinoline. Pybox is 2,6-bis(4,5dihydrooxazol-2-yl)pyridine which is also known as 2,6-di(2-oxazolyl)pyridine. 4,4'-dimethyl-2,2'-bipy is 4,4'-dimethyl-2,2'-bipyridine. 4,4'dimethoxy-2,2'-bipy is 4,4'-dimethoxy-2,2'-bipyridine. 4,4'-di-*tert*-butyl-2,2'-bipy is 4,4'-di-*tert*-butyl-2,2'-bipyridine. 5,5'-dimethyl-2,2'-bipy is 5,5'-dimethyl-2,2'-bipyridine. 6,6'-dimethyl-2,2'-bipy is 6,6'-dimethyl-2,2'-bipyridine. BPhen is bathophenanthroline which is also known as 4,7diphenyl-1,10-phenanthroline. Neocuproine is 2,9-dimethyl-1,10-phenanthroline. Bathocuproine is 2,9-dimethyl-4,7-diphenyl-1,10phenanthroline. 2,2':6',2''-terpy is 2,2':6',2''-terpyridine which is also known as either 2,6-bis(2-pyridyl)pyridine or 1²,2²:2⁶,3²-terpyridine. Pymox is 2-pyrid-2-ylmonooxazoline which is also known as 2-(pyridin-2-yl)-4,5-dihydrooxazole or 2-(2-pyridyl)-4,5-dihydrooxazole or 2-pyrid-2yloxazoline. 4,4',4''-tri-*tert*-butyl-2,2':6',2''-terpy is 4,4',4''-tri-*tert*-butyl-2,2':6',2''-terpyridine which is also known as (pyridin-2-yl)methanamine or 2-picolylamine. Di-(2picolyl)amine is also known as 2-(2-pyridylpyridine or bis(2-pyridylmethyl)amine or bis(pyridin-2-ylmethyl)amine. 4,4'bis(CF₃)-2,2'-bipy is 4,4'-bis(trifluoromethyl)-2,2'-bipyridine. 2,2'-bipy razine. 2,2'-bipyrimidine.

General procedure:

The ligand (20 mol%, 0.0000892 mol = 0.0892 mmol) was placed into a vial with a stir bar followed by 4 mL MeCN. Next, $Mn(OAc)_3 2H_2O$ (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial and the vial was sealed and allowed to stir vigorously for 5 min at RT. Then, the 1-chloroadamantane (1 eq., 0.000446 mol = 0.446 mmol, 0.076 g) was added to the vial and then the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial. Lastly, the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 0.474 g) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

(1r,3s,5R,7S)-1-azido-3-chloroadamantane has previously been characterized.^[2] ¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, 2H), 2.09 (s, 2H), 1.99 (q, *J* = 12.3 Hz, 4H), 1.70 (s, 3H), 1.53 (q, *J* = 12.0 Hz, 2H) 1.18 (s, br, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 66.5, 60.4, 51.1, 46.0, 39.8, 34.0, 31.8.

Screening Ligands with Mn(OAc)₂ 4H₂O for the Azidation of 1-Chloroadamantane

1 eq.

Mn(OAc)₂ 4H₂O (xx mol%)/ ligand (xx mol%) Selectfluor (3 eq.)/ MeCN [0.112 *M*] / 24 hrs/ Temperature

CI ٧3

Temperature	Mn(OAc)₂	Ligand		Yield of (1 <i>r</i> ,3 <i>s</i> ,5 <i>R</i> ,7 <i>S</i>)-1-
	4H₂O			azido-3-chloroadamantane
DT.	F			440/
RI	5 mol%	(none)		41%
70°C	5 mol%	(none)		38%
RT	10 mol%	(none)		50%
70°C	10 mol%	(none)		50%
RT	30 mol%	(none)		55%
70°C	30 mol%	(none)		60%
70°C	5 mol%	2,2'-bipy	(5 mol%)	49%
RT, 390 nm Blue LEDS	5 mol%	2,2'-bipy	(5 mol%)	11%
RT, 427 nm Blue LEDS	5 mol%	2,2'-bipy	(5 mol%)	14%
70°C	5 mol%	2,2'-bipy	(10 mol%)	46%
70°C	10 mol%	2,2'-bipy	(10 mol%)	57%
70°C	10 mol%	2,2'-bipy	(20 mol%)	50%
70°C	20 mol%	2,2'-bipy	(30 mol%)	58%
70°C	20 mol%	2,2'-bipy	(40 mol%)	56%
70°C	30 mol%	2,2'-bipy	(30 mol%)	60%
70°C	5 mol%	1,10-phen	(5 mol%)	44%
70°C	5 mol%	1,10-phen	(10 mol%)	41%
70°C	10 mol%	1,10-phen	(10 mol%)	54%
70°C	10 mol%	1,10-phen	(20 mol%)	56%
70°C	30 mol%	1,10-phen	(30 mol%)	57%
70°C	5 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(5 mol%)	48%
70°C	5 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(10 mol%)	52%
70°C	10 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(10 mol%)	56%
70°C	10 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(20 mol%)	54%
70°C	30 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(30 mol%)	56%
70°C	5 mol%	5,5'-dimethyl-2,2'-bipy	(5 mol%)	42%
70°C	5 mol%	5,5'-dimethyl-2,2'-bipy	(10 mol%)	47%
70°C	10 mol%	5,5'-dimethyl-2,2'-bipy	(10 mol%)	51%
70°C	10 mol%	5,5'-dimethyl-2,2'-bipy	(20 mol%)	50%
70°C	30 mol%	5,5'-dimethyl-2,2'-bipy	(30 mol%)	55%

General procedure:

The ligand was placed into a vial with a stir bar followed by 4 mL MeCN. Next, $Mn(OAc)_2 4H_2O$ was added to the vial and the vial was sealed and allowed to stir vigorously for 5 min at RT. Then, the 1chloroadamantane (1 eq., 0.000446 mol = 0.446 mmol, 0.076 g) was added to the vial and then the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial. Lastly, the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 0.474 g) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

(1r,3s,5R,7S)-1-azido-3-chloroadamantane has previously been characterized.^[2] ¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, 2H), 2.09 (s, 2H), 1.99 (q, *J* = 12.3 Hz, 4H), 1.70 (s, 3H), 1.53 (q, *J* = 12.0 Hz, 2H) 1.18 (s, br, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 66.5, 60.4, 51.1, 46.0, 39.8, 34.0, 31.8.

Screening Ligands with $Mn(OAc)_3 2H_2O$ for the Azidation of 1-Chloroadamantane

1 eq.

TMS-N₃ (3.07 eq.) Mn(OAc)₃ 2H₂O (mol%)/ ligand (xx mol%) Selectfluor (3 eq.)/ MeCN [0.112 *M*] / 24 hrs/ Temperature

Temperature	Mn(OAc)₃ 2H₂O	Ligand		Yield of (1 <i>r</i> ,3 <i>s</i> ,5 <i>R</i> ,7 <i>S</i>)-1- azido-3-chloroadamantane
RT	5 mol%	(none)		34%
70°C	5 mol%	(none)		38%
RT	10 mol%	(none)		50%
70°C	10 mol%	(none)		54%
RT	30 mol%	(none)		54%
70°C	30 mol%	(none)		58%
70°C	5 mol%	2,2'-bipy	(5 mol%)	45%
RT, 390 nm Blue LEDS	5 mol%	2,2'-bipy	(5 mol%)	15%
RT, 427 nm Blue LEDS	5 mol%	2,2'-bipy	(5 mol%)	17%
70°C	5 mol%	2,2'-bipy	(10 mol%)	51%
70°C	5 mol%	2,2'-bipy	(15 mol%)	50%
70°C	10 mol%	2,2'-bipy	(10 mol%)	58%
70°C	10 mol%	2,2'-bipy	(20 mol%)	54%
70°C	20 mol%	2,2'-bipy	(30 mol%)	55%
70°C	20 mol%	2,2'-bipy	(40 mol%)	55%
70°C	30 mol%	2,2'-bipy	(30 mol%)	56%
70°C	5 mol%	1,10-phen	(5 mol%)	49%
70°C	5 mol%	1,10-phen	(10 mol%)	49%
70°C	10 mol%	1,10-phen	(10 mol%)	56%
70°C	10 mol%	1,10-phen	(20 mol%)	50%
70°C	30 mol%	1,10-phen	(30 mol%)	60%
70°C	5 mol%	4,4'-dimethyl-2,2'-bipy	(5 mol%)	52%
70°C	5 mol%	4,4'-dimethyl-2,2'-bipy	(10 mol%)	52%
70°C	10 mol%	4,4'-dimethyl-2,2'-bipy	(10 mol%)	55%
70°C	10 mol%	4,4'-dimethyl-2,2'-bipy	(20 mol%)	51%
70°C	none	4,4'-dimethyl-2,2'-bipy	(20 mol%)	22%
70°C	20 mol%	4,4'-dimethyl-2,2'-bipy	(30 mol%)	57%
70°C	20 mol%	4,4'-dimethyl-2,2'-bipy	(40 mol%)	59%
70°C	30 mol%	4,4'-dimethyl-2,2'-bipy	(30 mol%)	57%
70°C	5 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(5 mol%)	50%
70°C	5 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(10 mol%)	53%
70°C	10 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(10 mol%)	55%
70°C	10 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(20 mol%)	50%
70°C	30 mol%	4,4'-di- <i>tert</i> -butyl-2,2'-bipy	(30 mol%)	56%
70°C	5 mol%	5,5'-dimethyl-2,2'-bipy	(5 mol%)	48%

70°C	5 mol%	5,5'-dimethyl-2,2'-bipy	(10 mol%)	54%
70°C	5 mol%	5,5'-dimethyl-2,2'-bipy	(15 mol%)	52%
70°C	10 mol%	5,5'-dimethyl-2,2'-bipy	(10 mol%)	57%
70°C	10 mol%	5,5'-dimethyl-2,2'-bipy	(20 mol%)	56%
70°C	30 mol%	5,5'-dimethyl-2,2'-bipy	(30 mol%)	55%
70°C	5 mol%	BPhen	(5 mol%)	54%
70°C	none	BPhen	(5 mol%)	18%
RT	5 mol%	BPhen	(5 mol%)	32%
RT, 390 nm Blue LEDS	5 mol%	BPhen	(5 mol%)	33%
RT, 427 nm Blue LEDS	5 mol%	BPhen	(5 mol%)	30%
70°C	5 mol%	BPhen	(10 mol%)	54%
70°C	10 mol%	BPhen	(10 mol%)	50%
70°C	10 mol%	BPhen	(20 mol%)	47%
70°C	30 mol%	BPhen	(30 mol%)	58%

General procedure:

The ligand was placed into a vial with a stir bar followed by 4 mL MeCN. Next, $Mn(OAc)_3 2H_2O$ was added to the vial and the vial was sealed and allowed to stir vigorously for 5 min at RT. Then, the 1chloroadamantane (1 eq., 0.000446 mol = 0.446 mmol, 0.076 g) was added to the vial and then the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial. Lastly, the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 0.474 g) was added to the vial. The vial was sealed tightly and placed on/into the correct conditions regarding the temperature. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times with DCM, and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

(1r, 3s, 5R, 7S)-1-azido-3-chloroadamantane has previously been characterized.^[2] ¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, 2H), 2.09 (s, 2H), 1.99 (q, *J* = 12.3 Hz, 4H), 1.70 (s, 3H), 1.53 (q, *J* = 12.0 Hz, 2H) 1.18 (s, br, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 66.5, 60.4, 51.1, 46.0, 39.8, 34.0, 31.8.

Screening NaN₃ instead of TMS-N₃ for the Azidation of Cyclooctane

Temp. or light	Catalyst	Yield of azidocyclooctane
70°C	Fe(NO ₃) ₃ 9H ₂ O (20 mol%)	21% (and 5% yield of fluorocyclooctane)
70°C	Fe(OTf)₃ (20 mol%)	8% (and 9% yield of fluorocyclooctane) (and 4% yield of cyclooctanone)
RT, 390 nm* 40 W, Blue LEDs	Fe(NO ₃) ₃ 9H ₂ O* (20 mol%)	22%* (and 13% yield of fluorocyclooctane)* (and 4% yield of cyclooctanone)*
70°C	Mn(OAc) ₃ 2H ₂ O (5 mol%) and BPhen (5 mol%)	8% (and 4% yield of fluorocyclooctane) (and 1% yield of cyclooctanone)
70°C	Mn(OAc) ₃ 2H ₂ O (20 mol%) and 1,4-dimethyl-bipy (20 mol%)	12% (and 4% yield of fluorocyclooctane) (and 2% yield of cyclooctanone)

*2 eq. Selectfluor and the concentration is 0.223 *M* (with 2 mL MeCN) instead of 0.112 *M*; 390 nm (40 w blue LEDs, 1 cm, 25% intensity)

Azidocyclooctane (also known as cyclooctyl azide) has previously been characterized.^[1,2] ¹H-NMR (600 MHz, CDCl₃) δ 3.55 (tt, *J* = 8.5, 4.0 Hz, 1H), 1.89 – 1.84 (m, 2H), 1.74 – 1.66 (m, 4H), 1.57 – 1.46 (m, 8H).

Fluorocyclooctane has previously been characterized.^[3] ¹H-NMR (600 MHz, CDCl₃) δ 4.69 (dm, *J* = 48 Hz, 1H), 1.93 – 1.86 (m, 4H), 1.74 – 1.69 (m, 2H), 1.59 – 1.44 (m, 8H).

Cyclooctanone has previously been characterized.^{[6] 1}H-NMR (600 MHz, CDCl₃) δ 2.43 – 2.40 (m, 1H), 1.90 – 1.86 (m, 1H), 1.57 – 1.53 (m, 1H), 1.40 – 1.35 (m, 1H).

Screening Conditions for the Azidation of Cycloheptanone with Selectfluor

Catalyst (20 mol%)	Selectfluor	2-azidocycloheptanone	3-azidocycloheptanone	4-azidocycloheptanone
Fe(NO ₃) ₃ 9H ₂ O	2 eq.	17%	trace	trace
Fe(NO ₃) ₃ 9H ₂ O	3 eq.	53%	16%	16%
Fe(NO ₃) ₃ 9H ₂ O with 1 eq. Na ₂ CO ₃	3 eq.	16%	8%	10%
Fe(OTf)₃	3 eq.	2%	4%	20%
(none)	3 eq.	27%	2%	2%
(none) with 1 eq. Na ₂ CO ₃	3 eq.	10%	1%	1%
Fe(OAc) ₂	3 eq.	29%	trace	trace
Fe(OTf) ₂	3 eq.	7%	trace	trace
Fe(III) oxalate 6H ₂ O	3 eq.	27%	trace	trace
Mn(OAc) ₂ 4H ₂ O	3 eq.	5%	trace	trace
MnF₃	3 eq.	18%	4%	4%
Mn(OAc) ₃ 2H ₂ O	3 eq.	16%	3%	3%
Mn(OTf) ₂	3 eq.	18%	5%	7%
Mn(OAc) ₃ 2H ₂ O (5 mol%), BPhen (5 mol%)	3 eq.	21%	4%	4%
Mn(OAc) ₃ 2H ₂ O (20 mol%), 4,4'-dimethyl- bipy (20 mol%)	3 eq.	24%	4%	4%
Fe(NO ₃) ₃ 9H ₂ O with 1 eq. NaN ₃ (as well as the TMS-N ₃)	3 eq.	14%	3%	3%
Fe(NO ₃) ₃ 9H ₂ O (1 eq.)	0 eq.	14%	none	none

General procedure:

Cycloheptanone (1 eq., 0.000446 mol = 0.446 mmol, 0.053 mL) was added to a vial with a stir bar followed by 4 mL MeCN (for 0.112 *M*). Next the catalyst (20 mol%, 0.0000892 mol = 0.0892 mmol) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 474 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times (with a mixture of ethyl acetate and hexanes in a 1:1 ratio), and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

2-azidocycloheptan-1-one (also known as 2-azidocycloheptanone or α -azidocycloheptanone) has previously been characterized.^[9]

¹H-NMR (600 MHz, CDCl₃) δ 4.08 (dd, *J* = 9.2, 3.7 Hz, 1H), 2.64 – 2.59 (m, 1H), 2.53 (ddd, *J* = 15.9, 10.1, 4.0 Hz, 1H), 1.86 – 1.60 (m, 6H), 1.48 – 1.43 (m, 1H).

 $^{13}\text{C}\{^1\text{H}\}\text{-}\text{NMR}$ (151 MHz, CDCl_3) δ 208.6, 67.8, 41.4, 30.8, 28.9, 26.6, 23.6.

3-azidocycloheptan-1-one (also known as 3-azidocycloheptanone or β -azidocycloheptanone) has previously been characterized.^[10]

4-azidocycloheptan-1-one (also known as 4-azidocycloheptanone or γ -azidocycloheptanone) has previously been characterized.^[1]

General procedure for Method A ([Fe] Conditions)

The substrate (1 eq., 0.000446 mol = 0.446 mmol) was added to a vial with a stir bar followed by 4 mL MeCN (for 0.112 *M*). Next the Fe(NO₃)₃ 9H₂O (20 mol%, 0.0000892 mol = 0.0892 mmol, 36 mg) was added to the vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 474 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

General procedure for Method B (alternative [Mn] Conditions not presented in main text)

BPhen (5 mol%, 0.0000223 mol = 0.0223 mmol, 7.4 mg) was placed into a vial with a stir bar followed by 4 mL MeCN. Next, $Mn(OAc)_3 2H_2O$ (5 mol%, 0.0000223 mol = 0.0223 mmol, 5.98 mg) was added to the vial and the vial was sealed and allowed to stir vigorously for 5 min at RT. Next, the substrate (1 eq., 0.000446 mol = 0.446 mmol) was added to a vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 474 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

General procedure for Method C ([Mn] conditions)

4,4'-dimethyl-2,2'-bipy (20 mol%, 0.0000892 mol = 0.0892 mmol, 16 mg) was placed into a vial with a stir bar followed by 4 mL MeCN. Next, $Mn(OAc)_3 2H_2O$ (20 mol%, 0.0000892 mol = 0.0892 mmol, 23.9 mg) was added to the vial and the vial was sealed and allowed to stir vigorously for 5 min at RT. Next, the substrate (1 eq., 0.000446 mol = 0.446 mmol) was added to a vial. Then, the TMS-N₃ (3.07 eq., 0.00137 mol = 1.37 mmol, 0.18 mL) was added to the vial and lastly the Selectfluor (3 eq., 0.001338 mol = 1.338 mmol, 474 mg) was added to the vial. The vial was sealed tightly and placed on to a pre-heated 70°C sand bath. The reaction was stirred vigorously for 24 hours. Then, the reaction was diluted with DCM and ran over a short silica pad, which was washed multiple times and then concentrated on the rotary evaporator. The NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard.

Azidocyclododecane (also known as cyclododecyl azide) has previously been characterized.^{[2,7] 1}H-NMR (600 MHz, CDCl₃) δ 3.53 – 3.43 (m, 1H), 1.73 – 1.60 (m, 2H), 1.53 – 1.44 (m, 4H), 1.42 – 1.32 (m, 16H).

After purification with flash column chromatography on silica gel, the reaction produced a 46% isolated yield (51mg) of azidocyclopentadecane (also known as cyclopentadecyl azide) as a clear solid using conditions A and 50% isolated yield (56.4mg) using conditions C.

¹H-NMR (600 MHz, CDCl₃) δ 3.35-3.29 (p, *J* = 6.15 Hz, 1H), 1.55-1.46 (m, 5H), 1.35-1.31 (s, br, 7H), 1.30-1.22 (s, br, 16H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 61.0, 31.7, 26.84, 26.77, 26.73, 26.68, 26.63, 23.6. HRAPCIMS m/z 224.2368 [M-N₂+H]⁺ (calcd for C₁₅H₂₉N₁+H⁺, 224.2378).

After purification with flash column chromatography on silica gel, the reaction produced a 39% isolated yield (29mg) of (2-azidopropan-2-yl)cyclohexane and 1-azido-1-isopropylcyclohexane as a clear liquid. Both (2-azidopropan-2-yl)cyclohexane and 1-azido-1-isopropylcyclohexane have previously been characterized together as a mixture of the two isomers.^[2]

¹H-NMR (600 MHz, CDCl₃) δ 1.82 – 1.76 (m, 3H), 1.70 – 1.64 (m, 2H), 1.61 – 1.53 (m, 1H), 1.42 – 1.27 (m, 2H), 1.22 (s, 4H), 1.15 – 1.09 (m, 1H), 1.04 – 0.91 (m, 2H), 0.96 (d, *J* = 6.8 Hz, 2H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 67.1, 64.7, 47.5, 37.2 (broad), 31.5, 27.7, 26.6, 26.4, 25.5, 23.5, 22.2, 17.2.

Fe(NO₃)₃ 9H₂O (20 mol%)/ TMS-N₃ (3.07 eq.)/ Selectfluor (3 eq.)/ 35% isolated yield N_3 MeCN [0.112 M] / (27.9 mg) 24 hrs/ RT 1 eq. 33% NMR yield Chemical Formula: C₁₀H₁₅N₃ Exact Mass: 177.1266 Molecular Weight: 177.2510 Mn(OAc)3 2H2O (5 mol%)/ N_3 BPhen (5 mol%)/ TMS-N₃ (3.07 eq.)/ Selectfluor (3 eq.)/ MeCN [0.112 M] / 24 hrs/ 70°C 22% NMR yield 1 eq. Mn(OAc)₃ 2H₂O (20 mol%)/ 4,4'-dimethyl-bipy (20 mol%)/ 40% isolated yield TMS-N₃ (3.07 eq.)/ (31.9 mg) Selectfluor (3 eq.)/ N_3 MeCN [0.112 M] / 48 hrs/ RT 1 eq. 45% NMR yield (3s,5s,7s)-1-azidoadamantane (also known as (3s,5s,7s)-1-adamantyl azide) has previously been

characterized.^[1, 16] The product was isolated as a white solid in 35% yield (27.9 mg) using conditions A [Fe] and 40% yield (31.9 mg) using conditions C [Mn]

¹H-NMR (600 MHz, CDCl₃) δ 2.15 (s, 3H), 1.80 (d, *J* = 2.8 Hz, 6H), 1.71 – 1.61 (m, 6H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 59.0, 41.5, 35.9, 29.8.

5-azido-5-methylhexan-2-yl benzoate (also known as 4-azido-1,4-dimethylpentyl benzoate) has previously been characterized.^[1, 18] It was isolated as a colorless oil in 75% yield (88.1 mg) using conditions A [Fe] and 70% yield (82.2 mg) using conditions C [Mn].

¹H-NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 1.3 Hz, 2H), 7.54 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 5.18 – 5.10 (m, 1H), 1.82 – 1.77 (m, 1H), 1.71 (m, 1H), 1.62 (ddd, *J* = 13.6, 12.1, 4.5 Hz, 1H), 1.58 – 1.49 (m, 1H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.27 (s, 6H).

4-azido-4-methyl-1-phenylpentan-1-one (also known as 4-azido-4-methyl-1-phenyl-1-pentanone or 4-azido-4-methylvalerophenone) has previously been characterized.^[18]

After purification with flash column chromatography on silica gel, the reaction produced a 44% isolated yield (42.6mg) of 4-azido-4-methyl-1-phenylpentan-1-one as a clear liquid. The reaction was also isolable in 41% yield (40.0 mg) using conditions C [Mn].

¹H-NMR (600 MHz, CDCl₃) δ 7.93 – 7.89 (d, *J* = 8.4 Hz, 2H), 7.52 – 7.48 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 3.02 – 2.98 (m, 2H), 1.90 – 1.86 (m, 2H), 1.27 (s, 6H).

¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 199.5, 136.8, 133.2, 128.7, 128.1, 61.1, 35.4, 33.6, 26.1.

1 eq.

64% NMR yield

(1r,3s,5R,7S)-1-azido-3-chloroadamantane has previously been characterized.^[2]

After purification with flash column chromatography on silica gel, the reaction produced a 21% isolated yield (19.8mg) of (1r,3s,5R,7S)-1-azido-3-chloroadamantane as a clear compound using Conditions A [Fe] and 51% yield (48.5 mg) using Conditions C [Mn].

¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, 2H), 2.09 (s, 2H), 1.99 (q, *J* = 12.3 Hz, 4H), 1.70 (s, 3H), 1.53 (q, *J* = 12.0 Hz, 2H) 1.18 (s, br, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 66.5, 60.4, 51.1, 46.0, 39.8, 34.0, 31.8.

Benzyl azide (also known as either (azidomethyl)benzene or 1-(azidomethyl)benzene) has previously been characterized.^[15, 17]

(1s,3r,5R,7S)-3-azidoadamantan-1-ol (also known as (1r,3s,5R,7S)-1-azidoadamantan-3-ol) has previously been characterized.^[19]

After purification with flash column chromatography on silica gel, the reaction produced a 17% isolated yield (14.6mg) of (1*s*,3*r*,5*R*,7*S*)-3-azidoadamantan-1-ol as a white solid.

¹H-NMR (600 MHz, CDCl₃) δ 2.27 (s, br, 2H), 1.70 (s, 2H), 1.65 (s, br, 4H), 1.62 (s, br, 4H), 1.49 – 1.46 (s, br, 2H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 69.6, 60.7, 49.1, 43.8, 40.2, 34.5, 30.3.

1 eq.

Fe(NO₃)₃ 9H₂O (20 mol%)/ TMS-N₃ (4.26 eq.)/ Selectfluor (4 eq.)/ MeCN [0.074 *M*] / 24 hrs/ RT

Chemical Formula: C₁₂H₁₈N₄O Exact Mass: 234.1481 Molecular Weight: 234.3030 (30% NMR yield) isolated 22% yield

1 eq.

Mn(OAc)₃ 2H₂O (5 mol%)/ BPhen (5 mol%)/ TMS-N₃ (3.07 eq.)/ Selectfluor (3 eq.)/ MeCN [0.112 *M*] / 24 hrs/ 70°C

NH

trace

After purification with flash column chromatography on silica gel, the reaction produced a 22% isolated yield (23mg) of N-((1r,3s,5R,7S)-3-azidoadamantan-1-yl)acetamide as a white solid.

¹H-NMR (600 MHz, CDCl₃) δ 2.22 (s, 2H), 2.01 (s, 2H), 1.91 (s, 3H), 1.86-1.81 (m, 4H), 1.71 (d, *J* = 11.9 Hz, 2H), 1.67 (d, *J* = 12.2 Hz, 2H), 1.56 (d, *J* = 13.2 Hz, 1H), 1.50 (d, *J* = 13.2 Hz, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 169.5, 59.6, 53.4, 45.1, 41.6, 40.5, 40.2, 36.3, 34.8, 30.0, 29.4, 24.6. HRAPCIMS m/z 207.1492 [M-N₂+H]⁺ (calcd for C₁₂H₁₈N₂O₁+H⁺, 207.1497).

Tert-butyl 2-azidopyrrolidine-1-carboxylate (also known as 1-Boc-2-azidopyrrolidine, 1-Boc- α -azidopyrrolidine, or 1-Boc-pyrrolidin-2-yl azide) has previously been characterized.^[11] ¹H-NMR (600 MHz, CDCl₃) δ 5.53 – 5.38 (m, 1H), 3.60 – 3.46 (m, 1H), 3.34 – 3.25 (m, 1H), 2.25 – 2.11 (m, 1H), 1.95 – 1.80 (m, 3H), 1.52 – 1.48* (m, 9H). *multiple rotamers present at RT in CDCl₃

After purification with flash column chromatography on silica gel, the reaction produced a 19% isolated yield (12mg) of 2-azidooxepane (also known as 2-oxepanyl azide, 2-azidohexamethylene oxide, α -azidooxepane, or α -azidohexamethylene oxide).

¹H-NMR (600 MHz, CDCl₃) δ 5.17 (apparent dd, *J* = 9.6, 5.2 Hz, 1H), 3.85 (ddd, *J* = 12.6, 10.6, 1.9 Hz, 1H), 3.73 (dddd, *J* = 12.7, 4.5, 3.3, 1.3 Hz, 1H), 2.02 (dddq, *J* = 14.6, 7.9, 5.2, 1.5 Hz, 1H), 1.84 – 1.80 (m, 1H), 1.77 – 1.69 (m, 2H), 1.67 – 1.57 (m, 2H), 1.45 (dtt, *J* = 13.1, 11.0, 1.7 Hz, 1H), 1.36 (dtdd, *J* = 14.2, 11.7, 4.5, 2.6 Hz, 1H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 91.7, 64.2, 34.7, 30.6, 28.9, 23.0. HRAPCIMS m/z 114.0916 [M-N₂+H]⁺ (calcd for C₆H₁₁N₁O₁+H⁺, 114.0919).

1-azidoethylbenzene (also known as 1-phenylethyl azide, α -methylbenzyl azide, or 1-azido-1-phenylethane) has previously been characterized.^[12]

¹H-NMR (600 MHz, CDCl₃) δ 7.30 (m, 2H), 7.25 (m, 3H), 4.58 (q, J = 6.8 Hz, 1H) 1.45 (d, J = 6.8 Hz, 3H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 140.8, 128.8, 128.1, 126.4, 61.1, 21.6.

3-azido-celestolide (also known as 1-(3-azido-6-(*tert*-butyl)-1,1-dimethyl-2,3-dihydro-1*H*-inden-4yl)ethan-1-one or 4-acetyl-3-azido-6-*tert*-butyl-1,1-dimethylindan) has previously been characterized.^[13] It was isolated as a colorless oil in 45% yield (57.7 mg) using Conditions A [Fe] and 54% yield (69.3 mg) using conditions C [Mn]

¹H-NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 1.7 Hz, 1H), 7.31 (d, *J* = 1.7 Hz, 1H), 5.46 (dd, *J* = 7.4, 1.7 Hz, 1H), 2.53 (s, 3H), 2.05 (dd, *J* = 13.7, 7.4 Hz, 1H), 1.95 (dd, *J* = 13.6, 1.7 Hz, 1H) 1.36 (s, 9H), 1.31 (d, *J* = 9.0 Hz, 6H)

4-azido-4-methylpentanoic acid (also known as 4-azido-4-methylvaleric acid or 4-azidoisocaproic acid) has previously been characterized.^[18, 20]

¹H-NMR (600 MHz, CDCl₃) δ 2.55 (t, *J* = 8.1 Hz, 2H), 1.98 (t, *J* = 8.0 Hz, 2H), 1.36 (s, 6H).

37% NMR yield, mixture of isomers

After purification with flash column chromatography on silica gel, the reaction produced a mixture of the following isomers: 2-azidooctane, 3-azidooctane, and 4-azidooctane. 2-azidooctane, 3-azidooctane, and 4-azidooctane have all previously been characterized.^[1,8] They are characterized here as an inseperable mixture. ¹H-NMR (600 MHz, CDCl₃) δ 3.47 – 3.36 (m, 0.33H), 3.23 (m, 0.33H), 3.17 (m, 0.33H), 1.61 – 1.42 (m, 5H), 1.34 – 1.25 (m, 5H), 1.00 – 0.86 (m, 6H).

After purification with flash column chromatography on silica gel, the reaction produced the following isomers: 2-azidodecane, 3-azidodecane, 4-azidodecane, and 5-azidodecane. The HRAPCIMS for the mixture of 2-azidodecane, 3-azidodecane, 4-azidodecane, and 5-azidodecane has previously been reported.^[1] They are characterized here as an inseperable mixture and were isolated as a colorless oil in 50% yield (41.2 mg) using conditions A [Fe] replacing 20% Fe(NO)₃•9H₂O with 30% Fe(OTf)₃ and 40% yield (31.9 mg) using Conditions C [Mn]. ¹H-NMR (600 MHz, CDCl₃) δ 3.41 (h, *J* = 6.6 Hz, 0.1H), 3.29 – 3.15 (m, 0.9H), 1.68 – 1.22 (m, 14.5H), 1.04 – 0.85 (m, 5.5H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 64.6, 63.2, 62.9, 58.1, 36.6, 36.20 34.42, 34.38, 34.1, 34.0, 31.9, 31.8, 31.74, 31.65, 29.5, 29.43, 29.40, 29.24,

29.20, 29.1, 28.3, 27.4, 26.2, 26.1, 25.8, 22.67, 22.65, 22.59, 22.56, 22.55, 19.5, 19.4, 14.10, 14.09, 14.06, 14.01, 13.99, 13.89, 10.5.

After purification with flash column chromatography on silica gel, the reaction produced a mixture of 3azido-2,2,6,6-tetramethylcyclohexan-1-one (also known as 3-azido-2,2,6,6-tetramethylcyclohexanone) and 4-azido-2,2,6,6-tetramethylcyclohexan-1-one (also known as 4-azido-2,2,6,6tetramethylcyclohexanone). ¹H-NMR (600 MHz, C₆D₆) δ 3.37 (tt, *J* = 11.7, 4.1 Hz, 0.45H), 2.83 (dd, *J* = 8.9, 4.6 Hz, 0.55H), 1.58 – 1.53 (m, 1H), 1.47 – 1.41 (m, 1H), 1.39 – 1.25 (m, 5H), 1.04 (s, 1.5H), 0.97 (s, 1.5H), 0.95 (s, 1.5H), 0.92 (s, 1.5H), 0.86 (s, 1.5H), 0.77 (s, 1.5H). ¹³C{¹H}-NMR (151 MHz, C₆D₆) δ 215.4, 215.0, 68.5, 52.6, 49.3, 44.1, 43.3, 43.0, 34.6, 29.9, 27.5, 27.4, 27.3, 26.9, 24.7, 22.6, 21.8. HRAPCIMS m/z 168.138 [M-N₂+H]⁺ (calcd for C₁₀H₁₈N₁O₁, 168.1388).

After purification with flash column chromatography on silica gel, the reaction produced a 4% isolated yield (3.4 mg) of (1-azido-2,2-dimethylpropyl)benzene (which is also known as 1-azido-1-phenyl-2,2-dimethylpropane) using conditions A [Fe] and 6% isolated yield (5.1 mg) using Conditions C [Mn]. This compound has previously been characterized.^[14]

 $^{1}\text{H-NMR}$ (600 MHz, CDCl₃) δ 7.36 – 7.33 (m, 2H), 7.32 – 7.30 (m, 1H), 7.27 – 7.24 (m, 2H), 4.28 (s, 1H), 0.91 (s, 9H). $^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ (151 MHz, CDCl₃) δ 137.6, 128.5, 127.9, 127.8, 74.4, 35.8, 26.4.

After purification with flash column chromatography on silica gel, the reaction produced a 6% isolated yield (5mg) of (3-azido-2-methylbutan-2-yl)benzene (also known as either (2-methyl-2-phenyl-butan-3-yl)azide or 3-azido-2-phenyl-2-methylbutane) using Conditions A [Fe] and 8% isolated yield (6.8 mg) using conditions C [Mn].

¹H-NMR (600 MHz, CDCl₃) δ 7.29 – 7.24 (m, 4H), 7.18 – 7.14 (m, 1H), 3.61 (q, *J* = 6.7 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H), 1.00 (d, *J* = 6.7 Hz, 3H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 146.3, 128.2, 126.4, 126.3, 67.2, 42.3, 25.9, 23.1, 14.7. HRAPCIMS m/z 162.1277 [M-N₂+H]⁺ (calcd for C₁₁H₁₅N₁+H⁺, 162.1283).

Applying the previously published literature,^[21] 1 eq. of (1r,3s,5R,7S)-1-azido-3-chloroadamantane (95 mg, 0.000449 mol = 0.449 mmol) was dissolved in 1.33 mL *tert*-butanol and 0.66mL water. Then, 1.1 eq of phenylacetylene (0.000494 mol = 0.494 mmol, 0.054 mL) was added to the vial. Next 10 mol% sodium ascorbate (0.0000449 mol = 0.0449 mol, 8.89 mg) was added to the vial. Finally, 2 mol% CuSO₄ 5H₂O (0.0000089 mol = 0.0089mmol, 2.2mg) was added to the vial. The vial was stirred vigorously for 18 hours at RT. Then the mixture was extracted with DCM and water three times. The DCM layers were combined and dried over anhydrous Na₂SO₄. Then the Na₂SO₄ was filtered off, and the organic layer was concentrated on the Rotary Evaporator. Finally, the crude compound was purified by flash column chromatography on silica gel to give a 14% yield (20 mg) of 1-((1r,3s,5R,7S)-3-chloroadamantan-1-yl)-4-phenyl-1*H*-1,2,3-triazole as a white solid.

¹H-NMR (600 MHz, CDCl₃) δ 7.84 – 7.83 (m, 1H), 7.83 – 7.82 (m, 1H), 7.82 (s, 1H), 7.44 – 7.40 (m, 2H), 7.34 – 7.31 (m, 1H), 2.65 (s, 2H), 2.50-2.46 (m, 2H), 2.27 (s, br, 4H), 2.21 (d, *J* = 3.1 Hz, 4H), 1.75 (d, br, *J* = 3.2 Hz, 2H). ¹³C{¹H}-NMR (151 MHz, CDCl₃) δ 147.1, 130.8, 128.8, 128.1, 125.7, 116.0, 65.8, 61.3, 52.1, 46.1, 41.3, 34.0, 31.5.

Crude ¹H-NMR of azidocyclooctane

Crude ¹H-NMR of bromocyclooctane

Crude ¹H-NMR of chlorocyclooctane

Crude ¹H-NMR of cyclooctanone

Crude¹H-NMR of fluorocyclooctane

Crude¹H-NMR of 2-azidooctane, 3-azidooctane, and 4-azidooctane

¹H-NMR of 2-azidodecane, 3-azidodecane, 4-azidodecane, and 5-azidodecane, full spectrum

¹H-NMR of 2-azidodecane, 3-azidodecane, 4-azidodecane, and 5-azidodecane, magnified spectrum

¹³C{¹H}-NMR of 2-azidodecane, 3-azidodecane, 4-azidodecane, and 5-azidodecane

¹H-NMR of (3*s*,5*s*,7*s*)-1-azidoadamantane

¹³C{¹H}-NMR of (3*s*,5*s*,7*s*)-1-azidoadamantane

Crude ¹H-NMR of azidocyclododecane

¹H-NMR of (1*r*,3*s*,5*R*,7*S*)-1-azido-3-chloroadamantane

$^{13}\text{C}\{^1\text{H}\}\text{-}\text{NMR}$ of (1r,3s,5R,7S)-1-azido-3-chloroadamantane

¹H-NMR of (1s,3r,5R,7S)-3-azidoadamantan-1-ol, full spectrum

¹H-NMR of (1*s*,3*r*,5*R*,7*S*)-3-azidoadamantan-1-ol, magnified spectrum

¹³C{¹H}-NMR of (1*s*,3*r*,5*R*,7*S*)-3-azidoadamantan-1-ol

Page 62 of 100

¹H-NMR of (3-azido-2-methylbutan-2-yl)benzene

$^{13}\text{C}\{^1\text{H}\}\text{-}\text{NMR}$ of (3-azido-2-methylbutan-2-yl)benzene

Page **63** of **100**

¹H-NMR of 4-azido-4-methyl-1-phenylpentan-1-one

¹³C{¹H}-NMR of 4-azido-4-methyl-1-phenylpentan-1-one

¹H-NMR of azidocyclopentadecane, full spectrum

¹H-NMR of azidocyclopentadecane, magnified spectrum 0.2ppm to 2.3 ppm

Page 65 of 100

¹H-NMR of azidocyclopentadecane, magnified spectrum 3.26ppm to 3.33 ppm

¹³C{¹H}-NMR of azidocyclopentadecane

¹H-NMR of *N*-((1*r*,3*s*,5*R*,7*S*)-3-azidoadamantan-1-yl)acetamide, full spectrum

¹H-NMR of *N*-((1*r*,3*s*,5*R*,7*S*)-3-azidoadamantan-1-yl)acetamide, magnified spectrum

Page 67 of 100

$^{13}\text{C}\{^1\text{H}\}\text{-}\text{NMR}$ of N-((1r,3s,5R,7S)-3-azidoadamantan-1-yl)acetamide

¹H-NMR of 5-azido-5-methylhexan-2-yl benzoate, full spectrum

¹H-NMR of 5-azido-5-methylhexan-2-yl benzoate, magnified spectrum

Crude ¹H-NMR of 4-azido-4-methylpentanoic acid

Page 69 of 100

¹H-NMR of 4-azido-2,2,6,6-tetramethylcyclohexan-1-one and 3-azido-2,2,6,6-tetramethylcyclohexanone, full spectrum

¹H-NMR of 4-azido-2,2,6,6-tetramethylcyclohexan-1-one and 3-azido-2,2,6,6-tetramethylcyclohexanone, magnified spectrum

¹³C{¹H}-NMR of 4-azido-2,2,6,6-tetramethylcyclohexan-1-one and 3-azido-2,2,6,6-tetramethylcyclohexanone

¹H-NMR of 2-azidooxepane, full spectrum

¹H-NMR of 2-azidooxepane, magnified spectrum

¹³C{¹H}-NMR of 2-azidooxepane

Crude ¹H-NMR of *tert*-butyl 2-azidopyrrolidine-1-carboxylate

¹H-NMR of 1-azidoethylbenzene

$^{13}\text{C}\{^{1}\text{H}\}\text{-}\text{NMR}$ of 1-azidoethylbenzene

Crude ¹H-NMR of benzylic-azido-celestolide

¹H-NMR of 2-azidocycloheptan-1-one, full spectrum

¹H-NMR of 2-azidocycloheptan-1-one, magnified spectrum

Page **76** of **100**

¹³C{¹H}-NMR of 2-azidocycloheptan-1-one

¹H-NMR of 1-azido-1-isopropylcyclohexane and (2-azidopropan-2-yl)cyclohexane, full spectrum

¹H-NMR of 1-azido-1-isopropylcyclohexane and (2-azidopropan-2-yl)cyclohexane, magnified spectrum

¹³C{¹H}-NMR of 1-azido-1-isopropylcyclohexane and (2-azidopropan-2-yl)cyclohexane

¹H-NMR of (1-azido-2,2-dimethylpropyl)benzene

¹³C{¹H}-NMR of (1-azido-2,2-dimethylpropyl)benzene

¹H-NMR of 1-((1*r*,3*s*,5*R*,7*S*)-3-chloroadamantan-1-yl)-4-phenyl-1*H*-1,2,3-triazole

¹³C{¹H}-NMR of 1-((1*r*,3*s*,5*R*,7*S*)-3-chloroadamantan-1-yl)-4-phenyl-1*H*-1,2,3-triazole

Additional Isolated Product Spectra

Page 82 of 100

Page 83 of 100

Page 84 of 100

Page **86** of **100**

Page 88 of 100

Page 89 of 100

Page **90** of **100**

Page **91** of **100**

Page **92** of **100**

Page **93** of **100**

Page **94** of **100**

Page **95** of **100**

Page **96** of **100**

Page **97** of **100**

References for Supporting Information

- Lu, Y-C.; Kaoa, S-C.; West, J. Decatungstate-photocatalysed C(sp³)–H azidation. *Chem. Commun.* 2022, 58, 4869 – 4872.
- Niu, L.; Jiang, C.; Liang, Y.; Liu, D.; Bu, F.; Shi, R.; Chen, H.; Chowdhury, A.; Lei, A. Manganese-Catalyzed Oxidative Azidation of C(sp³)–H Bonds under Electrophotocatalytic Conditions. *J. Am. Chem. Soc.* 2020, 142, 17693 – 17702.
- (a.) West, J.; Bedell, T.; Sorensen J. The Uranyl Cation as a Visible-Light Photocatalyst for C(sp³)–H Fluorination. *Angew. Chem. Int. Ed.* 2016, 55, 8923 – 8927.
 - (b.) Yadav, A.; Srivastavaa, V.; Yadav, L. D. An easy access to fluoroalkanes by deoxygenative hydrofluorination of carbonyl compounds via their tosylhydrazones. *Chem. Commun.* 2013, 49, 2154 – 2156.
- (a.) Tanemura, K. Silica gel-mediated hydrohalogenation of unactivated alkenes using hydrohalogenic acids under organic solvent-free conditions. *Tetrahedron Letters*. 2018, 59, 49, 4293 – 4298.
 - (b.) Zhao, M.; Lu, W. Catalytic Bromination of Alkyl sp³C–H Bonds with KBr/Air under Visible Light. *Org. Lett.* **2018**, 20, 17, 5264 5267.
- 5. (a.) Liang, S.; Hammond, G.; Xu, B. Metal-free regioselective hydrochlorination of unactivated alkenes via a combined acid catalytic system. *Green Chem.* **2018**, 20, 680 684.
 - (b.) Liu, S.; Zhang, Q.; Tian, X.; Fan, S.; Huang, J.; Whiting, A. Highly selective halogenation of unactivated C(sp³)–H with NaX under co-catalysis of visible light and Ag@AgX. Green Chem. **2018**, 20, 4729 – 4737.
- (a.) Kawahara, R.; Fujita, K-i.; Yamaguchi, R. Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand. J. Am. Chem. Soc. 2012, 134, 8, 3643 – 3646.
 - (b.) Liu, C.; Li, T.; Dai, X.; Zhao, J.; He, D.; Li, G.; Wang, B.; Cui, X. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. *J. Am. Chem. Soc.* **2022**, 144, 11, 4913 – 4924.
- 7. Ardiansah, B.; Tanimoto, H.; Tomohiro, T.; Tsumoru, M.; Kakiuchi, K. Sulfonium ion-promoted traceless Schmidt reaction of alkyl azides. *Chem. Commun.* **2021**, 57, 8738 8741.
- Li, H.; Shen, S-J.; Zhu, C-L.; Xu, H. Direct Intermolecular Anti-Markovnikov Hydroazidation of Unactivated Olefins. J. Am. Chem. Soc. 2019, 141, 23, 9415 – 9421.
- Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.; Salomon, E.; Tarnus, C.; Weibel, J-M. Amino-benzosuberone: A novel warhead for selective inhibition of human aminopeptidase-N/CD13. *Bioorg. Med. Chem.* 2011, 19, 1434 – 1449.
- 10. (a.) Castrica, L.; Fringuelli, F.; Gregoli, L.; Pizzo, F.; Vaccaro, L. Amberlite IRA900N3 as a New

Catalyst for the Azidation of α , β -Unsaturated Ketones under Solvent-Free Conditions. *J. Org. Chem.* **2006**, 71, 9536 – 9539.

- (b.) Jiao, J.; Nguyen, L.; Patterson D.; Flowers, R. An Efficient and General Approach to β-Functionalized Ketones. Org. Lett. 2007, 9, 7, 1323 – 1326.
- 11. (a.) Nyfeler, E.; Renaud, P. Decarboxylative Radical Azidation Using MPDOC and MMDOC Esters. *Org. Lett.* **2008**, 10, 5, 985 – 988.
 - (b.) Kamijo, S.; Watanabea, M.; Kamijoa, K.; Taoa, K.; Murafujib, T. Synthesis of Aliphatic Azides by Photoinduced C(sp³)–H Azidation. *Synthesis*. **2016**, 48, 115 121.
- 12. (a.) Rabet, P.; Fumagalli, G.; Boyd, S.; Greaney, M. Benzylic C–H Azidation Using the Zhdankin Reagent and a Copper Photoredox Catalyst. *Org. Lett.* **2016**, 18, 1646 – 1649.
 - (b.) Singh, A.; Harjinder, S.; Khurana, J. Recyclable zinc (II) ionic liquid catalyzed synthesis of azides by direct azidation of alcohols using trimethylsilylazide at room temperature. *Tetrahedron Lett.* **2017**, 58, 2498 2502.
 - (c.) Chen, Y.; He, R.; Song, H.; Yu, G.; Li, C.; Liu, Y.; Wang, Q. Two-Step Protocol for Iodotrimethylsilane-Mediated Deoxy-Functionalization of Alcohols. *Eur. J. Org. Chem.* 2021, 1179 – 1183.
- 13. Huang, X.; Bergsten, T.; Groves, J. Manganese-Catalyzed Late-Stage Aliphatic C–H Azidation. *J. Am. Chem. Soc.* **2015**, 137, 16, 5300 – 5303.
- Li, X.; Song, J-N.; Karmakar, S.; Lu, Y.; Lv, Ye.; Liao, P.; Liu, Z. Transition-metal-free azide insertion of *N*-triftosylhydrazones using a non-metallic azide source. *Chem. Commun.*, **2022**, 58, 13783 – 13786.
- 15. Lamani, M.; Devadiga, P.; Prabhu, K. A non-metal catalysed oxidation of primary azides to nitriles at ambient temperature. *Org. Biomol. Chem.* **2012**, 10, 2753 2759.
- Dryzhakov, M.; Hellal, M.; Wolf, E.; Falk, F.; Moran, J. Nitro-Assisted Brønsted Acid Catalysis: Application to a Challenging Catalytic Azidation. J. Am. Chem. Soc. 2015, 137, 30, 9555 – 9558.
- 17. Gao, F.; Bai, R.; Li, M.; Gu, Y. Dipolar HCP materials as alternatives to DMF solvent for azidebased synthesis. *Green Chem.* **2021**, 23, 7499 – 7505.
- Zhang, X.; Yang, H.; Tang, P. Transition-Metal-Free Oxidative Aliphatic C–H Azidation. Org. Lett.
 2015, 17, 23, 5828 5831.
- Davis, C.; Johnson, R.; Cialdella, J.; Liggett, W.; Mizsak, S.; Han, F.; Marshal, V. Microbiological Oxygenation of 1-Azidoadamantane and of N-Benzoyl-3-noradamantanamine. J. Org. Chem. 1997, 62, 2252 – 2254.
- Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution. J. Am. Chem. Soc. 2015, 137, 9820 – 9823.
- Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.; Noodleman, L.; Sharpless, B.; Fokin, V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc. 2005, 127, 1, 210 – 216.