Double axial stabilization of a carbenium ion via convergent $\mathrm{P}=\mathrm{O} \rightarrow \mathrm{C}^{+}$tetrel bonding

Elishua D. Litle ${ }^{a}$ and François P. Gabbaï*a
Department of Chemistry, Texas A\&M University, College Station, TX 77843

Supporting Information

Contents

1 Experimental 2
1.1 General experimental 2
1.2 Syntheses 2
2 NMR Spectra 4
2.1 NMR spectra of products 4
3 UV-vis spectra 14
$4 \mathrm{p} K_{R}{ }^{+}$measurements 16
5 Cyclic voltammetry 17
7 Computational studies 20
7.1 General methods 20
7.2 Geometry-optimized structures 20
7.3 Electrostatic potential (ESP) maps 21
7.4 Cartesian coordinates of geometry optimized structures 23
8 X-ray diffraction analysis 26
8.1 Experimental details 26
8.2 Table showing the compounds characterized by X-ray diffraction and their corresponding CCDC numbers 26
8.3 Solid-state structures 27
8.4 X-ray refinement parameters 28
9 References 29

1 Experimental

1.1 General experimental

All reactions and manipulations were carried out under an atmosphere of dry, O_{2}-free nitrogen using standard double-manifold techniques with a rotary oil pump unless otherwise stated. A nitrogen-filled glove box was used to manipulate solids, store air-sensitive starting materials, carry out room temperature reactions, recover reaction products and prepare samples for analysis. All solvents were dried by refluxing under N_{2} over $\mathrm{CaH}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) or by refluxing under N_{2} over $\mathrm{Na} / \mathrm{K}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and stored under a nitrogen atmosphere over $3 \AA$ molecular sieves. Deuterated solvents were distilled and/or dried over molecular sieves before use. Chemicals were purchased from commercial suppliers and used as received. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker Avance II 400 and a Bruker Avance 500 cold probe. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to $\mathrm{CD}_{3} \mathrm{CN}(1.94 / 1.32 \mathrm{ppm}$) or $\mathrm{CD}_{2} \mathrm{Cl}_{2}(5.32 / 53.84 \mathrm{ppm})$ as internal standards. ${ }^{31} \mathrm{P}$ NMR chemical shifts are references against $\mathrm{H}_{3} \mathrm{PO}_{4}$. All coupling constants are absolute values and are expressed in Hertz (Hz). Mass spectrometry analyses were performed in-house at the Center for Mass Spectrometry using a Thermo Scientific Q Exactive Focus instrument. Elemental analyses were performed by Atlantic Microlab (Norcross, GA). Compound 1 was prepared according to a literature procedure. ${ }^{1}$

1.2 Syntheses

Synthesis of [2][BF ${ }_{4}$]

Compound $[2]\left[\mathrm{BF}_{4}\right]$ was synthesized by treating a $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ solution of $1(97.5 \mathrm{mg}$, 0.2 mmol) with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(6.8 \mathrm{mg}, 0.2 \mathrm{mmol})$. After stirring at ambient temperature for 3 hours, the resulting mixture was treated with $\mathrm{HBF}_{4}\left(50 \%\right.$ w/w in $\mathrm{H}_{2} \mathrm{O}, 17.6 \mathrm{mg}, 0.2$ mmol) and stirred for 15 mins at which point trifluoroacetic anhydride (0.1 mL) was added to scavenge any water. Addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ triggred the precipitation of an orange solid that was then filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. Subsequent drying under vacuum afforded $[2]\left[\mathrm{BF}_{4}\right]$. Orange, needle-like single crystals were obtained by slow evaporation of an acetonitrile and $\mathrm{Et}_{2} \mathrm{O}$ solution of [2][BF $\left.{ }_{4}\right]$. Yield: $40 \mathrm{mg}, 70 \mu \mathrm{~mol}, 35 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CD ${ }_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 7.71$ (tt, J = 7.7, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.30(\mathrm{~m}, 16 \mathrm{H}), 7.28$ (ddd, $J=7.6,3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, J = $9.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CD ${ }_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 176.35$ (s), 161.42 (s), 144.55 (d, J = 6.2 Hz), 143.05 (s), 138.92 (s), 135.40 (s), 135.30 (s), 133.61 (s), 133.05 (d, J = 2.9 Hz), 132.99 (s), 132.98 (s$), 132.90$ (s), 132.71 (s), 132.63 (s), 132.42 (s), 132.34 (s), 131.18 (s), 130.77 (s), 130.68 (s), 129.70 (s), 129.59 (d, J=2.4 Hz), 129.48 (s), 129.21 (s), 43.26 (s). ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 28.10$ (s). HRMS (ESI+) m / z calculated for $[\mathrm{M}]+\left[\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NOP}\right]^{+}$: 486.1981, found: 486.1975.

Synthesis of [2]OH

Compound [2]OH was synthesized by treating a $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ solution of $1(48.4 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ with an excess of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$. The reaction was stirred for 15 min . and brought to dryness. The residue was dissolved in acetonitrile. The resulting solution was left open to the atmosphere, leading to slow evaporation of the solvent and formation of colorless, block-like single crystals [2]OH. Yield: $5.4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10.0 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 298 K) $\delta / \mathrm{ppm}: 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.19(\mathrm{~m}, 11 \mathrm{H}), 7.18-7.01(\mathrm{~m}, 5 \mathrm{H})$, $6.98-6.84(\mathrm{~m}, 8 \mathrm{H}), 6.46-6.29(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) ס/ppm: 156.34 (d, $J=6.2 \mathrm{~Hz}$), 149.78 (s), 148.04 (s), 136.55 (d, $J=13.8 \mathrm{~Hz}), 134.87$ (s), 134.02 (s), 133.21 (d, J = 9.3 Hz), 132.39 (s), 132.12 (s), 132.08 (s), 132.04 (s), 132.01 (s), 131.97 (s), 131.94 (s), 131.89 (s$), 131.19$ (d, $J=2.8 \mathrm{~Hz}$), 130.28 (s), 129.51 (s$), 129.39$ (s$), 128.83$ (s), 128.72 (s), 128.63 (s), 127.59 (s), 127.05 (s), 126.18 (d, $J=13.5 \mathrm{~Hz}$), 111.51 (s), $82.50(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 40.58(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 36.89$ (s). HRMS (ESI+) m/z calculated for [$\mathrm{M}^{+}\left[\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{P}\right]^{+}: 502.1930$, found: 502.1916.

Synthesis of 3

(2-bromophenyl)diphenylphosphane ($2.0 \mathrm{~g}, 5.86 \mathrm{mmol}$) was placed in a 200 mL Shlenck tube and dissolved in 20 mL of ether under nitrogen while stirring. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of BuLi in hexanes ($2.6 \mathrm{~mL}, 6.68 \mathrm{mmol}$) was added dropwise. After stirring for 6 hours at this temperature, a diethylether solution (8 mL) of ethyl 4(dimethylamino)benzoate ($0.51 \mathrm{~g}, 2.64 \mathrm{mmol}$) was slowly added. After an additional 2 hours of stirring, distilled $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added to the solution. This addition triggered the formation of a precipitate which was isolated by filtration, washed with hexanes, and then dried under vacuum. This protocol afforded 3 in 94.2% yield (1.67 g). Single crystals of 3 were obtained by slow evaporation of a Benzene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture at low temperature. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right) \mathrm{\delta} / \mathrm{ppm}: 7.34-7.13(\mathrm{~m}, 21 \mathrm{H}), 7.10(\mathrm{td}, \mathrm{J}=7.9,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.79$ (ddd, J = 7.7, 4.7, 1.4 Hz, 2H), 6.56 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.26 (t, J = $9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.95(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) δ / ppm : 153.90 (d, J = 21.7 Hz), 149.34 (s), 138.87 (d, J = 11.8 Hz), 137.79 (s), 137.70 (s), 136.72 (d, J = 18.2 Hz), 135.96 (s), 133.59 (d, J = 20.0 Hz), 133.32 (d, J = 18.7 Hz), 129.64 (d, J = 7.3 Hz), 129.53 (s), $128.05(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}), 127.96(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}), 127.88(\mathrm{~s}), 127.73(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 127.06$ (s), 111.71 (s), 85.53 (s), 40.63 (s). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) δ / ppm : -14.24 (s). Elemental Analysis calculated: C: 80.46; H: 5.85; N: 2.09. Found: C: 80.36; H: 5.94; N: 2.11.

Synthesis of [4][BF_{4}]

Compound $[4]\left[\mathrm{BF}_{4}\right]$ was synthesized by treating a $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ solution of $3(134 \mathrm{mg}$, 0.2 mmol) with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(6.8 \mathrm{mg}, 0.2 \mathrm{mmol})$. After stirring at ambient temperature for 15 min , the resulting mixture was treated with $\mathrm{HBF}_{4}\left(52 \% \mathrm{w} / \mathrm{w}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 32 \mathrm{mg}, 0.4 \mathrm{mmol}\right)$ and stirred for 15 min at which point trifluoroacetic anhydride (0.1 mL) was added to scavenge any water. Addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ triggred the precipitation of an orange solid that was then filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. Subsequent drying under vacuum afforded [4][BF ${ }_{4}$]. Yield: 153 mg , $198 \mu \mathrm{~mol}, 99 \%$. Orange, block-like single crystals were obtained by slow evaporation of an acetonitrile solution of $[4]\left[\mathrm{BF}_{4}\right]$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 8.42$ (ddd, $\left.J=7.9,3.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.72(\mathrm{tt}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.43$ (m, 18H), 7.38 (dddd, $J=9.0,7.8,4.6,1.5 \mathrm{~Hz}, 6 \mathrm{H}$), 6.47 (d, $J=9.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.76 (d, $J=9.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.23 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CD ${ }_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 175.48(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}), 161.06$ (s), 143.99 (d, J = 5.9 Hz), 140.59 (s), 135.51 (s), 135.27 (d, J = 12.1 Hz), 134.67 (s$), 134.39$ (s), 134.31 (s), 133.91 (s), 133.61 (s), 133.22 (s), 132.80 (d, $J=2.8 \mathrm{~Hz}$), $132.51(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.41$ (s), 132.37 (s), $132.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 132.23(\mathrm{~s}), 132.21(\mathrm{~s})$, 130.19 (d, $J=12.1 \mathrm{~Hz}$), $129.38(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 129.15(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 115.57(\mathrm{~s}), 42.70(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 28.45$ (s). HRMS (ESI+) m/z calculated for $[\mathrm{M}]^{+}\left[\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{P}_{2}\right]^{+}: 686.2372$, found: 686.2359.

Synthesis of [4]OH

Compound [4]OH was synthesized by treating a $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ solution of $3(67.9 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ with an excess of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$. The reaction was stirred for 15 min . and brought to dryness. The residue was dissolved in acetonitrile. The resulting solution was left open to the atmosphere, leading to slow evaporation of the solvent and formation of colorless, needle-like single crystals of [4]OH. Yield: $8.2 \mathrm{mg}, 12 \mu \mathrm{~mol}, 11.6 \%$. Single crystals suitable for X-ray diffraction were obtained by vapor diffusion of $\mathrm{C}_{6} \mathrm{H}_{6}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of [4]OH. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H})$, $7.68(\mathrm{~s}, 2 \mathrm{H}), 7.59-6.98(\mathrm{~m}, 23 \mathrm{H}), 6.96-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}$, 1 H), 2.78 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 149.70$ (s), 138.26 (br, s), 137.22 (br, s), 136.32 (br, s), 135.64 (br, s), 134.60 (s), 132.64 (s), 131.36 (s), 130.82 (s), 129.88 (br, s), 128.38 (br, s), 126.96 (br, s), 126.10 (br, s), 112.50 (br, s), 109.59 (br, s), 83.63 (s), 40.34 (s). ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) $\delta / \mathrm{ppm}: 35.55$ (s), 35.54 (s). HRMS (ESI+) m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{P}_{2}\right]^{+}: 704.2466$, found: 704.2478.

2 NMR Spectra

2.1 NMR spectra of products

Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ spectrum of $[2]\left[\mathrm{BF}_{4}\right]$.

Figure $\mathrm{S} 2 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[2]\left[\mathrm{BF}_{4}\right]$.
176.3 ppm at $25^{\circ} \mathrm{C}$

177.0 ppm at $70^{\circ} \mathrm{C}$

Figure $\mathrm{S} 3 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum of the $[2]\left[\mathrm{BF}_{4}\right]$ focused on the carbenium signal.

Figure $\mathrm{S} 4 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[2]\left[\mathrm{BF}_{4}\right]$.

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of [2]OH. * solvent impurities.

Figure S6. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of [2]OH. * solvent impurities.

65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5
							f1 (p							

Figure S7. ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $[2] \mathrm{OH}$.

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of 3.

Figure S9. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of 3.

Figure S10. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of 3.

Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[4]\left[\mathrm{BF}_{4}\right]$.

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[4]\left[\mathrm{BF}_{4}\right]$.
175.9 ppm at $25^{\circ} \mathrm{C}$

176.5 ppm at $70^{\circ} \mathrm{C}$

Figure $\mathrm{S} 13 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum of the $[4]\left[\mathrm{BF}_{4}\right]$ focused on the carbenium signal.

Figure $\mathrm{S} 14 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[4]\left[\mathrm{BF}_{4}\right]$.

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of [4]OH. * solvent impurities.

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $[4] \mathrm{OH}$.

Figure S17. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of [4]OH.

Figure $\mathrm{S} 18 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[5]\left[\mathrm{BF}_{4}\right]$.

Figure $\mathrm{S} 19 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) spectrum of $[5]\left[\mathrm{BF}_{4}\right]$.

UV-Vis absorbance spectra were recorded on a Shimadzu UV-2502PC UV-Vis spectrophotometer. Spectra were collected at a concentration of $5 \times 10^{-5} \mathrm{M}$ in acetonitrile using a 1 cm quartz cuvette.
[2] $\left[\mathrm{BF}_{4}\right]$

Figure S 20 . UV-vis spectrum of $[2]\left[\mathrm{BF}_{4}\right]$.
[4] $\left[\mathrm{BF}_{4}\right]$

Figure S 21 . UV -vis spectrum of $[4]\left[\mathrm{BF}_{4}\right]$.
[5] $\left[\mathrm{BF}_{4}\right]$

Figure S 22 . UV-vis spectrum of $[5]\left[\mathrm{BF}_{4}\right]$.

The carbenium salts ($4.55 \mu \mathrm{~mol}$ of [2][BF 4$]$, [4][BF $\left.\mathrm{BF}_{4}\right]$ and [5][$\left.\mathrm{BF}_{4}\right]$) were dissolved in acetonitrile $(2 \mathrm{~mL}) .30 \mu \mathrm{~L}$ of the resulting acetonitrile solution was added to a solution consisting of water and a citric acid buffer solution (9 $\mathrm{mM}, 2.7 \mathrm{~mL}$) affording a final concentration of $25 \mu \mathrm{M}$ for the carbenium ions. The solution was titrated by incremental addition of a solution of NaOH in water. The solutions were buffered in order to obtain a better control of the pH near the equivalence point.
$\mathrm{p} K_{\mathrm{R}^{+}}[5]\left[\mathrm{BF}_{4}\right]$

Figure S23. Spectrophotometric titration curve of [5][BF BF_{4}] in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} 9: 1$ (v/v) upon incremental additions of NaOH dissolved in $\mathrm{H}_{2} \mathrm{O}$. The absorbance was measured at 460 nm .

5 Cyclic voltammetry

Cyclic voltammetry measurements were recorded with a Pine instruments WaveNow potentiostat, using a glassy carbon working electrode, an Ag pseudo reference electrode and a platinum wire as the auxiliary electrode. Solutions of the concentration $5 \times 10^{-4} \mathrm{M}$ were prepared in dried and degassed solutions of dichloromethane with $100 \mathrm{mM} \mathrm{TBAPF}_{6}$ as the supporting electrolyte. The voltammograms were collected at a scan rate of $500 \mathrm{mV} / \mathrm{s}$. All potentials were referenced against $\mathrm{Fc} / \mathrm{Fc}^{+}$in the same solvent. All CV measurements were carried out inside a glove box. Differential Pulse Voltammetry (DPV) was preformend with the same samples on a CH Instruments (Model 660 D) electrochemical analyzer. Using the parametiers: Amplitude $(\mathrm{V})=0.05$; Pulse Width $(\mathrm{sec})=0.05$; Sample Width $(\mathrm{sec})=0.0167$; Pulse Period $(\mathrm{sec})=0.2$; Quiet Time $(\mathrm{sec})=2$; Sensitivity $(A / V)=1 \mathrm{e}-6$.

Figure S24. Cyclic voltammogram of the first reduction wave of $[2]\left[\mathrm{BF}_{4}\right]$.

Figure S25. Differential Pulse Voltammetry of the first reduction wave of $[2]\left[\mathrm{BF}_{4}\right]$.

Figure S26. Cyclic voltammogram of the second reduction wave of $[2]\left[\mathrm{BF}_{4}\right]$.

Figure S27. Differential Pulse Voltammetry of the second reduction wave of $[2]\left[\mathrm{BF}_{4}\right]$. We are not sure that the small shoulder around -2 V can be assigned to conformational switching.

Figure S 28 . Cyclic voltammogram of the first reduction wave of $[4]\left[B F_{4}\right]$.
[4] $\left[\mathrm{BF}_{4}\right]$ - wave 1

Figure S29. Differential Pulse Voltammetry of the first reduction wave of [4][BF4].

Figure S30. Cyclic voltammogram of the second reduction wave of [4][BF $\left.\mathrm{BF}_{4}\right]$.

Figure S31. Differential Pulse Voltammetry of the second reduction wave of $[4]\left[B F_{4}\right]$.

Figure S32. Cyclic voltammogram of the first reduction wave of $[5]\left[\mathrm{BF}_{4}\right]$ at $500 \mathrm{mV} / \mathrm{s}$.

7.1 General methods

The structures of $[2]^{+},[4]^{+}$and $[5]^{+}$were optimized using DFT methods as implemented in Gaussian 09 using the MPW1PW91 functional and a $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set with SMD solvation (solvent = dichloromethane). ESP maps were generated and visualized in GaussVeiw 6.1.1. ${ }^{2}$ Frequency calculations, performed using the same level of theory on the optimized geometries, found no imaginary frequencies. NBO analysis was performed in using the same functional and basis set using the NBO 6.0 program. ${ }^{3}$ The resulting NBOs were visualized using the Avogadro program. ${ }^{4}$ QTAIM calculations were carried out on the wave functions derived from the optimized structures using the AIMAll program. ${ }^{5}$

7.2 Geometry-optimized structures

Figure S33. Optimized structure of [2] ${ }^{+}$. Hydrogen atoms were omitted for clarity.

Figure S34. Optimized structure of $[4]^{+}$. Hydrogen atoms were omitted for clarity.

Figure S35. Optimized structure of $[5]^{+}$. Hydrogen atoms were omitted for clarity.
7.3 Electrostatic potential (ESP) maps

Figure S36. ESP map for compound [2] ${ }^{+}$. ESP maps are computed with an isovalue of 0.06 a.u., between a range of 0.12 to 0.46 a.u.

Figure S37. ESP map for compound [5] ${ }^{+}$. ESP maps are computed with an isovalue of 0.06 a.u., between a range of 0.12 to 0.46 a.u.

Table S 1. Cartesian coordinates for compound [2] ${ }^{+}$.

Atom Number	Coordinates X	Y	Z
P1	1.39353	-0.61789	-0.41176
O2	0.81841	0.28807	-1.47549
N3	-5.17124	-1.2587	-0.23488
C4	-1.66185	1.02872	0.25706
C5	-0.5007	1.80689	0.43996
C6	-2.50316	1.17705	-0.89413
C7	0.46341	-2.17847	-0.19919
C8	0.38445	-2.87895	1.01422
C9	-3.63513	0.42564	-1.06689
C10	0.68394	2.14229	2.58376
C11	1.3986	0.2588	1.21562
C12	0.5492	1.37573	1.41218
C13	2.33566	-0.06164	2.208
C14	-0.16369	-2.70124	-1.3417
C15	3.12519	-1.08628	-0.75095
C16	-5.53744	-2.29296	0.73956
C17	1.59523	1.78378	3.577
C18	3.70505	-2.28005	-0.29377
C19	2.42287	0.6763	3.39049
C20	-4.04064	-0.5357	-0.08342
C21	-0.84975	-3.9154	-1.27087
C22	-0.3031	-4.0937	1.08119
C23	3.88733	-0.19762	-1.52678
C24	-0.9173	-4.61436	-0.06153
C25	5.03901	-2.56898	-0.59064
C26	5.21915	-0.49244	-1.82288
C27	5.79734	-1.67453	-1.3509
C28	-2.04481	0.02394	1.20242
C29	-3.192	-0.71135	1.05828
C30	0.96388	3.5808	-0.51303
C31	-1.43057	3.9858	-0.38025
C32	-0.32962	3.12022	-0.17159
C33	-1.24357	5.25133	-0.9288

Atom Number	Coordinates X	Y	Z
C34	-6.05715	-1.03608	-1.38353
C35	1.1407	4.83531	-1.08332
C36	0.03899	5.67461	-1.29207
H37	-2.19144	1.84526	-1.68767
H38	0.85218	-2.48323	1.91113
H39	-4.20339	0.54105	-1.98042
H40	0.05265	3.01504	2.72097
H41	3.0324	-0.87776	2.04386
H42	-0.11296	-2.15334	-2.27798
H43	-6.43723	-2.79976	0.39589
H44	-5.74315	-1.85547	1.72281
H45	-4.74138	-3.03746	0.83876
H46	1.66854	2.37934	4.48151
H47	3.11855	-2.99587	0.27436
H48	3.15321	0.40324	4.14571
H49	-1.324	-4.31886	-2.1607
H50	-0.35329	-4.63382	2.0221
H51	3.42614	0.70538	-1.91469
H52	-1.44156	-5.56421	-0.01074
H53	5.48074	-3.49611	-0.23818
H54	5.80179	0.19473	-2.42887
H55	6.8324	-1.90415	-1.58521
H56	-1.43731	-0.12381	2.08814
H57	-3.455	-1.42553	1.82706
H58	1.81486	2.92616	-0.36733
H59	-2.09383	5.9129	-1.06084
H60	-6.9547	-1.63925	-1.26007
H61	-5.5721	-1.32644	-2.32238
H62	-6.35821	0.01391	-1.44717
H63	2.13566	5.16421	-1.36564
H64	0.18242	6.66023	-1.72428
H65	-2.42061	3.68356	-0.05677

Table S 2. Cartesian coordinates for compound [4] ${ }^{+}$.

Atom	Coordinates		
Number	X	Y	Z
P1	-3.22376	-0.62661	-0.41056
P2	3.2239	-0.62649	0.41063
O3	-2.40585	-0.51297	-1.67343
O4	2.40606	-0.51302	1.67355
N5	-0.0004	4.91846	-0.00014
C6	-0.00001	0.7148	0.00002
C7	0.00006	-0.67966	0.00006
C8	0.54317	1.46519	-1.09408
C9	-3.7604	0.99581	0.24202
C10	-4.05143	1.23244	1.59399
C11	0.53411	2.83045	-1.10574
C12	-0.17197	-2.24426	1.90186
C13	-2.26832	-1.46948	0.92716
C14	-0.84693	-1.46388	0.94594
C15	-2.95044	-2.24823	1.87238
C16	-3.90584	2.03436	-0.68913
C17	-4.74587	-1.60461	-0.65791
C18	-0.66723	5.67084	1.06734
C19	-0.87521	-2.97951	2.85285
C20	-5.91421	-1.42743	0.09897
C21	-2.26772	-2.98471	2.84021
C22	-0.00024	3.56992	-0.0001
C23	-4.34516	3.29117	-0.2726
C24	-4.49113	2.49091	2.00692
C25	-4.72673	-2.55992	-1.68557
C26	-4.64074	3.51991	1.07377
C27	-7.03769	-2.21487	-0.15346
C28	-5.85336	-3.34192	-1.93608
C29	-7.00669	-3.17406	-1.16745
C30	-0.54329	1.46521	1.09407
C31	3.76035	0.99602	-0.24187
C32	4.05119	1.2328	-1.59386
C33	-0.53445	2.83047	1.10561
C34	0.17212	-2.24423	-1.90175
C35	2.26845	-1.46936	-0.9271
C36	0.84706	-1.46384	-0.94583
C37	2.95058	-2.24803	-1.87237
C38	3.90584	2.0345	0.68935
C39	4.74612	-1.60436	0.65782
C40	0.66621	5.67102	-1.06764
C41	0.87537	-2.97941	-2.85279
C42	5.91438	-1.42707	-0.09915
C43	2.26787	-2.98452	-2.8402
C44	4.34506	3.29136	0.27289

Atom	Coordinates		
Number	X	Y	Z
C45	4.49079	2.49133	-2.00672
C46	4.72715	-2.55968	1.68548
C47	4.64047	3.52024	-1.07348
C48	7.03795	-2.21441	0.15317
C49	5.85387	-3.34158	1.93588
C50	7.00713	-3.17362	1.16715
H51	0.9165	0.92996	-1.95824
H52	-3.92745	0.44176	2.32844
H53	0.91738	3.35146	-1.97233
H54	0.91043	-2.20319	1.92773
H55	-4.03308	-2.30543	1.83468
H56	-3.66445	1.85039	-1.73139
H57	-0.71302	6.721	0.78363
H58	-0.12261	5.5914	2.01501
H59	-1.68931	5.31051	1.21174
H60	-0.33031	-3.55286	3.59612
H61	-5.9587	-0.66631	0.87184
H62	-2.82365	-3.57279	3.56358
H63	-4.46658	4.0887	-0.99967
H64	-4.72093	2.66636	3.05361
H65	-3.83677	-2.66832	-2.29677
H66	-4.99692	4.49459	1.39461
H67	-7.93943	-2.07163	0.43382
H68	-5.83358	-4.07669	-2.73499
H69	-7.88416	-3.78207	-1.36517
H70	-0.91655	0.92999	1.95826
H71	3.92714	0.44219	-2.32837
H72	-0.91786	3.3515	1.97212
H73	-0.91028	-2.20321	-1.9276
H74	4.03323	-2.30518	-1.83471
H75	3.66459	1.85041	1.73163
H76	0.71173	6.72118	-0.78392
H77	0.12159	5.59145	-2.0153
H78	1.68839	5.31096	-1.21207
H79	0.33047	-3.55276	-3.59606
H80	5.95874	-0.66594	-0.87202
H81	2.82381	-3.57254	-3.56361
H82	4.46653	4.08883	1.00003
H83	4.72044	2.66689	-3.05342
H84	3.83726	-2.66816	2.29676
H85	4.99657	4.49497	-1.39428
H86	7.93963	-2.07109	-0.43419
H87	5.83423	-4.07636	2.73479
H88	7.88466	-3.78156	1.36478
H5			
H5			

Table S 3. Cartesian coordinates for compound [5] ${ }^{+}$.

Atom Number	Coordinates X	Y	Z
N1	-4.69231	0.00002	-0.00003
C2	-0.46846	0.00004	0.00008
C3	0.95005	0.00003	0.00009
C4	-1.226	1.11079	-0.49805
C5	-2.59669	1.1101	-0.51666
C6	2.8912	-1.38619	0.7496
C7	1.27342	-2.35939	-0.78441
C8	1.70258	-1.25719	-0.00748
C9	2.00588	-3.54276	-0.8006
C10	-5.44413	-1.16919	0.47266
C11	3.60135	-2.58262	0.75342
C12	3.16454	-3.66095	-0.0248
C13	-3.34289	0	0.00001
C14	-1.226	-1.11071	0.49823
C15	-2.59669	-1.11003	0.51681
C16	2.8912	1.38608	-0.74959
C17	1.27359	2.35941	0.78452
C18	1.70265	1.25714	0.00762
C19	2.00608	3.54278	0.8005
C20	-5.44404	1.16924	-0.47285
C21	3.60139	2.58247	-0.75356
C22	3.16464	3.6609	0.0246

Atom Number	Coordinates X	Y	Z
H23	-0.11995	0.00116	0.00162
H24	-0.72265	1.93824	-0.85441
H25	-3.09958	1.92149	-0.90878
H26	3.23422	-0.58593	1.30364
H27	0.40954	-2.28505	-1.34405
H28	1.69419	-4.33391	-1.38537
H29	-4.76025	-1.93209	0.78118
H30	-6.05996	-1.54127	-0.31931
H31	-6.06009	-0.88629	1.30059
H32	4.45156	-2.67518	1.331
H33	3.69777	-4.54452	-0.02646
H34	-0.72265	-1.93814	0.85463
H35	-3.09958	-1.9214	0.909
H36	3.23413	0.58578	-1.30363
H37	0.40977	2.28513	1.34428
H38	1.69445	4.33399	1.38522
H39	-6.4932	0.97442	-0.3941
H40	-5.19335	1.36518	-1.49444
H41	-5.19339	2.02021	0.12543
H42	4.45158	2.67494	-1.33118
H43	3.69787	4.54447	0.02612

8 X-ray diffraction analysis

8.1 Experimental details

The crystallographic measurements were performed at 110(2) K using a three circle (Quest; Mo Ka radiation, λ $=0.71073 \AA$ Å) and kappa (Venture; Cu Ka radiation, $\lambda=1.54178 \AA$) Bruker-AXS with I μ S source and a Photon III area detector diffractometer. In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop and cooled to 110(2) K in a cold nitrogen stream (OXFORD Crysosystems). The structure data was collected and reduced using Bruker AXS APEX 3 software ${ }^{6}$ and solved by direct methods. Semiempirical absorption corrections were applied using SADABS. ${ }^{7}$ Subsequent refinement using a difference map on F^{2} using the SHELXTL/PC package (version 6.1 \& OLEX 2)..8,9 Thermal parameters were refined anisotropically for all non-hydrogen atoms to convergence. H atoms were added at idealized positions using a riding model. The results of these X-ray measurements are provided as CIF files. CCDC 2296317-2296321 contain the supplementary crystallographic data for this paper. Crystal structure of 1 has been previously published ${ }^{1}$ and structures $[2]\left[\mathrm{BF}_{4}\right]$ and $[4]\left[\mathrm{BF}_{4}\right]$ are presented in the text.
8.2 Table showing the compounds characterized by X-ray diffraction and their corresponding CCDC numbers.

Compound	CCDC
$[2][\mathrm{BF}$	4
$[2] \mathrm{OH}$	2296317
3	2296318
$[4]\left[\mathrm{BF}_{4}\right]$	2296319
$[4] \mathrm{OH}$	2296320

Figure S38. Solid-state structure of [2]OH. Hydrogens atoms were omitted for clarity.

Figure S39. Solid-state structure of 3. Hydrogens atoms and solvent were omitted for clarity.

Figure S40. Solid-state structure of [4]OH. Hydrogens atoms and solvent were omitted for clarity.

8.4 X-ray refinement parameters

Compound	[2][BF4]	[2]OH	3
Empirical formula	$\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{P}_{2} \cdot \mathrm{BF}_{4}$	$\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{NOP}_{2} \cdot 2.5\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{P}_{2} \cdot 0.5\left(\mathrm{H}_{2} \mathrm{O}\right)$
Formula weight	773.51	951.90	712.72
Temperature/K	110.0	110.01	109.99
Crystal system	monoclinic	triclinic	triclinic
Space group	C2/m	P-1	P-1
a / \AA	12.224(2)	13.849(3)	12.0136(17)
b/Å	25.959(5)	13.924(3)	12.8997(18)
c/Å	12.870(2)	14.623(3)	13.4490(19)
$\alpha /{ }^{\circ}$	90	115.720(5)	71.834(3)
$\beta /{ }^{\circ}$	91.755(5)	90.378(5)	71.445(3)
${ }^{1} /{ }^{\circ}$	90	96.195(5)	67.410(3)
Volume/ \AA^{3}	4082.1(13)	2520.9(9)	1781.0(4)
Z	4	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.259	1.254	1.329
μ / mm^{-1}	1.435	0.235	0.168
F(000)	1608.0	1002.0	750.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.177 \times 0.082$	$0.275 \times 0.24 \times 0.15$	$0.169 \times 0.149 \times 0.053$
Radiation	CuKa ($\lambda=1.54178$)	MoKa ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)
2Θ range for data collection ${ }^{\circ}$	7.998 to 136.482	4.638 to 61.316	4.244 to 54.97
Index ranges	$-14 \leq \mathrm{h} \leq 14,-31 \leq \mathrm{k} \leq 29,-15 \leq \mathrm{l} \leq 15$	$-19 \leq h \leq 19,-19 \leq k \leq 19,-20 \leq 1 \leq 20$	$-15 \leq h \leq 15,-16 \leq \mathrm{k} \leq 16,-17 \leq \mathrm{l} \leq 17$
Reflections collected	26069	57558	40080
Independent reflections	\left.$3817{\left[R_{\text {int }}\right.}=0.0535, \mathrm{R}_{\text {sigma }}=0.0348\right]$	$15420\left[\mathrm{R}_{\text {int }}=0.0632, \mathrm{R}_{\text {sigma }}=0.0629\right]$	$8168\left[\mathrm{R}_{\text {int }}=0.1538, \mathrm{R}_{\text {sigma }}=0.1395\right]$
Data/restraints/parameters	3817/0/256	15420/0/607	8168/36/526
Goodness-of-fit on F^{2}	1.112	1.023	1.180
Final R indexes [l>=2 $\sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0453, \mathrm{w}_{2}=0.1249$	$\mathrm{R}_{1}=0.0562, \mathrm{w}_{2}=0.1206$	$\mathrm{R}_{1}=0.1369, \mathrm{w}_{2}=0.2074$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0485, w \mathrm{R}_{2}=0.1288$	$\mathrm{R}_{1}=0.0946, w \mathrm{R}_{2}=0.1465$	$\mathrm{R}_{1}=0.2190, w \mathrm{R}_{2}=0.2382$
Largest diff. peak/hole / e \AA^{-3}	0.54/-0.48	0.70/-0.90	0.38/-0.34
CCDC identifier	2296317	2296318	2296319

Compound	[4][BF_{4}]	[4]OH
Empirical formula	$2\left(\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NOP}\right) \cdot 2\left(\mathrm{BF}_{4}\right) \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	$\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}$
Formula weight	1220.82	503.55
Temperature/K	110.0	293(2)
Crystal system	monoclinic	monoclinic
Space group	Pc	P2/ $/ \mathrm{c}$
a/Å	8.3585(6)	15.3105(10)
b/Å	14.7884(10)	10.7158(8)
c/Å	25.0191(17)	15.7073(11)
$\alpha{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90.077(4)	92.104(2)
V^{1}	90	90
Volume/ \AA^{3}	3092.6(4)	2575.3(3)
Z	2	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.311	1.299
μ / mm^{-1}	1.256	0.139
F(000)	1276.0	1064.0
Crystal size/mm ${ }^{3}$	$0.257 \times 0.027 \times 0.02$	$0.326 \times 0.12 \times 0.11$
Radiation	CuKa ($\lambda=1.54178$)	MoKa ($\lambda=0.71073$)
2Θ range for data collection $/{ }^{\circ}$	5.976 to 136.522	4.602 to 54.972
Index ranges	$-10 \leq h \leq 10,-17 \leq k \leq 17,-30 \leq 1 \leq 29$	$-19 \leq h \leq 19,-13 \leq k \leq 13,-20 \leq 1 \leq 20$
Reflections collected	52504	40373
Independent reflections	$10607\left[\mathrm{R}_{\text {int }}=0.1138, \mathrm{R}_{\text {sigma }}=0.0885\right]$	$5895\left[\mathrm{R}_{\text {int }}=0.0426, \mathrm{R}_{\text {sigma }}=0.0256\right]$
Data/restraints/parameters	10607/2/790	5895/0/337
Goodness-of-fit on F^{2}	1.028	1.121
Final R indexes [l>=2 $\sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0579, \mathrm{wR}_{2}=0.1402$	$\mathrm{R}_{1}=0.0544, \mathrm{wR}_{2}=0.1326$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0681, \mathrm{wR}_{2}=0.1481$	$\mathrm{R}_{1}=0.0631, \mathrm{wR}_{2}=0.1371$
Largest diff. peak/hole / e \AA^{-3}	0.36/-0.48	0.56/-0.54
CCDC identifier	2296320	2296321

1. E. D. Litle, L. C. Wilkins and F. P. Gabbaï, Chem. Sci., 2021, 12, 3929-3936.
2. GaussView, Version 6.1.1, R. Dennington, T. A. Keith and J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2019.
3. E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437.
4. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminform., 2012, 4, 17.
5. AIMAll (Version 14.06.21), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, 2014.
6. Bruker, 2019, APEX3 (v2019.2011-2010), Bruker AXS Inc., Madison, Wisconsin, USA.
7. SADABS., G. M. Sheldrick, University of Göttingen, Germany, 2016.
8. G. M. Sheldrick, Acta Crystallograph., Sect. A, 2015, 71, 3-8.
9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
